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Introduction française

L’objet de cette thèse est l’étude des orbites périodiques de la dynamique Hamiltonienne.
Prenons un instant pour définir ces termes. La dynamique Hamiltonienne désigne le domaine de
la physique mathématique étudiant certains types de trajectoires que suivraient en particulier des
systèmes physiques conservatifs selon les lois de la physique newtonienne classique. Supposons que
nous étudions un système physique à n degrés de liberté q1, . . . , qn que nous pouvons supposer
réels (on pensera par exemple au cas de n/3 particules massives ayant pour degrés de liberté
dans l’espace tridimensionnel leurs coordonnées spatiales). Selon le formalisme de la dynamique
hamiltonienne, ses interactions physiques peuvent être décrites au moyen d’une fonction scalaire :
le hamiltonien du système H : R × R2n → R prenant pour variables le temps t ∈ R, la position
q := (q1, . . . , qn) ∈ Rn et le moment p = (p1, . . . , pn) ∈ Rn (dont l’expression dépend du système).
En effet, l’évolution de la position q du système physique au cours du temps est décrite par le
système d’équations différentielles non linéaire :

q̇ = ∂Ht

∂p
(q, p) et ṗ = −∂Ht

∂q
(q, p),

où q̇ et ṗ désignent les dérivées temporelles respectives de q et p au temps t. Cette équation est
la célèbre équation de Hamilton. Étant intéressés aux potentielles solutions périodiques d’une telle
équation, nous ferons l’hypothèse que le hamiltonien est temporellement 1-périodique : Ht+1 = Ht

pour tout t ∈ R et nous verrons plutôt t comme un élément de S1 := R/Z.
L’équation de Hamilton que nous avons défini sur R2n se généralise aux variétés symplectiques

(M,ω), lesquelles sont des variétés M munies d’une 2-forme fermée non dégénérée ω appelée forme
symplectique. En effet, l’équation précédente se réécrit

XtyΩ = dHt avec Ω :=
n∑
j=1

dqj ∧ dpj et Xt := (q̇, ṗ).

On étend ainsi la définition de l’équation de Hamilton aux hamiltoniens H : S1 ×M → R par
Xtyω = dHt. Le flot au temps 1 d’une telle équation différentielle sera l’un de nos principaux objets
d’intérêt : il s’agit d’un difféomorphisme ϕ : M →M . On désigne par difféomorphisme hamiltonien
un tel difféomorphisme et on note Ham(M,ω) l’ensemble des difféomorphismes hamiltoniens de la
variété (M,ω). En effet, dans le cas où Ht dépend effectivement de t, l’étude générale des orbites
périodiques se ramène à l’étude des points périodiques du difféomorphisme hamiltonien associé.

Dans cette thèse, nous nous intéressons aux conditions dynamiques ou topologiques imposant
l’existence d’un nombre infini de trajectoires périodiques pour certains types de systèmes hamil-
toniens. Dans une première partie, nous prolongeons la théorie de Givental et Théret basée sur
les fonctions génératrices permettant d’étudier le cas des espaces projectifs complexes M = CPd ;
nous retrouvons ainsi des résultats très récents au moyen d’outils bien plus élémentaires. Dans une
seconde partie, nous nous intéressons aux flots géodésiques et démontrons de nouveaux résultats
apportant des exemples de telles conditions dynamiques ou topologiques. Les résultats de cette
seconde partie sont partiellement issus d’une collaboration avec Tobias Soethe. Les résultats de
cette thèse ont fait l’objet d’articles : [1] et [3] pour ce qui concerne la première partie, [2] et [4]
pour la seconde.

Partie 1 : étude des points périodiques des difféomorphismes hamiltoniens de CPd
via les fonctions génératrices

On considère aussi l’espace projectif complexe CPd de dimension complexe d, variété sym-
plectique dont la forme symplectique est la forme de Fubini-Study ω caractérisée par l’identité
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π∗ω = i∗Ω où π : S2d+1 → CPd est l’application quotient, i : S2d+1 ↪→ Cd+1 est l’inclusion et
Ω :=

∑
j dqj ∧ dpj est la forme symplectique standard de Cd+1 ' R2(d+1). En 1985, Fortune-

Weinstein [35] ont montré que tout difféomorphisme hamiltonien de CPd possède au moins d+ 1
points fixes, comme Arnol’d l’avait conjecturé. Les travaux de Givental [43] et Théret [75] des
années 90, que nous prolongerons dans cette partie de la thèse, fournirent une preuve alternative
de ce résultat. Étant donné un difféomorphisme ϕ, un point k-périodique de ϕ est par définition
un point fixe de la k-ième itérée ϕk. Sur une variété close et symplectiquement asphérique (e.g. le
tore T2d) tout difféomorphisme hamiltonien a une infinité de points périodiques. Ce résultat fut
conjecturé par Conley, démontré par Hingston [52] dans le cas du tore et généralisé par Ginzburg
au cas général [39] après des décennies de grandes avancées : Conley-Zehnder démontrèrent le
cas non dégénéré pour les tores [31], Salamon-Zehnder démontrèrent le cas non dégénéré pour les
variétés asphériques [67], Franks-Handel et Le Calvez démontrèrent la conjecture pour les surfaces
[38, 55].

À l’opposé des variétés symplectiquement asphériques, la conjecture de Conley n’est pas valable
sur CPd : il existe des difféomorphismes hamiltoniens avec un nombre fini de points périodiques.
Un contre-exemple simple est donné par le difféomorphisme

[z1 : z2 : · · · : zd+1] 7→
[
e2iπa1z1 : e2iπa2z2 : · · · : e2iπad+1zd+1

]
,

pour des réels a1, . . . , ad+1 ∈ R rationnellement indépendants. En effet, c’est un difféomorphisme
hamiltonien dont les seuls points périodiques sont les points fixes : la projection de la base canonique
de Cd+1. On remarque que ce difféomorphisme hamiltonien a le nombre minimum de points pério-
diques, à savoir le nombre minimum de points fixes conjecturé par Arnol’d. Un difféomorphisme
hamiltonien de CPd ayant exactement d+ 1 points périodiques est appelé une pseudo-rotation de
CPd.

Dans le cas où d = 1, CP1 ' S2 et les difféomorphismes hamiltoniens sont les difféomorphismes
préservant l’aire isotopes à l’identité. Franks [36, 37] démontra que de tels difféomorphismes (ou
plus généralement homéomorphismes) ont ou bien 2 ou bien une infinité de points périodiques.
En 1994, Hofer-Zehnder [53, p.263] conjecturèrent une généralisation en grande dimension de ce
résultat : tout difféomorphisme hamiltonien de CPd a ou bien d+ 1 points périodiques ou bien une
infinité (cette conjecture était énoncée pour une classe de variétés symplectiques plus générale).
Dans cette direction, une preuve symplectique du théorème de Franks fut proposée par Collier et
al. [30] dans le cas lisse.

Dans cette thèse, nous nous intéresserons en particulier au résultat de Ginzburg-Gürel suivant.

Theorème A. Tout difféomorphisme hamiltonien de CPd ayant un point fixe hyperbolique a
une infinité de points périodiques.

Ce théorème fut démontré dans [41] dans un cadre plus général incluant certaines grass-
manniennes complexes, CPd × P 2k avec P symplectiquement asphérique et k ≤ d, les produits
monotones CPd × CPd. Nous remarquons que le cas CPd × T2k avec k ≤ d peut aisément être
déduit avec nos outils.

Les méthodes employées dans la preuve permettent aussi de montrer une sorte de contraposée
vérifiée par les pseudo-rotations, comme Ginzburg-Gürel le remarquèrent dans [42].

Theorème B. Les points fixes d’une pseudo-rotation de CPd sont isolés comme ensembles
invariants.

En 2019, Shelukhin démontra une version « homologique » de la conjecture de Hofer-Zehnder
qui peut être ainsi énoncée dans le cas particulier de CPd [69].

Theorème C. Tout difféomorphisme hamiltonien ϕ de CPd tel que N(ϕ;F) > d+ 1 pour un
corps F a une infinité de points périodiques. De plus, si ϕ a un nombre fini de points fixes, dans le
cas où la caractéristique de F est nulle, il existe A ∈ N tel que, pour tout nombre premier p ≥ A, ϕ
a un point p-périodique qui n’est pas un point fixe ; dans le cas où la caractéristique de F est p 6= 0,
ϕ a une infinité de points périodiques dont la période appartient à {pk | k ∈ N}.

L’entier N(ϕ;F) ∈ N est un « compte homologique » du nombre de points fixes de ϕ, qui
est égal au nombre de points fixes lorsque ϕ est non dégénéré (i.e. lorsque le graphe de ϕ est
transverse au graphe de l’identité). En particulier, cela démontre la conjecture de Hofer-Zehnder
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dans le cas des difféomorphismes hamiltoniens non dégénérés. Comme nous le verrons, la preuve
de Shelukhin est basée sur la théorie des code-barres en topologie symplectique introduite par
Polterovich-Shelukhin dans [65].

Dans la première partie de cette thèse, nous nous appuyons sur les idées de Givental [43] et
Théret [75] pour construire un analogue à l’homologie de Floer des difféomorphismes hamiltoniens
de CPd reposant sur la théorie de Morse classique et les fonctions génératrices. Avec cet outil, nous
obtenons des preuves des Théorèmes A, B et C « qui auraient pu être données dans les années
90 ».

Organisation de la Partie 1. Dans le Chapitre 1, nous présentons les outils classiques qui
nous seront utiles. Dans le Chapitre 2, nous étudions l’homologie des joints projectifs de sous-
ensembles de l’espace projectif. Cette discussion générale sera essentielle à l’étude homologique
des sous-niveaux des fonctions génératrices de difféomorphismes hamiltoniens de CPd. Dans le
Chapitre 3, nous développons la théorie de l’homologie des fonctions génératrices pour les difféo-
morphismes hamiltoniens de CPd. Ce chapitre est le cœur de cette partie de la thèse. Dans le
Chapitre 4, nous démontrons les Théorèmes A et B (dénommés Corollaires 4.2 et 4.3 dans le corps
du texte). Dans le Chapitre 5, nous démontrons le Théorème C (dénommé Théorème 5.1 dans le
corps du texte).

Partie 2 : chemins géodésiques et géodésiques fermées

Ici, nous nous cantonnerons à une dynamique hamiltonienne particulière : le flot géodésique
sur le fibré tangent d’une variété riemannienne (M, g) ou, plus généralement, une variété Finsler
(M,F ). Cette dynamique se décrit directement sur la variété M : il s’agit des trajectoires que peut
décrire un point mobile de cette variété se déplaçant « tout droit ». Ainsi les droites dans un espace
euclidien ou les grands cercles sur la sphère ronde. De telles trajectoires sont appelées géodésiques et
nous nommerons « géodésiques fermées » les trajectoires périodiques de cette dynamique (suivant
cette terminologie, les droites d’un espace euclidien ne sont pas des géodésiques fermées).

Géodésiques fermées d’une surface complète. Les résultats énoncés dans cette section
sont issus d’une collaboration avec Tobias Soethe. Le problème de l’existence et de la multiplicité
des géodésiques fermées joue un rôle important en géométrie et dynamique riemannienne. Remon-
tant aux travaux de Hadamard et Poincaré [49, 64], il est toujours ouvert pour de nombreuses
variétés riemanniennes. Étant donnée une variété riemannienne complète (M, g), une question cé-
lèbre est de savoir si celle-ci possède une géodésique fermée quelque soit la métrique g. La réponse
est toujours positive pour les M closes [19, 57, 33]. On peut alors se demander si le nombre
de géodésiques fermées est ou non infini. Ce nombre est toujours infini dans le cas des surfaces
closes [36, 10, 51]. Cependant, la question est toujours ouverte pour les sphères de dimension
supérieure. Ici, nous nous intéressons aux surfaces complètes et non compactes pour lesquelles
l’existence même d’une géodésique fermée n’est pas toujours garantie : les plans et les cylindres
(nous étudions aussi le ruban de Möbius qui peut ne contenir qu’une seule géodésique fermée).
Par exemple, le plan euclidien n’a aucune géodésique fermée. Néanmoins, sous certaines condi-
tions géométriques, des résultats intéressants peuvent être énoncés. En 1980, Bangert montra que
tout cylindre, plan ou ruban de Möbius complet d’aire finie a une infinité de géodésiques fermées
[9]. Dans le cas des plans et cylindres, il obtint les mêmes résultats sous l’hypothèse affaiblie
de l’existence de voisinages convexes de l’infini. Notre but est de donner des conditions simples
sous lesquelles l’existence d’une ou deux géodésiques fermées distinctes implique l’existence d’une
infinité de géodésiques fermées.

Soit M ' S1 × R un cylindre riemannien complet et ΛM son espace des lacets. Deux lacets
α, β ∈ ΛM sont dits géométriquement distincts si leurs images sont distinctes : α(S1) 6= β(S1).
Étant donné un anneau R, une géodésique fermée γ ∈ ΛM est dite homologiquement visible sur R
si l’homologie locale à coefficients dans R de son cercle critique S1 · γ ⊂ ΛM est non nulle pour la
fonctionnelle énergie (voir la Section 2 du Chapitre 6 pour les définitions précises). À l’exception
de ce qui concerne le ruban de Möbius, les résultats suivants sont vrais sur tout anneau R (une
fois fixé), nous ne mentionnerons donc pas R explicitement.

Theorème D. Soit un cylindre riemannien complet M dont les géodésiques fermées sont
isolées vérifiant l’une des conditions suivantes :
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1. il existe une géodésique fermée contractile,
2. il existe une géodésique fermée s’intersectant avec elle-même,
3. il existe deux géodésiques fermées distinctes s’intersectant,
4. il existe une géodésique fermée d’indice moyen non nul,
5. il existe deux géodésiques fermées homologiquement visibles.
Il existe alors un compact K ⊂M tel que M a une infinité de géodésiques homologiquement visibles
intersectant K, l’une au moins ne s’intersectant pas avec elle-même.

Cela démontre, en particulier, la conjecture d’Abbondandolo suivante.
Corollaire. Tout cylindre riemannien complet dont les géodésiques fermées sont isolées pos-

sède zéro, une ou une infinité de géodésiques fermées homologiquement visibles.
En prenant le revêtement connexe double, on déduit l’analogue suivant du Théorème D lorsque

M est un ruban de Möbius complet (voir la Section 7 du Chapitre 6).
Theorème E. Soit un ruban de Möbius riemannien complet M dont les géodésiques fermées

sont isolées vérifiant l’une des conditions suivantes :
1. il existe une géodésique fermée contractile,
2. il existe une géodésique fermée s’intersectant avec elle-même,
3. il existe deux géodésiques fermées distinctes s’intersectant,
4. il existe une géodésique fermée d’indice moyen non nul,
5. il existe deux géodésiques fermées homologiquement visibles sur F2.
Il existe alors un compact K ⊂M tel que M a une infinité de géodésiques homologiquement visibles
intersectant K, l’une au moins ne s’intersectant pas avec elle-même.

Selon Thorbergsson [76, Théorème 3.2], tout ruban de Möbius complet contient au moins une
géodésique fermée homologiquement visible ne s’intersectant pas avec elle-même.

Corollaire. Tout ruban de Möbius riemannien complet dont les géodésiques fermées sont
isolées possède une seule ou une infinité de géodésiques fermées homologiquement visibles sur F2.

Des résultats similaires sont obtenus pour les plans complets M ' R2.
Theorème F. Soit un plan riemannien complet M avec dont les géodésiques fermées sont

isolées vérifiant l’une des conditions suivantes :
1. il existe une géodésique fermée s’intersectant avec elle-même,
2. il existe deux géodésiques fermées distinctes s’intersectant,
3. il existe une géodésique fermée d’indice moyen non nul,
4. il existe deux géodésiques fermées homologiquement visibles.
Il existe alors un compact K ⊂M tel que M a une infinité de géodésiques homologiquement visibles
intersectant K, l’une au moins ne s’intersectant pas avec elle-même.

Corollaire. Tout plan riemannien complet dont les géodésiques fermées sont isolées possède
zéro ou une infinité de géodésiques fermées homologiquement visibles.

Afin de mettre ces résultats en perspective, rappelons quelques résultats connus sur l’exis-
tence de géodésiques fermées dans les variétés riemanniennes complètes non compactes. En 1978,
Thorbergsson montra l’existence de géodésiques fermées dans les variétés riemanniennes complètes
contenant un compact convexe non trivial homologiquement ou ayant une courbure sectionnelle
positive hors d’un compact [76]. Dans les années 90, Benci et Giannoni montrèrent que toute
variété riemannienne complète d-dimensionnelle dont la limite supérieure de la courbure section-
nelle est négative à l’infini et dont l’homologie de l’espace des lacets libres est non triviale en un
degré supérieur à 2d admet une géodésique fermée [16, 17]. En 2017, Asselle et Mazzucchelli mon-
trèrent l’existence d’une infinité de géodésiques fermées pour les variétés riemanniennes complètes
d-dimensionnelles n’ayant pas de points conjugués à l’infini et dont la suite des nombres de Betti
de son espace des lacets libres prise à partir du degré 2d n’est pas bornée [5]. Ils améliorèrent aussi
le résultat de Benci et Giannoni en remplaçant l’hypothèse concernant la courbure asymptotique
en l’hypothèse concernant les points conjugués à l’infini et en améliorant la borne sur l’homologie
de l’espace des lacets libres. Cependant, l’existence d’une géodésique fermée dans n’importe quelle
variété riemannienne de volume fini est toujours un problème ouvert (consulter par exemple l’état
de l’art suivant [22]).
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Croissance du nombre de géodésiques entre deux points fixés. Ici, nous supposerons
toujours nos variétés M connexes. Étant donnés deux points p, q d’une variété de Finsler complète
(M,F ), le plus court chemin joignant p à q nous donne un segment géodésique entre p et q. Nous
nous intéressons ici à des conditions topologiques sur M impliquant l’existence d’une infinité de
géodésiques géométriquement distinctes reliant les points p et q (pour cette question spécifique,
l’irréversibilité de la métrique F n’amène pas de complication). Pour ` > 0, notons n(`; p, q) le
nombre de géodésiques géométriquement distinctes reliant p à q de longueur ≤ `. Il est bien
connu que lorsque π1(M) est « suffisamment grand », n(`; p, q) tend vers l’infini sans condition
additionnelle. En effet, si la croissance du groupe π1(M) est sur-linéaire, n(`; p, q) tend vers l’infini.
Nous nous intéressons donc au cas où la croissance de π1(M) est linéaire. En nous inspirant d’un
travail célèbre de Bangert-Hingston [11], nous démontrons qu’il suffit de demander que π1(M) soit
infini dans la mesure où M n’est pas homotopiquement équivalente au cercle S1.

Theorème G. Soit une variété (connexe) M de groupe fondamental infini et n’étant pas
homotopiquement équivalente au cercle. Alors, pour toute métrique Finsler complète en avant,

n(`; p, q)→ +∞ lorsque `→ +∞, ∀p, q ∈M.

Bien entendu, la conclusion du Théorème G n’est pas vérifiée pour les cylindres plats S1×Rn,
lesquels sont homotopiquement équivalents au cercle. Dans sa thèse de doctorat, Mentges démontra
le Théorème G dans le cas particulier où p = q et M n’est pas contractile [60, Satz 2.2.1.]. On
peut être plus précis lorsque le rang de H1(M ;Z) est non nul.

Theorème H. Soit une variété close M n’étant pas homotopiquement équivalente au cercle
(c’est-à-dire une variété close de dimension ≥ 2) et de premier nombre de Betti β1(M ;Z) ≥ 1.
Alors, quelle que soit la métrique de Finsler sur M , il existe a > 0 et b ∈ R tels que

n(`; p, q) ≥ a log `+ b, ∀` > 0,∀p, q ∈M.

Theorème I. Soit une variété M n’étant pas homotopiquement équivalente au cercle et de
premier nombre de Betti β1(M ;Z) ≥ 1. Alors, pour toute métrique de Finsler complète en avant
sur M , il existe une fonction continue b : M → R telle que

n(`; p, q) ≥ log(log `)
2 log 2 + b(q), ∀` > 0,∀p, q ∈M.

Lorsque le revêtement universel de M n’est pas contractile (autrement dit lorsque M n’est
pas un espace de Eilenberg-MacLane), Les Théorèmes G, H et I se déduisent d’un argument de
min-max inspiré de celui de Bangert-Hingston [11]. Lorsque le revêtement universel de M est
contractile, les estimées sont meilleures encore car la croissance est au moins linéaire.

Lemme. Soit une variété M n’étant pas homotopiquement équivalente au cercle et de revête-
ment universel contractile. Alors son groupe fondamental a une croissance au moins quadratique.

Ces dernières hypothèses sont en particulier vérifiées par les variétés closes de dimension ≥ 2
et de revêtement universel non contractile.

L’étude des liens entre le nombre de géodésiques joignant deux points et la topologie de la
variété remonte aux travaux fondateurs de Morse [63, 62], dans lesquels il démontra notamment
que toute paire de points d’une variété riemannienne close M peut être jointe par un nombre infini
de géodésiques à la condition que les groupes d’homologie de l’espace des lacets deM aient un rang
non trivial pour un nombre infini de degrés. Serre montra que cette condition est toujours vérifiée
pour les variétés M simplement connexes en étudiant la suite spectrale associée à la fibration
ev : P → M , où P est l’espace des chemins γ ∈ C0([0, 1],M) de point base γ(0) = p fixé
et ev(γ) := γ(1) [68, Prop. IV.11]. Nous attirons l’attention du lecteur sur le fait que dans ce
résultat les géodésiques ainsi dénombrées ne sont pas nécessairement géométriquement distinctes
(au contraire de l’ensemble des énoncés que nous démontrons dans cette partie de la thèse). Montrer
l’existence d’une infinité de géodésiques géométriquement distinctes à l’aide de la théorie de Morse
nécessite une étude plus subtile. Inspiré par Gromoll-Meyer (voir ci-après), Tanaka [72, Problem C]
demanda s’il était suffisant, pour une variété riemannienne simplement connexe (M, g), de supposer
que la suite des nombres de Betti de l’espace des lacets (βi(ΩM)) sous un corps fixé était non
bornée pour obtenir n(`; p, q) → ∞ pour toute paire de points p, q ∈ M . Lorsque p et q ne sont
pas conjugués, il esquissa la preuve et Caponio-Javaloyes [23] donnèrent une preuve détaillée du
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cas plus général où M est une variété de Finsler complète en avant et en arrière. Lorsque p et q
sont conjugués, la question est toujours ouverte.

Concernant le problème analogue du nombre de géodésiques fermées d’une variété rieman-
nienne, l’un des premiers résultats comparables est dû à Gromoll-Meyer [47] : si la suite des
nombres de Betti de l’espace des lacets libres d’une variété riemannienne simplement connexe M
n’est pas bornée, alors M possède une infinité de géodésiques fermées géométriquement distinctes.
En ce qui concerne la vitesse de croissance du nombre de géodésiques fermées, Bangert et Hing-
ston montrèrent qu’elle est au moins aussi grande que celle des nombres premiers (i.e. & `

log ` ) à
constantes additive et multiplicative près, lorsque π1(M) est infini abélien [11] ou lorsque M = S2

[51]. L’obstruction à ce que nous ne trouvions pas d’aussi bonnes estimations semble provenir de
l’absence d’application d’itération γ 7→ (t 7→ γ(mt)),m ∈ N∗, sur l’espace des segments géodésiques
reliant p à q. Ce résultat fut étendu par Tăımanov à une large classe de groupes fondamentaux infi-
nis non abéliens dans [73]. Cependant, la question de l’existence d’un nombre infini de géodésiques
fermées géométriquement distinctes dans une variété riemannienne close de groupe fondamental
infini quelconque demeure ouverte.

Organisation de la Partie 2. Dans le chapitre 6, nous prouvons les Théorèmes D et F
(dénommés Théorèmes 6.1 et 6.5 dans le corps du texte). Dans le chapitre 7, nous prouvons les
Théorèmes G, H et I (dénommés Théorèmes 7.2, 7.3 et 7.4 dans le corps du texte).



English introduction

The subject of this thesis is the study of periodic orbits in Hamiltonian dynamics. Let us
briefly introduce these concepts. Hamiltonian dynamics is the field of mathematical physics that
studies special kinds of trajectories, some of which would be the ones of conservative physical
systems of Newton’s theory. Let us assume that we are studying a physical system with n degrees
of freedom q1, . . . , qn ∈ R (as a special case, one can think of n/3 massive particles which degrees
of freedom are the tridimensional spatial coordinates). According to the formalism of Hamiltonian
dynamics, its physical interactions can be described by means of a scalar map: the Hamiltonian
map of the system H : R × R2n → R, depending on time t ∈ R, position q := (q1, . . . , qn) ∈ Rn
and momentum p = (p1, . . . , pn) ∈ Rn (which expression depends on the system). As a matter of
fact, the evolution of the position q of the physical system with time is described by the non-linear
differential system:

q̇ = ∂Ht

∂p
(q, p) and ṗ = −∂Ht

∂q
(q, p),

where q̇ and ṗ denote the respective time derivatives of q and p. This equation is the famous
Hamilton equation. As we are interested in the study of periodic solutions of such an equation, we
will assume that the Hamiltonian map is 1-periodic in time: Ht+1 = Ht for all t ∈ R and we will
see t as an element of S1 := R/Z.

The Hamilton equation defined on R2n can be generalized to symplectic manifolds (M,ω),
which are manifoldsM endowed with a non-degenerate 2-form ω called a symplectic form. Indeed,
the former equation can be written as

XtyΩ = dHt with Ω :=
n∑
j=1

dqj ∧ dpj and Xt := (q̇, ṗ).

The definition of the Hamilton equation can thus be extended to Hamiltonian mapH : S1×M → R
by Xtyω = dHt. The time-one map of the Hamilton equation flow will be one of our major
subject of study: it is a diffeomorphism ϕ : M → M . Such a diffeomorphism is referred to as a
Hamiltonian diffeomorphism and we denote by Ham(M,ω) the set of Hamiltonian diffeomorphisms
of the symplectic manifold (M,ω). As a matter of fact, when Ht truly depends on t, the general
study of the periodic orbits boils down to the study of periodic points of the associated Hamiltonian
diffeomorphism.

In this thesis, we are studying dynamical and topological conditions that imply infinitely
many periodic orbits for special kinds of Hamiltonian systems. In a first part, we extend the
theory of Givental and Théret based on generating functions that allows to study the case of
complex projective spaces M = CPd; we provide new proofs of recent results without appealing
to the theory of J-holomorphic curves. In a second part, we study the geodesic flow and we show
new results that provide examples of dynamical or topological conditions imposing infinitely many
orbits. Work of the second part is partially joint with Tobias Soethe. The results in this thesis
also appear in some published articles or preprints: [1] and [3] for results of the first part, [2] and
[4] for the second one.

Part 1: periodic points of Hamiltonian diffeomorphisms of CPd via generating
functions

Let CPd be the complex d-dimensional projective space endowed with the Fubini-Study sym-
plectic structure ω, that is π∗ω = i∗Ω where π : S2d+1 → CPd is the quotient map, i : S2d+1 ↪→
Cd+1 is the inclusion map and Ω :=

∑
j dqj∧dpj is the canonical symplectic form of Cd+1 ' R2(d+1).

In 1985, Fortune-Weinstein [35] proved that any Hamiltonian diffeomorphism of CPd has at least
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d+ 1 fixed points, as was conjectured by Arnol’d. Given a diffeomorphism ϕ, a k-periodic point of
ϕ is by definition a fixed point of the k-iterated map ϕk. On closed symplectically aspherical man-
ifolds (e.g. on tori T2d), every Hamiltonian diffeomorphism has infinitely many periodic points.
This result was conjectured by Conley, proven for the tori by Hingston [52] and generalized by
Ginzburg [39] after decades of flourishing advances: Conley-Zehnder proved the non-degenerate
case for tori [31], Salamon-Zehnder proved the non-degenerate case for aspherical manifolds [67],
Franks-Handel and Le Calvez proved the conjecture for surfaces [38, 55]. Contrary to aspher-
ical symplectic manifolds, the Conley conjecture does not hold in CPd: there exist Hamiltonian
diffeomorphisms with only finitely many periodic points. A simple counter-example is the diffeo-
morphism

[z1 : z2 : · · · : zd+1] 7→
[
e2iπa1z1 : e2iπa2z2 : · · · : e2iπad+1zd+1

]
,

with rationally independent coefficients a1, . . . , ad+1 ∈ R. This is indeed a Hamiltonian diffeo-
morphism whose only periodic points are its fixed points: the projection of the canonical base of
Cd+1. Notice that this Hamiltonian diffeomorphism has the minimal number of periodic points,
that is the minimal number of fixed points conjectured by Arnol’d. A Hamiltonian diffeomorphism
of CPd which has exactly d+ 1 periodic points is called a pseudo-rotation of CPd.

In the case d = 1, CP1 ' S2 and Hamiltonian diffeomorphisms are the area preserving dif-
feomorphisms. Franks [36, 37] proved that every area preserving homeomorphism has either 2
or infinitely many periodic points. In 1994, Hofer-Zehnder [53, p. 263] conjectured a higher-
dimensional generalization of this result: every Hamiltonian diffeomorphism of CPd has either
d+ 1 or infinitely many periodic points (it was stated for more general symplectic manifolds). In
this direction, a symplectic proof of Franks’ result was provided by Collier et al. [30] in the smooth
setting.

We are interested in the following theorem of Ginzburg-Gürel.

Theorem A. Every Hamiltonian diffeomorphism of CPd with a hyperbolic fixed point has
infinitely many periodic points.

This theorem was proven in [41] in a more general setting, including some complex Grassman-
nians, CPd×P 2k where P is symplectically aspherical and k ≤ d, monotone products CPd×CPd.
We mention that the case of CPd ×T2k, when k ≤ d, can be deduced as well from our techniques.

The machinery involved in the proof can also be used in order to prove this counterpart for
pseudo-rotations, as Ginzburg and Gürel pointed out in [42].

Theorem B. Each fixed point of a pseudo-rotation of CPd is not isolated as an invariant set.

In 2019, Shelukhin proved a version of the Hofer-Zehnder conjecture that can be expressed in
the following way for the special case of CPd [69].

Theorem C. Every Hamiltonian diffeomorphism ϕ of CPd such that N(ϕ;F) > d+1 for some
field F has infinitely many periodic points. Moreover, when ϕ has finitely many fixed points, if F
has characteristic 0 in the former assumption, there exists A ∈ N such that, for all prime p ≥ A,
ϕ has a p-periodic point that is not a fixed point; if F has characteristic p 6= 0, ϕ has infinitely
many periodic points with period in {pk | k ∈ N}.

The number N(ϕ;F) ∈ N is a “homology count” of the number of fixed points of ϕ that is
equal to the number of fixed points when ϕ is non-degenerate (i.e. the graph of ϕ is transverse to
the graph of the identity). In particular, it solves the Hofer-Zehnder conjecture for non-degenerate
Hamiltonian diffeomorphisms. As we will see, his proof is based on the theory of barcodes in
symplectic topology introduced by Polterovich-Shelukhin in [65].

In the first part of this thesis, we elaborate on the ideas of Givental [43] and Théret [75] to
build an analogue of the Floer homology of Hamiltonian diffeomorphisms of CPd with classical
Morse theory and generating functions. With this tool, we then deduce a proof of Theorems A, B
and C “that could have been given in the 90s”.

Organization of Part 1. In Chapter 1, we introduce the well-known tools that will be needed.
In Chapter 2, we study the homology of projective join of subsets of the projective space. This
general discussion will be key to the homology study of the sublevel sets of generating functions of
Hamiltonian diffeomorphisms of CPd. In Chapter 3, we develop the theory of generating function
homology for Hamiltonian diffeomorphisms of CPd. This chapter is the core of this part of the
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thesis. In Chapter 4, we prove Theorems A and B (referred as Corollary 4.2 and 4.3 in main text).
In Chapter 5, we prove Theorem C (referred as Theorem 5.1 in the main text).

Part 2: closed geodesics and geodesic chords

Here we restrict ourselves to a special kind of dynamics: the geodesic flow on the tangent
bundle of a Riemannian manifold (M, g) or, more generally, a Finsler manifold (M,F ). This
dynamic can be directly described on the manifold M : its trajectories are the ones that a point
of M draws by “going straightforward”. For instance, right lines of a Euclidean space or great
circles of a round sphere. Such trajectories are called geodesics and periodic ones are called “closed
geodesics”.

Closed geodesics on complete surfaces. The problem of the existence and multiplicity
of closed geodesics plays an important role in both Riemannian geometry and dynamics. Going
back to Hadamard and Poincaré [49, 64], it is still open for a large class of Riemannian manifolds.
Given a complete Riemannian manifold (M, g), a famous question is whether it possesses a closed
geodesic for every Riemannian metric g. This is always true if M is closed [19, 57, 33]. We
can then ask whether the number of closed geodesics is infinite or not. It is known that every
closed surface has infinitely many geometrically distinct closed geodesics [36, 10, 51]. However,
this question is still open for spheres of higher dimension. Here, we are interested in non-compact
complete Riemannian surfaces for which even the existence of one closed geodesic fails in general:
planes and cylinders (we also study the Möbius band that can have only one closed geodesic). For
instance, the Euclidean plane does not possess any closed geodesic. Nevertheless, under specific
geometric conditions, interesting results can be stated. In 1980, Bangert proved that any complete
Riemannian cylinder, plane or Möbius band of finite area has infinitely many closed geodesics [9].
For the plane and the cylinder he proved the same result even under the weaker assumption of
just the existence of a convex neighborhood of infinity. We will discuss this result in greater depth
as it is used extensively in our proofs. Our purpose is to give simple conditions under which the
existence of one or two distinct closed geodesics implies that a complete Riemannian cylinder,
Möbius band or plane contains infinitely many geometrically distinct closed geodesics.

Let S1 := R/Z and let M ' S1 × R be a complete Riemannian cylinder. Let ΛM be its loop
space. Two loops α, β ∈ ΛM are said to be geometrically distinct if their images are distinct:
α(S1) 6= β(S1). Throughout this section, by writing that two closed geodesics are distinct we will
always mean that they are geometrically distinct. Given a ring R, a closed geodesic γ ∈ ΛM is said
to be homologically visible over R if the local homology of the critical circle S1 · γ ⊂ ΛM of the
energy functional is non-zero over the coefficient ring R. With the exception of the Möbius band,
every result are true over any coefficient ring R (once fixed) so the ring R will not be mentioned
explicitly.

Theorem D. Let M be a complete Riemannian cylinder where all closed geodesics are isolated
and assume one of the following hypothesis:
1. there exists a contractible closed geodesic,
2. there exists a self-intersecting closed geodesic,
3. there exist two distinct closed geodesics that intersect,
4. there exists a closed geodesic of non-zero average index,
5. there exist two homologically visible closed geodesics.
Then M contains infinitely many homologically visible closed geodesics intersecting some common
compact set K ⊂M and at least one without self-intersection.

The fact that hypothesis 5 implies that there exist infinitely many homologically visible closed
geodesics proves a conjecture of Abbondandolo:

Corollary. Any complete Riemannian cylinder where all closed geodesics are isolated has
zero, one or infinitely many homologically visible closed geodesics.

By essentially taking the double cover, one can thus deduce the following counter-part of
Theorem D when M is a complete Möbius band (see Section 7 of Chapter 6).

Corollary. Let M be a complete Riemannian Möbius band where all closed geodesics are
isolated and assume one of the following hypothesis:
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1. there exists a contractible closed geodesic,
2. there exists a self-intersecting closed geodesic,
3. there exist two distinct closed geodesics that intersect,
4. there exists a closed geodesic of non-zero average index,
5. there exist two homologically visible closed geodesics over F2.
Then M contains infinitely many closed geodesics intersecting some common compact set K ⊂M
that are homologically visible over F2.

According to Thorbergsson [76, Theorem 3.2], any complete Möbius band has at least one
homologically visible closed geodesic without self-intersection.

Corollary. Any complete Riemannian Möbius band where all closed geodesics are isolated
has one or infinitely many homologically visible closed geodesics over F2.

Similar results can also be obtained when M ' R2 is a complete plane:

Theorem E. Let M be a complete Riemannian plane where all closed geodesics are isolated
and assume one of the following hypothesis:
1. there exists a self-intersecting closed geodesic,
2. there exist two distinct closed geodesics that intersect,
3. there exists a closed geodesic of non-zero average index,
4. there exists a homologically visible closed geodesic.
Then M contains infinitely many homologically visible closed geodesics intersecting some common
compact set K ⊂M and at least one without self-intersection.

Corollary. Any complete Riemannian plane where all closed geodesics are isolated has zero
or infinitely many homologically visible closed geodesics.

In order to put these results in perspective, we recall some known results concerning existence
of closed geodesics on complete non-compact Riemannian manifolds. In 1978, Thorbergsson proved
the existence of closed geodesics on a complete Riemannian manifold M if it contains a convex
compact set which is not homotopically trivial or if M has a non-negative sectional curvature
outside some compact set [76]. In the 1990s, Benci and Giannoni proved that any complete d-
dimensional Riemannian manifold such that the limit superior of its sectional curvature at infinity
is non-positive and the homology of its free loop space is non-trivial in some degree larger than
2d possesses a closed geodesic [16, 17]. In 2017, Asselle and Mazzucchelli showed the existence of
infinitely many closed geodesics for complete d-dimensional Riemannian manifolds which have no
close conjugate points at infinity and a free loop space with unbounded Betti numbers in degrees
larger than d [5]. They also improved the result of Benci and Giannoni by replacing the asymptotic
curvature assumption by an assumption on the conjugated points at infinity and by improving the
bound on the homology of the free loop space. The existence of one closed geodesic in any complete
Riemannian manifold of finite volume is a hard open problem (see for instance the following recent
review of the subject [22]).

Growth rate of geodesic chords. Given a pair of points p, q in a complete Finsler manifold
(M,F ), the smallest path joining p to q gives one geodesic path between p and q. We are interested
in topological conditions on M that imply the existence of infinitely many geometrically distinct
such geodesic paths, p and q being fixed once for all (for this special concern, the irreversibility of
the metric F does not seem to add any qualitative difference). For ` > 0, we denote by n(`; p, q)
the number of geometrically distinct geodesics between p and q of length ≤ `. It is well known
that for π1(M) “large enough”, n(`; p, q) tends to infinity without any further assumption. Indeed,
if the growth rate of π1(M) is surlinear, n(`; p, q) tends to +∞. Therefore, we are interested in
the remaining case in which the growth rate of π1(M) is linear. Inspired by a famous work of
Bangert-Hingston [11], we prove that it is enough to ask that π1(M) is infinite as long as M is not
homotopy-equivalent to the circle S1.

Theorem F. Let M be a manifold of infinite fundamental group π1(M) and not homotopy-
equivalent to S1. Then, given any forward complete Finsler metric on M ,

n(`; p, q)→ +∞ as `→ +∞, ∀p, q ∈M.
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Of course, the assertion of Theorem F does not hold for the flat cylinders S1 × Rn, which are
homotopy-equivalent to S1. In his Ph.D. thesis, Mentges proved Theorem F in the case where
p = q and the universal cover of M is not contractible [60, Satz 2.2.1.]. We can be more specific
when H1(M ;Z) has non-zero rank:

Theorem G. Let M be a closed manifold not homotopy-equivalent to S1 (that is any closed
M of dimension ≥ 2) and with first Betti number β1(M ;Z) ≥ 1. Then, given any Finsler metric
on M , there exist a > 0 and b ∈ R such that

n(`; p, q) ≥ a log `+ b, ∀` > 0,∀p, q ∈M.

Theorem H. Let M be a manifold not homotopy-equivalent to S1 and with first Betti number
β1(M ;Z) ≥ 1. Then, given any forward complete Finsler metric on M , there exists a continuous
function b : M → R such that

n(`; p, q) ≥ log(log `)
2 log 2 + b(q), ∀` > 0,∀p, q ∈M.

When the universal cover of M is not contractible (that is M is not an Eilenberg-MacLane
space), Theorems F, G and H are deduced from a min-max argument inspired by Bangert-Hingston
[11]. When M has a contractible universal cover, the estimate is even stronger, since the growth
is at least linear:

Lemma. Let M be a manifold not homotopy-equivalent to S1 and with a contractible universal
cover. Then, π1(M) has at least a quadratic growth rate.

We notice that any closed manifold of dimension ≥ 2 with a contractible universal cover
satisfies the above condition.

Investigations on the links between the number of geodesics joining two points and the manifold
topology go back to Morse seminal works [63, 62], where he proved that any couple of points of
a closed Riemannian manifold M can be joined by infinitely many geodesics provided that the
homology groups of the loop space of M have a non trivial rank in infinitely many degrees. Serre
proved that this assumption is always satisfied for simply connected M by studying the spectral
sequence associated with the fibration ev : P →M , where P is the space of paths γ ∈ C0([0, 1],M)
such that γ(0) = p is a fixed base point and ev(γ) := γ(1) [68, Prop. IV.11]. In the above
result, geodesics are not necessarily geometrically distinct. Proving that there are infinitely many
geometrically distinct geodesics with Morse theory is more subtle. Inspired by Gromoll-Meyer (see
below), Tanaka [72, Problem C] asked if it is enough for a simply connected Riemannian manifold
(M, g) to assume that the sequence of Betti numbers of the loop space (βi(ΩM)) on some field
is unbounded to get that n(`; p, q) → ∞ for any pair of points p, q ∈ M . When p and q are
non-conjugate, he sketched the proof and Caponio-Javaloyes [23] gave a detailed proof in the more
general case of a connected, forward and backward complete Finsler manifold. When p and q are
conjugate, it is still an open problem.

For the related problem of closed geodesics in Riemannian manifold, one of the first results
in that direction was due to Gromoll-Meyer [47]: if the sequence of the Betti numbers of the free
loop space of a simply connected Riemannian manifold M is unbounded, then there are infinitely
many geometrically distinct closed geodesics on M . As for the growth rate, Bangert and Hingston
proved that it is at least like the one of prime numbers (i.e. & `

log ` ) up to a multiplicative and an
additive constant when π1(M) is infinite abelian [11], or when M = S2 [51]. The obstruction for
us to find such a better growth seems to come from the lack of iteration map γ 7→ (t 7→ γ(mt)),
m ∈ N∗, in the space of geodesic chords joining p and q. This result was extended by Tăımanov
to a large class of infinite non-abelian fundamental groups in [73]. Nevertheless, the existence
of infinitely many geometrically distinct closed geodesics in closed Riemannian manifolds with a
general infinite fundamental group is still an open problem.

Organization of part 2. In Chapter 6, we prove Theorems D and E (referred as Theor-
ems 6.1 and 6.5 in the main text). In Chapter 7, we prove Theorems F, G and H (referred as
Theorems 7.2, 7.3 and 7.4 in the main text).
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CHAPTER 1

Preliminaries

In this chapter, we provide the background in the literature needed to develop the theory of
generating function homology of Hamiltonian diffeomorphisms of CPd.

1. Persistence modules and barcodes

Let us fix a field F. A persistence module (V, π) over the field F is an R-family of F-vector
spaces (V t)t∈R with a collection of morphisms πts : V s → V t for s ≤ t such that πtt = idV t and
πts ◦πsr = πtr whenever r ≤ s ≤ t that one can call persistence morphisms. We extend this definition
to families (V t)t∈R\S satisfying the same axioms with the exception that t ∈ R \S where S ⊂ R is
discrete by identifying (V t) with the persistence module

(
V
t
)
defined by taking the direct limit

V
t := lim−→

s<t

V s, ∀t ∈ S,

with the obvious extension of the morphisms πts. Given two persistence modules (V, π) and (V ′, π′),
one defines the direct sum of them in an obvious way (V ⊕V ′, π⊕π′) which is a persistence module.
A morphism of persistence module f : (V, π) → (V ′, π′) is a family of morphisms ft : V t → V ′t

commuting with the persistence morphisms.
A persistence module (V t) is of finite type if V t = 0 for t sufficiently close to −∞, every V t

has a finite dimension and there exists a finite set S ⊂ R such that πts is an isomorphism whenever
s and t belong to the same connected component of R \ S. The fundamental example is given by
V t := H∗({f ≤ t};F), where f : M → R is a smooth function on a compact manifold M with
finitely many critical points (if M is non-compact or f has infinitely many critical points, we only
have a general persistence module). Given an interval I = (a, b] or I = (a,+∞), we define the
persistence module F(I) by V t = F for t ∈ I and V t = 0 otherwise, πts = id when t and s belong
to the same connected component of R \ {a, b} or R \ {a} respectively and πts = 0 otherwise. It is
a persistence module of finite type. We think of it as representing a class that appears at t = a
and persists until t = b or indefinitely if I = (a,+∞). Graphically, we represent F(I) by drawing a
horizontal bar from t = a to t = b or without right endpoint if I = (a,+∞). In order to state the
normal form theorem properly, we always assume that our persistence modules (V t) satisfy the
following left-continuity property: for all t ∈ R, πts is an isomorphism for those s ≤ t that are close
to t. The normal form theorem asserts that for every persistence module V of finite type, there
exists a unique finite collection of couples (Ik,mk), Ik ⊂ R being a bar as above and mk ∈ N∗, so
that there is an isomorphism of persistence modules

V '
⊕
k

F(Ik)⊕mk ,

(see for instance [13, 83]). The collection B(V ) := {(Ik,mk)} is called the barcode of V ; it is
graphically represented by drawing each horizontal bars of the Ik’s with multiplicity in the same
figure (see Figure 2 for an example).

Although we will not need it in its full strength, we recall the isometry theorem between the
bottleneck distance between barcodes and the interleaving distance between persistence modules
(of finite type). Given δ, δ′ ∈ R with δ + δ′ ≥ 0, a (δ, δ′)-interleaving between persistence modules
(V, π) and (W,κ) is a couple of morphisms of persistence modules f : (V t) → (W t+δ) and g :
(W t) → (V t+δ′) such that gt+δ ◦ ft = πt+δ+δ

′

t and ft+δ′ ◦ gt = κt+δ+δ
′

t for all t ∈ R. When such
an interleaving exists, it is said that V and W are (δ, δ′)-interleaved. Given δ ≥ 0, a δ-interleaving
is by definition a (δ, δ)-interleaving. For instance, if (V t) and (W t) are (δ, δ′)-interleaved, then

23
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(V t) and (W t+δ−) are δ+-interleaved, where δ− = δ−δ′
2 and δ+ = δ+δ′

2 . The interleaving distance
between two persistence modules V and W is defined by

dint(V,W ) := inf{δ ≥ 0 | V and W are δ-interleaved}.
This is a true distance between persistence modules up to isomorphisms taking values in [0,+∞].

Let B := {(Ik,mk)} and B′ := {(Jl,m′l)} be two barcodes that we see as multisets of intervals.
Given an interval I = (a, b] or (a,+∞), we set Iδ := (a − δ, b + δ] or (a − δ,+∞) respectively.
Given δ ≥ 0, a δ-matching between the barcodes B and B′ is a bijection of multisets µ : B0 → B′0
where B0 and B′0 are some submultisets of B and B′ containing (at least) every interval of length
≥ 2δ and such that µ(I) ⊂ Iδ and I ⊂ µ(I)δ for every I ∈ B0. When such a δ-matching exists, it
is said that B and B′ are δ-matched. The bottleneck distance between two barcodes B and B′ is
defined by

dbottleneck(B,B′) := inf{δ ≥ 0 | B and B′ are δ-matched}.
This is a true distance taking values in [0,+∞].

The isometry theorem between the bottleneck distance and the interleaving distance states
that given any persistence modules of finite type V and W ,

dint(V,W ) = dbottleneck(B(V ),B(W )),
(see for instance [15]).

2. Morse theory

LetM be a closed manifold and f : M → R be a C1-map that is at least C2 in the neighborhood
of its critical points. In this section we will briefly recall the fundamental results in the study of
the homology of the sublevel sets of f (these results also hold for non compact manifolds when f
satisfies the Palais-Smale condition). As a general reference, one can see [25].

Throughout this whole part of the thesis, H∗(X) and H∗(X) denote respectively the singular
homology and the singular cohomology of a topological space or pair X over an indeterminate
ring R. If one needs to specify the ring R, one writes H∗(X;R) and H∗(X;R) instead. We only
state the results for homology groups for the sake of being brief but we will use their cohomology
counterparts as well in the thesis.

Since we are interested in the sublevel sets, let us denote f≤λ := {f ≤ λ} and f<λ := {f < λ}
in this specific section, where

{f ≤ λ} := {x ∈M | f(x) ≤ λ}, etc.
Let us first recall the Morse deformation lemma: if b is a critical value of f and c ≥ b is such

that (b, c] is an interval of regular values, then the inclusion gives an isomorphism

H∗
(
f≤b, f<a

) '−→ H∗
(
f≤c, f<a

)
,

for all a ≤ b. Indeed, the topological pair (f≤c, f<a) retracts on (f≤b, f<a). This retraction is
essentially given by pushing points along the flow of a reversed pseudo-gradient (in the case where
c is replaced by c + ε > c in the above isomorphism, the retraction is given by such a flow taken
at a sufficiently large time whereas the time must depend on the point in the sharp case). In the
reversed direction, if b is a critical value of f , c ≥ b and a ≤ b such that [a, b) is an interval of
regular values, the inclusion induces the isomorphism

H∗
(
f≤c, f<a

) '−→ H∗
(
f≤c, f<b

)
.

Therefore, if [a, c] has only one critical value b ∈ (a, c),
H∗
(
f≤c, f≤a

)
' H∗

(
f≤b, f<b

)
' H∗

(
f≤b+ε, f≤b−ε

)
,

for ε > 0 small enough. Hence, in order to study the homology of sublevel sets of f , it is essentially
enough to study the homology of sublevel sets “in the neighborhood of each critical value”.

Given an isolated critical point x ∈M of f , its local homology group is defined by
(1.1) C∗(f ;x) := H∗

(
f≤c, f≤c \ x

)
,

where c := f(x). It is local in the sense that for all neighborhood U of x, the inclusion induces an
isomorphism

H∗
(
f≤c ∩ U, (f≤c \ x) ∩ U

) '−→ C∗(f ;x),
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by excision. One also has an isomorphism induced by inclusion

H∗
(
f<c ∪ {x}, f<c

) '−→ C∗(f ;x),

that gives another way to define the local homology. Let us assume that f has a finite number of
critical points x1, . . . , xn with value c. By applying this last isomorphism with an excision, one
gets a natural isomorphism

H∗
(
f≤c, f<c

)
'
⊕
j

C∗(f ;xj).

Therefore, if f has only finitely many fixed points, the evolution of the homology of the sublevel
sets f≤λ is essentially dictated by the local homologies.

We want to describe the above natural isomorphism when it is extended to a small window of
regular values around the critical value c. According to the Morse deformation lemma, if U is a
small neighborhood of x that is invariant under a reversed pseudo-gradient flow of f , the inclusion
induces an isomorphism

(1.2) C∗(f ;x) ' H∗
(
f≤c+ε ∩ U, f≤c−ε ∩ U

)
.

In the same way as above, an excision gives the natural isomorphism in a small window of values
around c

(1.3)
⊕
j

H∗
(
f≤c+ε ∩ Uj , f≤c−ε ∩ Uj

) '−→ H∗
(
f≤c+ε, f≤c−ε

)
,

if the Uj ’s are “small” neighborhoods of the xj ’s that are invariant under a reversed pseudo-gradient
flow of f (by “small” we mean that Ui∩Uj ⊂ f<c−ε for i 6= j). The composition of this isomorphism
with (1.2) gives us the natural isomorphism

(1.4)
⊕
j

C∗(f ;xj) ' H∗
(
f≤c+ε, f≤c−ε

)
.

The support of a graded group C∗ is defined by

suppC∗ := {k ∈ Z | Ck 6= 0} ⊂ Z.

A classical result due to Gromoll-Meyer [46, remark following Lemma 1] implies that for any
isolated critical point x ∈M of f , the local homology is finitely generated and

(1.5) suppC∗(f ;x) ⊂
[
ind(x, f), ind(x, f) + dim ker d2f(x)

]
.

Let us finally recall the Lyusternik-Schnirelmann theorem. Here we do not assume that f has
finitely many critical points. For all non-zero classes α ∈ H∗(f≤b, f<a) one can define a min-max
value c(f ;α) ∈ [a, b] by

c(f ;α) := inf
{
t ∈ [a, b] | α ∈ im

(
H∗(f≤t, f<a)→ H∗(f≤b, f<a)

)}
.

According to the Morse deformation lemma, this is a critical value of f . Let us assume that there
exist a non-zero class α ∈ H∗(f≤b, f<a) and a non-zero cohomology class v ∈ H∗(f≤b) such that

c(f ;α _ v) = c(f ;α) ∈ (a, b),

where α _ v ∈ H∗(f≤b, f<a) denotes the cap-product of α by v (we remark that the inequality
c(f ;α _ v) ≤ c(f ;α) is always satisfied by naturality of the cap-product). Under this hypothesis,
Lyusternik and Schnirelmann assert that for all neighborhood U ⊂ f≤b of the set of critical points
of f with value c(f ;α), the restriction of v to U is a non-zero class. In particular, if deg v ≥ 1,
then f has infinitely many critical points with value c(f ;α). In particular, it implies that every
C1 map f : M → R must have at least CL(M) + 1 critical points, where the so-called cup-length
CL(M) ∈ N is the maximum number of cohomology classes in H∗(M) of degree ≥ 1 that when
multiplied give a non-zero result.
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3. Generating functions

Generating functions are a standard tool of Hamiltonian dynamics and symplectic topology.
The modern theory particularly benefits from the seminal works of Sikorav [70], Viterbo [79] and
Chekanov [28]. Here, we are closely following Théret [75]. A generating function for a Lagrangian
submanifold of T ∗Cn is a smooth function F : Cn × Ck → R such that 0 is a regular value of the
Ck-fiber derivative ∂F

∂ξ . The space

(1.6) ΣF :=
{

(q; ξ) ∈ Cn × Ck | ∂F
∂ξ

(q; ξ) = 0
}

is a smooth submanifold with dimension 2n. Let ιF : ΣF → T ∗Cn denote the map ιF (q; ξ) :=
(q, ∂qF (q; ξ)). Then ιF is a Lagrangian immersion and we say that F generates the immersed
Lagrangian submanifold L := ιF (ΣF ).

A conical generating function of C2n ' T ∗Cn is a C1 map F : Cn × Ck → R such that
1. F is S1-invariant and 2-homogeneous, that is

F (λζ) = |λ|2F (ζ), ∀λ ∈ C,∀ζ ∈ Cn × Ck,

2. F is smooth in the neighborhood of ΣF \ 0 where the subset ΣF ⊂ Cn × Ck is still defined by
(1.6)

3. 0 is a regular value of the fiber derivative ∂ξF on Cn × Ck \ 0.
The set ΣF is C-invariant and so is L̃ := ιF (ΣF ). If π : C2n \ 0 → CP2n−1 denotes the quotient
map, then L := π(L̃) is a smooth immersed Lagrangian of CP2n−1. We will say that L̃ is a conical
immersed Lagrangian.

A quadratic generating function Q : Cn × CN → R is a generating function which is also a
quadratic form. In this case, the induced Lagrangian ιQ(ΣQ) is a linear Lagrangian subspace of
T ∗Cn. Notice that if F : Cn × Ck → R is a generating function of the Lagrangian L ⊂ C2n, then
the quadratic form d2F (x) : Cn × Ck → R, for x ∈ ΣF , is a quadratic generating function of
the tangent space TιF (x)L ⊂ C2n. The same is true if F is conical and x ∈ ΣF \ 0. Moreover,
Cx ⊂ ker d2F (x) in this case.

The existence of generating functions is well known for Lagrangians which are isotopic to the
0-section Cn×{0} with a “suitably controlled” behavior at infinity (e.g. for a compactly supported
isotopy or for a linear isotopy). In fact, we usually find a generating family of a whole isotopy
(Lt) := (Φt(Cn × {0})), where (Φt) is a Hamiltonian flow, that is a continuous family (Ft) of
generating functions with Ft generating Lt for all t ∈ [0, 1]. In Section 2, we give a construction of
generating families for Hamiltonian flows.

Let Ham(Cd) be the set of Hamiltonian diffeomorphisms of Cd ' T ∗Rd. The map

(1.7) τ : Cd × Cd → C2d, τ(z, Z) =
(
z + Z

2 , i(z − Z)
)
,

is a C-linear symplectomorphism sending the diagonal {(z, z) | z ∈ Cd} to the 0-section of C2d. Let
Φ ∈ Ham(Cd), the image of the graph z 7→ (z,Φ(z)) of Φ under τ is then a Lagrangian submanifold
LΦ ⊂ C2d. A generating function of the Hamiltonian diffeomorphism Φ is a generating function of
LΦ. In other words, if the generating function F is generating the Hamiltonian diffeomorphism Φ
of Cd+1 then

∀z ∈ Cd+1,∃!(x; ξ) ∈ ΣF , x = z + Φ(z)
2 and ∂xF (x; ξ) = i(z − Φ(z)).

The critical points of a generating function of Φ are in one-to-one correspondence with the fixed
points of Φ, the bijection being (x; ξ) 7→ x. Given generating functions F : Cd+1 × Ck → R and
G : Cd+1 × Cl → R of Φ and Ψ respectively, the fiberwise sum of F and G denotes the map

(1.8) (F +G)(x; ξ, η) := F (x; ξ) +G(x; η).

Although this is not a generating function of Φ ◦ Ψ, the critical points of F + G are also in
bijection with the fixed points of Φ ◦Ψ via (x; ξ, η) 7→ x− i∂xG(x; η)/2 (these statements are easy
consequences of the definitions). A generating family of a Hamiltonian flow (Φt) is a generating
family of (LΦt).
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Let Φ be a conical Hamiltonian diffeomorphism of Cd, that is a homeomorphism Φ : Cd → Cd
with Φ|Cd\0 ∈ Ham(Cd \ 0) and which is C-equivariant:

Φ(λz) = λΦ(z), ∀λ ∈ C,∀z ∈ Cd.

To simplify notation, we will write Φ ∈ HamC(Cd) and say that Φ is a C-equivariant Hamiltonian
diffeomorphism. The last definition extends to Hamiltonian flows in an obvious way. Then the
induced subset LΦ ⊂ C2d is a conical Lagrangian. A conical generating function of Φ (or simply a
generating function of Φ) is a conical generating function of LΦ. It extends to conical flows in an
obvious way. As a consequence of the general case, if F is a generating function of Φ ∈ Ham(Cd)
and (z; ξ) 6= 0 is a critical point of F then z is a fixed point of Φ and d2F (z; ξ) is a quadratic
generating function of dΦ(z). Moreover,

dim ker d2F (z; ξ) = dim ker(dΦ(z)− id).

4. Maslov Index

4.1. Maslov index of a path in Sp(2d). Let Γ = (Γt) : [0, 1] → Sp(2d) be a continuous
path in the space of symplectic matrices Sp(2d) of R2d ' Cd. Then there exists a continuous family
(Qt) of quadratic generating functions such that, for t ∈ [0, 1], Qt : CN → R is generating Γt. The
variation of index ind(Q1) − ind(Q0) ∈ Z is independent of the choice of (Qt) and is called the
Maslov index of Γ denoted

mas((Γt)) := ind(Q1)− ind(Q0) ∈ Z.

Other equivalent definitions of the Maslov index (which is sometimes also called Conley-Zehnder
index) are available in the literature, see [67], [56] and references therein.

In order to state the general properties of mas, following Théret, in this section we will denote
by R • S the concatenation of two paths R = (Rt) and S = (St) in Sp(2d) satisfying R1 = S0,
that is (R • S)t = R2t for t ∈ [0, 1/2] and (R • S)t = S2t−1 for t ∈ [1/2, 1]. The path RS stands
for the pointwise matrix product of two paths in Sp(2d) that is (RS)t = RtSt for all t. Given a
path R = (Rt) in Sp(2d), the path R(−1) will stand for the reverse path (R1−t), whereas R−1 will
stand for the path of inverses (R−1

t ). Identifying matrices with their canonical linear maps, for
two square matrices A and B, A⊕B will stand for the square matrix[

A 0
0 B

]
and given two paths R = (Rt) and S = (St) in Sp(2n) and Sp(2m) respectively, (R⊕S)t := (Rt⊕St)
as a path in Sp(2(n + m)). We recall the basic properties of the Maslov index (see for instance
[74, Prop. 39 and 58]).

Proposition 1.1. Let R be a path in Sp(2n),
(1) if S is a path in Sp(2n) with S0 = R1, then mas(R • S) = mas(R) + mas(S),
(2) the Maslov index of the reverse path is mas(R(−1)) = −mas(R),
(3) if S is a path in Sp(2m), then mas(R⊕ S) = mas(R) + mas(S),
(4) if A ∈ Sp(2d), then mas(ARA−1) = mas(R).
(5) if S is a path homotopic to R relative to endpoints, that is there exists a continuous family

s 7→ Rs of paths in Sp(2n) with R0 = R and R1 = S such that Rs0 ≡ R0
0 and Rs1 ≡ R0

1, then
mas(S) = mas(R),

(6) if St :=
[
cos(2πt) − sin(2πt)
sin(2πt) cos(2πt)

]
∈ Sp(2), then mas(St, t ∈ [0, s]) = −2bsc for s ≥ 0.

Let (Φt) be a Hamiltonian flow on Cd starting at Φ0 = id. If z ∈ Cd is a fixed point of Φ1, the
Maslov index of z is set to be the Maslov index of the path t 7→ dΦt(z) in Sp(2d), that is

mas(z, (Φt)) := mas((dΦt(z))).
Suppose that Ft : CN → C, t ∈ [0, 1], defines a continuous family of generating functions of (Φt).
Let ζt ∈ ΣFt ⊂ CN be a continuous family associated with Φt(z). Then the continuous family of
Hessians Qt := d2Ft(ζt) is a continuous family of quadratic generating functions of dΦt(z), thus
(1.9) mas(z, (Φt)) = ind(ζ1, F1)− ind(ζ0, F0),
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where ind(ζ, F ) := ind(d2F (ζ)) ∈ N denotes the Morse index of F at the critical point ζ.
This definition is extended to every symplectic manifoldM2d as follows. Let (ϕt) be a Hamilto-

nian flow on M2d starting at ϕ0 = id and let z ∈ M be a fixed point of ϕ1 such that the loop
t 7→ ϕt(z) is contractible. Let D2 := {w ∈ C | |w| ≤ 1} be the closed unit disk of C. Since the loop
is contractible, there exists a smooth map u : D2 →M such that u(e2iπt) = ϕt(z). Then there ex-
ists a trivialization D2×Cd → u∗TM , (w, ζ) 7→ ξ(w)ζ so that, for all w ∈ D2, ξ(w) : Cd → Tu(w)M
is a symplectic map. Moreover, if we endowM with an almost complex structure, the trivialization
can be made C-linear. The set of every such trivialization is contractible, for a fixed choice of u
(see [67, Lemma 5.1] for instance). Then γt := ξ(e2iπt)−1dϕt(z)ξ(1), t ∈ [0, 1], is a symplectic
path in Sp(2d) and the Maslov index of z with respect to the capping u is set to be

mas(z, u) := mas((γt)).
It does not depend on the specific choice of trivialization, in fact it only depends on the homotopy
class of u relative to the boundary ∂D2. Thus, if π2(M) = 0 any choice of u gives the same index.

4.2. Maslov index of a C-equivariant Hamiltonian diffeomorphism. Let (Φt) be a
C-equivariant Hamiltonian flow on Cd+1 lifting a Hamiltonian flow (ϕt) on CPd. Let Z0 ∈ S2d+1

be a fixed point of Φ1 and let us denote by Zt := Φt(Z0), t ∈ [0, 1], the associated loop in S2d+1.
Let π : S2d+1 → CPd be the quotient map. Let zt := π(Zt) be the associated loop in CPd so that
zt = ϕt(z0). Let U : D2 → S2d+1 be any smooth capping of (Zt), i.e. Zt = U(e2iπt). All such
cappings are homotopic since π2(S2d+1) = 0. We set u := π ◦ U .

Proposition 1.2. With the above notation,
mas(Z0, (Φt)) = mas(z0, u).

Proof. For all t ∈ [0, 1], let γt := dϕt(z0) : Tz0CPd → TztCP d and Γt := dΦt(Z0) which is a
path in Sp(2(d + 1)). For all w ∈ D2, let ξ(w) : Cd → Tu(w)CPd be a smooth family of C-linear
symplectic maps induced by u as explained above. Throughout the proof, if f denotes a map
whose domain is D2, then, for t ∈ [0, 1], ft := f(e2iπt). For all t ∈ [0, 1] let ξt := ξ(e2iπt) and
γ′t := ξ−1

t γtξ0 ∈ Sp(2d) so that
mas(Z0, (Φt)) = mas((Γt)) and mas(z0, u) = mas((γ′t)).

Notice that, for all Z ∈ S2d+1, the tangent space Tπ(Z)CPd ' Cd+1/CZ is canonically isomorphic
to (CZ)⊥ (given a C-subspace E ⊂ Cd+1, E⊥ denotes its hermitian orthogonal subspace, which
is also its Euclidean orthogonal subspace or its symplectic orthogonal subspace). Let L(w) :=
(CU(w))⊥ → Tu(w)CPd, w ∈ D2, be the induced continuous family of C-linear symplectic maps.
Let us define the following continuous family of endomorphisms of Cd+1 indexed by w ∈ D2,

A(w) : C× Cd → CU(w)⊕ (CU(w))⊥, A(w)(λ, ζ) = λU(w) + L(w)−1ξ(w)ζ.
Since the linear maps λ 7→ λU(w) and L(w)−1ξ(w) are symplectic maps and since both direct
sums C× Cd and CU(w)⊕ (CU(w))⊥ are symplectic-orthogonal sums, A(w) ∈ Sp(2(d+ 1)).

Since Φt is a C-equivariant diffeomorphism, the symplectic map dΦt(Z0) = Γt sends the
orthogonal subspaces CZ0 and (CZ0)⊥ respectively on CZt and (CZt)⊥ with

Γt(λZ0 + ζ) = λZt + L−1
t γtL0ζ, ∀λ ∈ C,∀ζ ∈ (CZ0)⊥,

where Lt := L(e2iπt) : (CZt)⊥ → TztCPd. Thus Γ′t := A−1
t ΓtA0 is the symplectic path Γ′t = I2⊕γ′t,

so Proposition 1.1 (3) implies mas((Γ′t)) = mas((γ′t)). Since At = A(e2iπt) with A : D2 →
Sp(2(d+ 1)) continuous, (Γ′t) is homotopic to (A−1

0 ΓtA0) relative to endpoints, thus mas((Γ′t)) =
mas((A−1

0 ΓtA0)) = mas((Γt)), according to Proposition 1.1 (5) and (4). �

4.3. Bott’s iteration inequalities. Let (Φt) be a Hamiltonian flow on Cd starting at Φ0 = id
and let z ∈ Cd be a fixed point. Even though (Φt(z)) is a loop in Cd, Γt := dΦt(z), t ∈ R+, defines
only a path in Sp(2d), so that in general mas(Γkt, t ∈ [0, 1]) 6= kmas(Γt, t ∈ [0, 1]). Notice that the
path (Γt)t∈R only depends on (Γt)t∈[0,1] since Γt+k = ΓtΓk1 for k ∈ N and t ≥ 0.

Theorem 1.3. Let Γ := (Γt)t≥0 be a continuous path in Sp(2d) such that Γ0 = I2d and
Γt+k = ΓtΓk1 for all k ∈ N and t > 0. Then the average Maslov index

mas(Γ) := lim
k→∞

mas(Γkt, t ∈ [0, 1])
k

∈ R
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is a well-defined real number and we have the iteration inequalities
kmas(Γ)− d ≤ mas(Γkt, t ∈ [0, 1]),

mas(Γkt, t ∈ [0, 1]) + dim ker(Γk1 − I2d) ≤ kmas(Γ) + d.

We refer to [59, Theorem 3.6] for a more precise statement and a proof. Notice that, by
definition, the average Maslov index is homogeneous:

mas((Γkt)) = kmas((Γt)).
Let us denote by mas(z, (Φt)) ∈ R the average Maslov index of the fixed point z, that is

mas(z, (Φt)) := mas(dΦt(z), t ≥ 0).
So that Theorem 1.3 gives for all k ∈ N,

kmas(z, (Φt))− d ≤ mas(z, (Φkt)),
mas(z, (Φkt)) + dim ker(dΦk(z)− id) ≤ kmas(z, (Φt)) + d.

This inequality can be extended to every symplectic manifold M2d as follows. Let (ϕt) be a
Hamiltonian flow on M2d starting at ϕ0 = id and let z ∈ M be a fixed point of ϕ1 such that
(ϕt(z)) is contractible. Let u : D2 → M be a capping of z and ξ(w) : Cd → Tu(w)M , w ∈ D2,
be an induced trivialization. For k ∈ N∗, let uk : D2 → M be the smooth map uk(w) := u(wk),
w ∈ D2. This map is the natural capping of z as a fixed point of the time-one map of the
Hamiltonian flow (ϕkt) induced by (z, u). If z̄ := (z, u), it is often denoted by z̄k = (z, uk). An
induced trivialization is ξk(w) := ξ(wk), so that γ(k)

t = γkt, where γ(k)
t := ξk(e2iπt)−1dϕkt(z)ξk(1),

and γt := ξ(e2iπt)−1dϕt(z)ξ(1), t ≥ 1. Since mas(z̄k) := mas(γ(k)
t , t ∈ [0, 1]) with γt+k = γtγ

k
1 for

all k ∈ N and t ≥ 0, Theorem 1.3 gives for all k ∈ N,

(1.10)
kmas(z̄)− d ≤ mas(z̄k),

mas(z̄k) + dim ker(dϕk(z)− id) ≤ kmas(z̄) + d.

where mas(z̄) := mas(γt, t ≥ 0) is the average Maslov index of the capped fixed point z̄ = (z, u). Let
(Φt) be a C-equivariant Hamiltonian flow of Cd+1 with Φ0 = id which is the lift of a Hamiltonian
flow (ϕt) of CPd with ϕ0 = id. Let Z ∈ S2d+1 be a fixed point of Φ1 and z̄ = (π(Z), u) be the
capped fixed point of ϕ1 associated with it, then

mas(Z, (Φkt)) = mas(z̄k), ∀k ∈ N.
Indeed, if U : D2 → S2d+1 is a capping of Z so that u = π ◦ U , then Uk is a capping of Z relative
to (Φkt)t∈[0,1] and uk = π ◦Uk (recall that mas(Z, (Φkt)) does not depend on the choice of capping
since π2(S2d+1) = 0). So, according to equation (1.10), for every fixed point Z ∈ S2d+1 of any
C-equivariant Hamiltonian flow (Φt) of Cd+1 which is the lift of some Hamiltonian flow (ϕt) of
CPd, for all k ∈ N,

(1.11)
kmas(Z, (Φt))− d ≤ mas(Z, (Φkt)),

mas(Z, (Φkt)) + dim ker(dϕk(z)− id) ≤ kmas(Z, (Φt)) + d,

where z := π(Z).





CHAPTER 2

Projective join

In [43, Appendix], Givental studied the cohomology of projective joins by using S1-equivariant
cohomology.

In this chapter, we study the homology properties of the projective join of subsets of the
complex projective space (although this study could easily be extended to projective spaces over
other algebras). These properties will be key to the study of the sublevel sets of generating functions
associated with Hamiltonian diffeomorphisms of CPd.

Let m,n ∈ N and let π : Cm+n+2 \ 0→ CPm+n+1 be the quotient projection. We projectively
embed CPm and CPn in CPm+n+1 by identifying CPm with π((Cm+1 × 0) \ 0) and CPn with
π((0 × Cn+1) \ 0) so that CPn and CPm do not intersect. This is equivalent to considering two
projective subspaces of respective C-dimensions m and n in general position. Let A ⊂ CPm and
B ⊂ CPn. The projective join A ∗B ⊂ CPm+n+1 is the union of every projective lines intersecting
A and B. In other words, A ∗ B = A ∪ B ∪ π(Ã× B̃) where Ã and B̃ are the lifts of A and B to
Cm+1 \ 0 and Cn+1 \ 0 respectively.

In Section 1, we study the homology of a projective stabilisation of A — that is a projective
join of the form A ∗ CPn — and its relationship with the homology of A. This elementary study
essentially boils down to the Thom isomorphism. In Section 2, we introduce a homology product
that mimics the projective join at the level of homology classes. This study is a bit more involved
and allows us to extend some properties of the stabilisation of a subset to the join of two arbitrary
subsets.

1. Homology of a projective stabilisation

Let us notice that CPm ∗CPn = CPm+n+1 and that if [a : b] ∈ CPm+n+1, with a ∈ Cm+1 and
b ∈ Cn+1, does not belong to CPm nor to CPn, then only one projective line intersecting CPm and
CPn contains [a : b], namely the line joining α := [a : 0] to β := [0 : b] denoted by (αβ). Given
A ⊂ CPm, we denote by pA : A ∗ CPn \ CPn → A the projection [a : b] 7→ [a : 0].

Given A ⊂ CPm, let T ⊂ A ∗ CPn be a tubular neighborhood of CPm such that (A ∗ CPn, T )
retracts on (A ∗ CPn,CPn). By excision H∗(A ∗ CPn,CPn) ' H∗(A ∗ CPn \ CPn, T \ CPn).
Using this identification, we define the cup-product H∗(A ∗ CPn \ CPn) ⊗H∗(A ∗ CPn,CPn) →
H∗(A ∗ CPn,CPn) by the following commutative diagram

H∗(A ∗ CPn \ CPn)⊗H∗(A ∗ CPn,CPn) ^ //

'
��

H∗(A ∗ CPn,CPn)

'
��

H∗(A ∗ CPn \ CPn)⊗H∗(A ∗ CPn, T ) H∗(A ∗ CPn, T )

H∗(A ∗ CPn \ CPn)⊗H∗(A ∗ CPn \ CPn, T \ CPn)

'

OO

^ // H∗(A ∗ CPn \ CPn, T \ CPn)

'

OO
,

where the vertical arrows are induced by inclusions and the bottom arrow is the usual cup-product.
This cup-product makes the following diagram commute:

(2.1)

H∗(A ∗ CPn \ CPn)⊗H∗(A ∗ CPn,CPn) ^ // H∗(A ∗ CPn,CPn)

H∗(A ∗ CPn)⊗H∗(A ∗ CPn,CPn)

OO

^

33

,

31
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where the vertical arrow is induced by inclusion and the diagonal arrow is the usual cup-product.
In a dual way, we define a cap-product making the following diagram commute:

H∗(A ∗ CPn,CPn)×H∗(A ∗ CPn,CPn) _ //

_

++

H∗(A ∗ CPn \ CPn)

��

H∗(A ∗ CPn)

,

where the vertical arrow is induced by inclusion and the diagonal arrow is the usual cap-product.
According to the long exact sequence of the couple (CPm+n+1,CPn), the morphism

H2(n+1)(CPm+n+1,CPn)→ H2(n+1)(CPm+n+1)
induced by the inclusion is an isomorphism (the dimension of CPn being 2n < 2n+ 1) so that we
can see the class un+1 ∈ H2(n+1)(CPm+n+1) in H2(n+1)(CPm+n+1,CPn) via this identification.
Given A ⊂ CPm, let tA ∈ H2(n+1)(A∗CPn,CPn) be the image of un+1 ∈ H2(n+1)(CPm+n+1,CPn)
induced by the inclusion and let fA : H∗(A) → H∗+2(n+1)(A ∗ CPn) be the morphism given by
fA(v) := p∗A(v) ^ tA. We define dually fA : H∗(A ∗ CPn) → H∗−2(n+1) by fA(α) := (pA)∗(α _
tA).

Proposition 2.1. Let A ⊂ CPm. One has the following isomorphisms:

Hk(A ∗ CPn) '
{
Hk(CPn) for k ≤ 2n+ 1,
Hk−2(n+1)(A) for k > 2n+ 1,

where the isomorphisms Hk(A ∗CPn)→ Hk(CPn) are induced by the inclusion and the isomorph-
isms Hk−2(n+1)(A) → Hk(A ∗ CPn) are given by fA. The dual statement for homology is also
true.

Proof. Let us consider the long exact sequence of the couple (A ∗ CPn,CPn):

(2.2) · · · → H∗(A ∗ CPn,CPn) j∗−→ H∗(A ∗ CPn) i∗−→ H∗(CPn)→ · · ·
The inclusions of A ∗ CPn and CPn in CPm+n+1 give the following commutative diagram:

H∗(A ∗ CPn) i∗ // H∗(CPn)

H∗(CPm+n+1)

OO 77

where the diagonal arrow is onto (we recall that CPn is projectively embedded inside CPm+n+1),
thus i∗ is onto. Hence the long exact sequence (2.2) can be reduced to the short exact sequence

(2.3) 0→ H∗(A ∗ CPn,CPn) j∗−→ H∗(A ∗ CPn) i∗−→ H∗(CPn)→ 0.
Let us consider pA : A ∗ CPn \ CPn → A. This projection defines a complex vector bundle

of dimension n + 1. Indeed, let EA := A ∗ CPn \ CPn and Ui ⊂ CPm+n+1 be the affine chart
{[a0 : · · · : am : z0 : · · · : zn] | ai 6= 0}. Since the intersection of a projective line with the
projective hyperplane CPm+n+1 \ Ui is either a point or the projective line itself, we see that
p−1
A (A ∩ Ui) = EA ∩ Ui. We then have the trivialization EA ∩ Ui ' A ∩ Ui × Cn+1 given by

[a : z] 7→ ([a], z/ai). Thus EA is a fiber bundle, moreover this is the restriction of ECPm to A. We
can even say that ECPm ' (γ1

m)⊕(n+1) where γ1
m is the tautological fiber bundle of CPm, by looking

at the transition maps of the above trivialization charts (but this will not be relevant for us). Let
us endow CPm+n+1 with the Riemannian metric induced by the round metric of S2(m+n)+3 and let
T ⊂ A∗CPn be the tubular neighborhood of CPn defined as the set of points at distance less than
r ∈ (0, π/2) of CPn. Then the topological pair (A∗CPn, T ) retracts on (A∗CPn,CPn) so that the
inclusion map induces an isomorphism H∗(A ∗CPn,CPn) ' H∗(A ∗CPn, T ) in cohomology. Since
the compact CPn is included in the interior of T , by excision H∗(A ∗CPn, T ) ' H∗(EA, T ∩EA).
In the trivialization charts, each fibers of EA \ T is a round ball of Cn+1 so that (EA, EA \ A)
retracts on (EA, T ∩ EA). According to Thom isomorphism theorem,

H∗−2(n+1)(A) ' H∗(EA, EA \A) ' H∗(A ∗ CPn,CPn),
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where the isomorphism H∗−2(n+1)(A) → H∗(A ∗ CPn,CPn) is given by the cup-product of the
pull-back of the class by pA with the Thom class t′A ∈ H2(n+1)(A ∗CPn,CPn). Furthermore, since
Hk(CPn) is zero when k > 2n and Hk(A ∗ CPn,CPn) is zero when k < 2(n+ 1), the short exact
sequence (2.3) obviously decomposes: H∗(A ∗ CPn) ' H∗(A ∗ CPn,CPn)⊕H∗(CPn).

Since EA is the restriction of ECPm , the Thom class t′A is the image of the Thom class t′CPm
under the morphism induced by inclusion. Since j∗ must be an isomorphism in degree 2(n+ 1) in
the exact sequence (2.3) for A = CPm, we must have t′CPm = ±un+1 (recall that CPm ∗ CPn =
CPm+n+1). In fact t′CPm = un+1 = tCPm as the orientation of a complex fiber ' Cn+1 coincides
with the orientation of a projective subspace of C-dimension n+1 (they all come from the complex
structure of CPm+n+1). �

Given a topological pair A = (A1, A0) included in CPm, one can extend the above extensions
of the cup-product and cap-product to maps:

H∗(A1 ∗ CPn \ CPn, A0 ∗ CPn \ CPn)⊗H∗(A1 ∗ CPn, A0 ∗ CPn) ^−→ H∗(A1 ∗ CPn,CPn),

H∗(A1 ∗ CPn, A0 ∗ CPn)×H∗(A1 ∗ CPn,CPn) _−→ H∗(A1 ∗ CPn \ CPn, A0 ∗ CPn \ CPn).

In order to avoid such lengthy notation, we denote A ∗ CPn := (A1 ∗ CPn, A0 ∗ CPn) so that
these new maps satisfy the same formal properties as the former. We also extend the definition of
tA ∈ H2(n+1)(A1 ∗ CPn, A0 ∗ CPn), fA : H∗(A) → H∗+2(n+1)(A ∗ CPn) and fA. Let us remark
that the compatibility of the cup-products (2.1) implies that the following diagram commutes:

H∗(A) fA // H∗+2(n+1)(A ∗ CPn)

H∗(A ∗ CPn)

hh

·^un+1

OO

,

where the diagonal arrow is induced by inclusion. Dually,

(2.4)

H∗−2(n+1)(A)

))

H∗(A ∗ CPn)fA
oo

·_un+1

��

H∗−2(n+1)(A ∗ CPn)

.

An application of the five lemma gives the following corollary to Proposition 2.1.

Corollary 2.2. Let (A1, A0) be a topological pair included in CPm with A0 6= ∅, the map
fA : v 7→ p∗A1

(v) ^ tA gives an isomorphism

H∗(A1, A0)→ H∗+2(n+1)(A1 ∗ CPn, A0 ∗ CPn).

Dually, the map α 7→ (pA1)∗(α _ tA) gives an isomorphism

H∗(A1 ∗ CPn, A0 ∗ CPn)→ H∗−2(n+1)(A1, A0).

Following Givental, we define `(A) ∈ N for A ⊂ CPN as the rank of the morphism H∗(CPN )→
H∗(A) induced by the inclusion (e.g. `(CPn) = n+1). The integer `(A) is also the maximal k ∈ N
such that the restriction of uk−1 toH∗(A) is non-zero. This definition coincides with the equivariant
cohomological index defined by Fadell and Rabinowitz [32] (in the special case of the free action
of S1 on S2N+1).

Corollary 2.3. Let A ⊂ CPm, then `(A ∗ CPn) = `(A) + n+ 1.

Proof. Since fCPm(uk) = un+1 ^ uk for 0 ≤ k ≤ m, we have the following commutative
diagram:

H∗(CPm+n+1) un+1^· //

��

H∗+2(n+1)(CPm+n+1)

��

H∗(A) fA // H∗+2(n+1)(A ∗ CPn)
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where the vertical arrows are induced by inclusions. For the grading ∗ = 2(`(A ∗ CPn) − n − 1),
the map un+1 ^ · is onto, so `(A ∗ CPn) ≤ `(A) + n + 1. According to Proposition 2.1, the map
fA is an injection for the grading ∗ = 2`(A), so `(A ∗ CPn) ≥ `(A) + n+ 1. �

2. Homology projective join

We describe an operation on the homology of subsets of a projective space relating the homology
of two subsets A and B to the homology of their projective join A ∗ B. The analogous operation
for the topological join was already defined by Whitehead in [81] and used by Granja-Karshon-
Pabiniak-Sandon in [44] for a purpose similar to ours. However, the projective join of two simplices
is not a simplex and one cannot extend this construction so easily.

Since the proof of some fundamental properties of this operation are only technical and does
not shed much light on their applications, we have put these proofs in a specific section. More
precisely, proofs of Proposition 2.6 and 2.8 are postponed to Section 2.2

2.1. Definition and properties. Let m,n ∈ N and let π : Cm+n+2 \ 0 → CPm+n+1 be
the quotient map. We projectively endow CPm and CPn in CPm+n+1 by identifying CPm with
π(Cm+1 × 0 \ 0) and CPn with π(0 × Cn+1 \ 0) so that CPm and CPn do not intersect. This is
equivalent to considering two projective subspaces of respective C-dimension m and n in general
position. Let A ⊂ CPm and B ⊂ CPn be non-empty sets. Then the projective join A ∗ B ⊂
CPm+n+1 is the union of every projective line intersecting A and B. In other words, A ∗ B =
A ∪B ∪ π(Ã× B̃) where Ã and B̃ are the lifts of A and B to Cn+1 \ 0 and Cm+1 \ 0 respectively.
One can remark that CPm ∗ CPn = CPm+n+1 and that if [a : b] ∈ CPm+n+1, with a ∈ Cm+1 and
b ∈ Cn+1, does not belong to CPm and CPn, then only one projective line intersecting these two
subspaces contains [a : b], namely the line joining α := [a : 0] to β := [0 : b] denoted by (αβ).

We need to define a projective join in the level of homology which would be a map pj∗ :
H∗(A×B)→ H∗+2(A ∗B), or dually in the level of cohomology pj∗ : H∗(A ∗B)→ H∗+2(A×B).
One can perhaps proceed directly by defining a projective join at the level of chains, sending two
chains α ∈ Ci(A) and β ∈ Cj(B) to a chain α ∗ β ∈ Ci+j+2(A ∗B) that triangulates the projective
join of their images. We will proceed in an indirect way by remaining in the level of homology.

Let EA,B ⊂ CPn × CPm × CPm+n+1 be the set

EA,B := {(a, b, c) ∈ A×B × (A ∗B) | c ∈ (ab)} .

Let p1 and p2 be the canonical projection of CPn × CPm × CPm+n+1 on the factor CPn × CPm
and CPm+n+1 respectively. Then p1|EA,B defines a CP1-fiber bundle on A × B, the fiber of any
(a, b) ∈ A×B being a× b× (ab) ' (ab). As CP1 can be identified with the 2-sphere S2, the Gysin
long exact sequence holds:

(2.5) · · · ·^e−−→ H∗(A×B) (p1)∗−−−→ H∗(EA,B) (p1)∗−−−→ H∗−2(A×B) ·^e−−→ · · · ,

where e ∈ H3(A×B) denotes the Euler class of the S2-bundle EA,B .

Définition 2.4. The cohomology projective join pj∗ : H∗(A∗B)→ H∗−2(A×B) denotes the
map pj∗ := (p1)∗ ◦ (p2)∗, where (p1)∗ is defined by (2.5) and (p2)∗ is induced by p2 : EA,B → A∗B.
The homology projective join pj∗ = (p2)∗ ◦ (p1)∗ : H∗(A × B) → H∗+2(A ∗ B) is defined dually.
Given α ∈ H∗(A) and β ∈ H∗(B) we denote α ∗ β := pj∗(α× β).

We extend this definition to topological pairs (A,B) ⊂ CPm, (C,D) ⊂ CPn the following way.
Let (A,B) ∗ (C,D) := (A ∗ C,A ∗ D ∪ B ∗ C), the map p1 defines a relative CP1-fiber bundle
(EA,C , EA,D ∪EB,C) on (A,B)× (C,D) while p2 maps this bundle on (A,B) ∗ (C,D). Hence, one
can set pj∗ := (p1)∗ ◦ (p2)∗ and pj∗ := (p2)∗ ◦ (p1)∗ as before. By naturality of the maps induced
by p1 and p2, this extension is natural: projective join commutes with long exact sequences of
topological pairs or triples.

These maps are also natural in the following way: let A,C ⊂ CPm and B,D ⊂ CPn and
assume that f : A ∗ B → C ∗D is the restriction of a projective map satisfying f |A : A → C and
f |B : B → D, then the CP1-fiber bundle EA,B is the pull-back of EC,D by f |A × f |B , so that the
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following diagram commutes:

(2.6)

H∗(A×B)

(f |A×f |B)∗
��

pj∗ // H∗+2(A ∗B)

f∗

��

H∗(C ×D)
pj∗ // H∗+2(C ∗D)

.

This statement extends to topological pairs in an obvious way.

Proposition 2.5. The homology projective join is associative: given A, B and C included in
CPn,

∀(α, β, γ) ∈ H∗(A)×H∗(B)×H∗(C), pj∗(pj∗(α× β)× γ) = pj∗(α× pj∗(β × γ)).

As R-algebras, one has

H∗(CPm+n+1) = R[u]/um+n+2 and H∗(CPm × CPn) = R[u1, u2]/(um+1
1 , un+1

2 )

where u, u1 and u2 restrict to orientation classes of CP1 (with CP1 ⊂ CPm for u1 and CP1 ⊂ CPn
for u2).

Proposition 2.6. Let pj∗ be the cohomology projective join on CPm × CPn, with the above
notation one has

pj∗uk =
∑

i+j=k−1
ui1u

j
2, ∀k ∈ N∗.

Dually, the homology projective join pj∗ on CPm × CPn satisfies

pj∗
(
[CPi]× [CPj ]

)
= [CPi+j+1], ∀i ∈ {0, . . . ,m},∀j ∈ {0, . . . , n}.

We recall that the cohomological length `(A) of a subspace A ⊂ CPN is the rank of the
morphism H∗(CPN ;Z) → H∗(A;Z) induced by the inclusion (e.g. `(CPn) = n + 1). This is also
the rank of the morphism H∗(A;Z)→ H∗(CPN ;Z).

Given two subsets A 6= ∅ and B as above, let ` := `(B). The restriction of u` ∈ H∗(CPm+n+1)
to H∗(B) is zero and is non-zero in H∗(A ∗B). Let vB ∈ H∗(A ∗B,B) be one of its inverse image.
As we have seen in the special case B = CPn, there is a well-defined cap-product

Hk(A ∗B,B)×H l(A ∗B,B) _−→ Hk−l(A ∗B \B)

which is defined by the following commutative diagram:

H∗(A ∗B,B)×H∗(A ∗B,B)
_

((

'
��

H∗(A ∗B, T )×H∗(A ∗B, T )

'

OO

'
��

H∗(A ∗B \B)

H∗(A ∗B \B, T \B)×H∗(A ∗B \B, T \B)

'

OO

_
44

,

where T ⊂ A ∗ B is the restriction of a tubular neighborhood of CPn to A ∗ B, the bottom
diagonal arrow is the usual cap-product and vertical maps are isomorphisms induced by inclusion
maps (the isomorphisms come from retractions at the top and from excision at the bottom). Let
pA : A ∗ B \ B → A be the map pA[a : b] := [a : 0]. Let f : H∗(A ∗ B) → H∗−2`(A) be the
map f(α) := (pA)∗(α _ vB). These definitions extend to the case where A is a topological pair
(A1, A0) with A1 6= A0 by taking vB ∈ H`(B)(A1 ∗B,B) and by using the cap-product

Hk(A1 ∗B,A0 ∗B)×H l(A1 ∗B,B) _−→ Hk−l(A1 ∗B \B,A0 ∗B \B),

defined the same way as above.

Corollary 2.7 ([43, Corollary A.2]). For all non-empty subsets A ⊂ CPm and B ⊂ CPn,
one has

`(A ∗B) = `(A) + `(B).
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Proof. Let α ∈ H2`(A)−2(A) and β ∈ H2`(B)−2(B) be classes that are sent to the class
[CP`(A)−1] ∈ H∗(CPm) and [CP`(B)−1] ∈ H∗(CPn) respectively. According to Proposition 2.6
and naturality (2.6), pj∗(α × β) is sent to [CP`(A)+`(B)−1] in H∗(CPm+n+1). Hence `(A ∗ B) ≥
`(A) + `(B). The converse inequality comes from the commutativity of the following diagram:

H∗(A ∗B) f
//

��

H∗−2`(B)(A)

��

H∗(CPm+n+1) ·_u`(B)
// H∗−2`(B)(CPm+n+1)

.

�

Proposition 2.8. Let A ⊂ CPm, B ⊂ CPn be non-empty sets and ` := `(B). Let β ∈ H∗(B)
be a class that is sent to [CP`−1] ∈ H∗(CPn). The following diagram commutes:

H∗+2`−2(A×B)
pj∗ // H∗+2`(A ∗B)

f

��

H∗(A)

·×β

OO

id
=

// H∗(A)

,

where f(α) := (pA)∗(α _ vB) as defined above. This result also holds when A is a topological pair
(A1, A0) with A1 6= A0.

By applying Corollary 2.2 and the commutativity of (2.4), one gets that the following diagram
commutes:

(2.7)

H∗(A)
·∗[CPn]
'

//

**

H∗+2(n+1)(A ∗ CPn)

·_un+1

��

H∗(A ∗ CPn)

,

where A = (A1, A0) with A0 6= ∅ and the diagonal arrow is the inclusion.

Lemma 2.9. Let A = (A1, A0) ⊂ CPm with A0 6= ∅ and let ` ∈ N. Let us assume that
there exist a topological pair B so that B ∗ CP` ⊂ CPm and a continuous map A → B ∗ CP` or
B ∗CP` → A that induces an isomorphism in homology and that admits a conical lift on Cm+1 \ 0.
Then the following diagram commutes

H∗(A)

·_u`+1

�� **

H∗−2(`+1)(A)
·∗[CP`]
'

// H∗(A ∗ CP`)

.

Proof. The hypothesis on the homology isomorphism H∗(A) ' H∗(B ∗ CP`) allows us to
assume that A = B ∗ CP`. Indeed, suppose for instance f : A → B ∗ CP` is the continuous map
inducing the isomorphism f∗ and denote by f̃ : π−1(A) → π−1(B ∗ CP`) one of its conical lift.
Then one can define the map f ∗ id : A ∗ CP` → B ∗ CP2`+1 by (f ∗ id)([a : b]) := [f̃(a) : b] and
apply the naturality of the join (2.6) to show the equivalence between both statements.

Let us consider the following diagram:

H∗−2(`+1)(B)
·∗[CP`]
'

//

**

H∗(B ∗ CP`)

**

·_u`+1

��

H∗+2(`+1)(B ∗ CP`)
·∗[CP`]
'

// H∗(B ∗ CP2`+1)

.

By naturality of the join (2.6), the parallelogram commutes while the left triangle commutes by
(2.7). Hence the right triangle commutes. �
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Corollary 2.10. Let A ⊂ CPm and ` ≤ n be following the assumption of Lemma 2.9. Then
the following diagram commutes

H∗(A)
·∗[CPn]

//

·_u`+1

��

H∗+2(n+1)(A ∗ CPn)

·_u`+1

��

H∗−2(`+1)(A)
·∗[CPn]

// H∗+2(n−`)(A ∗ CPn)

Proof. The case n = ` is true by commutativity of (2.7) and Lemma 2.9. In the case n > `,
one can split the diagram of the statement into the following diagram:

H∗(A)
·∗[CPn−`−1]

//

·_u`+1

�� **

H∗+2(n−`)(A ∗ CPn−`−1)
·∗[CP`]

//

++

H∗+2(n+1)(A ∗ CPn)

·_u`+1

��

H∗−2(`+1)(A)
·∗[CP`]

// H∗(A ∗ CP`)
·∗[CPn−`−1]

// H∗+2(n−`)(A ∗ CPn)

.

The left triangle commutes by Lemma 2.9, the parallelogram commutes by naturality (2.6) and
the right triangle commutes according to (2.7). �

2.2. Technical proofs. We will denote ECPm,CPn by Em,n. The bundle EA,B is the restric-
tion of the bundle Em,n to A×B, hence e is the pullback of the Euler class of Em,n which lies in
H3(CPm × CPn) = 0. Therefore e = 0 and (2.5) reduces to the short exact sequence

(2.8) 0→ H∗(A×B) (p1)∗−−−→ H∗(EA,B) (p1)∗−−−→ H∗−2(A×B)→ 0.

Proof of Proposition 2.5. Let us first define a projective join with 3 entries pj3∗ : H∗(A×
B × C)→ H∗+4(A ∗B ∗ C) then prove that

(2.9) pj∗(pj∗(α× β)× γ) = pj3∗(α× β × γ) = pj∗(α× pj∗(β × γ)).

Given three points a, b and c of some projective space CPN that are projectively independent,
we use the classical notation (abc) ⊂ CPN to denote the complex projective plane Let EA,B,C ⊂
(CPn)3 × CP3n+2 be the set

EA,B,C := {(a, b, c, z) ∈ A×B × C × (A ∗B ∗ C) | z ∈ (abc)}

and let P1 : EA,B,C → A×B×C and P2 : EA,B,C → A ∗B ∗C be the associated projection maps.
The map P1 defines a CP2-fiber bundle which is the restriction of the fiber bundle ECPn,CPn,CPn →
(CPn)3, so the action of π1(A×B×C) on the homology group H∗(CP2) of a fiber is the restriction
of the action of π1((CPn)3) = 0 i.e. trivial. We define pj3∗ by pj3∗ := (P2)∗ ◦ (P1)∗ where (P1)∗ :
H∗(A×B × C)→ H∗+4(EA,B,C) denotes the morphism dual to the integration along the fiber of
the fibration P1 (the complex structure of CP2 gives a natural identification H4(CP2) ' R). We
refer to Appendix A for the definition and properties of this morphism.

In order to prove (2.9), let us introduce the set

E′A,B,C := {(a, b, c, x, z) ∈ A×B × C × (A ∗B)× (A ∗B ∗ C) | x ∈ (ab) and z ∈ (xc)}

with the projection maps P ′2 : E′A,B,C → A ∗B ∗ C, P ′1 : E′A,B,C → EA,B × C sending (a, b, c, x, z)
to (a, b, x; c), f̃ : E′A,B,C → EA∗B,C sending (a, b, c, x, z) to (x, c, z) and g : E′A,B,C → EA,B,C

sending (a, b, c, x, z) to (a, b, c, z). The map P ′1 is a CP1-fiber bundle, in fact f̃ is a morphism of
fiber bundle with base-space morphism f := p2 × idC . In order to summarize the situation, we
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have the following commutative diagram:

(2.10)

A ∗B ∗ C

EA,B,C

P1

��

P2

88

E′A,B,C
f̃

//

P ′1
��

P ′2

OO

g
oo EA∗B,C

p′1
��

p′2

gg

EA,B × C
f
//

p1×idC
��

(A ∗B)× C

A×B × C

.

According to the naturality of the integration along the fiber (A.1), it follows that (p′2)∗(p′1)∗f∗(p1×
idC)∗ = (P ′2)∗(P ′1)∗(p1 × idC)∗, which means that

(2.11) pj∗(pj∗(α× β)× γ) = (P ′2)∗(P ′1)∗(p1 × idC)∗(α× β × γ).

The map g commutes with the Serre fibration q := (p1 × idC) ◦ P ′1 and the fiber bundle P1. Let
us fix a base-point (a, b, c) ∈ A×B × C, of fiber F = a× b× c× (abc) ' (abc) for P1 and of fiber
F ′ ' {(x, z) | x ∈ (ab) and z ∈ (xc)} for q. According to Proposition A.1 and the remark after it,
in order to show that the following diagram commutes:

(2.12)

H∗+4(EA,B,C) H∗+4(E′A,B,C)
g∗
oo

H∗(A×B × C)
P∗1

hh

q∗

OO

(with coefficients of every H∗ in the same ring R), one must prove that g∗ : H4(F ′)→ H4(F ) com-
mutes with the identity of R under the isomorphisms H4(F ) ' R and H4(F ′) ' R given by the
local complex orientation. This comes from the fact that the quotient space F ′/((ab)×c) is canon-
ically homeomorphic to (abc) ' F (in particular, preserving the orientation), the homeomorphism
being induced by g|F ′ . The long exact sequence of the couple (F ′, (ab)× c) concludes. Therefore,
diagram (2.12) commutes. Thus, according to the left hand side of the diagram (2.10) together
with the composition property q∗ = (P ′1)∗(p1× idC)∗, one has (P ′2)∗(P ′1)∗(p1× idC)∗ = (P2)∗(P1)∗
and (2.11) gives the first equality of (2.9).

The second equality is proven in a symmetric way. �

Proof of Proposition 2.6. For now, let us work on Em,n. By the universal coefficient
theorem, it is enough to prove this proposition for the cohomology projective join over Z. First, let
us see that pj∗u = 1. By naturality (2.6), it boils down to showing that pj∗ : H2((ab))→ H0(a×b)
maps the restriction of u to (ab) to 1 ∈ H0(a×b) for all (a, b) ∈ CPm×CPn. Now Ea,b = a×b×(ab)
so that (p2)∗ is an isomorphism sending the orientation class of (ab) to the orientation class of Ea,b.
According to (2.8), (p1)∗ is also an isomorphism (preserving the orientation), hence the result.

Let u0 := (p2)∗u ∈ H2(Em,n). We must now study (p1)∗uk0 for k ∈ N∗.
Let T ⊂ CPm+n+1 be a tubular neighborhood of CPn that is a deformation retract. Its

pullback p−1
2 (T ) is a deformation retract of p−1

2 (CPn), hence

(2.13) H∗
(
Em,n, p

−1
2 (CPn)

)
' H∗

(
Em,n, p

−1
2 (T )

)
' H∗

(
Em,n \ p−1

2 (CPn), p−1
2 (T \ CPn)

)
,

where the isomorphisms are induced by inclusion, the second one coming from excision. The space
Em,n \p−1

2 (CPn) is the CP1-fiber bundle Em,n with one global section taken away, so it is a C-fiber
bundle. Let t ∈ H2(Em,n, p−1

2 (CPn)) be its Thom class (under the natural identification given by
(2.13)). Therefore, according to the Thom isomorphism theorem, the map

(2.14) H∗(CPm × CPn)→ H∗+2(Em,n, p−1
2 (CPn)), α 7→ t ^ (p1)∗α

is an isomorphism. By looking at restrictions to Ea,b’s, we see that t is non-zero on H∗(Em,n) and
is sent to 1 ∈ H0(CPm×CPn) by (p1)∗. According to (2.8), on H∗(Em,n) we have u0− t = (p1)∗v
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for some v ∈ H2(CPm×CPn). In order to find v, we consider the following commutative diagram:

(2.15)

H∗(CPm × CPn)

(p1)∗
vv

(p1)∗

��

H∗
(
Em,n, p

−1
2 (CPn)

)
// H∗(Em,n) // H∗

(
p−1

2 (CPn)
)

H∗(CPm+n+1,CPn)

(p2)∗
OO

// H∗(CPm+n+1)

(p2)∗
OO

// H∗(CPn)

(p2)∗
OO

,

where horizontal arrows are induced by inclusion and form exact sequences. The restriction of p1
to p−1

2 (CPn) induces a homeomorphism CPm × CPn ' p−1
2 (CPn). Under this identification, the

restriction of p2 to p−1
2 (CPn) is the projection onto the second factor CPn. Hence, the right-hand

side vertical arrow (p2)∗ of (2.15) sends uk to (p1)∗uk2 . In particular, by commutativity of (2.15),
u0 ∈ H2(Em,n) is sent to (p1)∗u2. Since t ∈ H2(Em,n) is in the image of the top left arrow, it
is sent to 0 in H2(p−1

2 (CPn)) by exactness. Thus u0 − t ∈ H2(Em,n) is sent to (p1)∗u2 whereas
(p1)∗v ∈ H2(Em,n) is sent to (p1)∗v ∈ H2(p−1

2 (CPn)) by commutativity of the up right triangle
(with a slight abuse of notation). Therefore v = u2.

In order to study the powers of u0, we now study the powers of t ∈ H2(Em,n). Seen in
H4(Em,n, p−1

2 (CPn)), t2 = t ^ (p1)∗(λu1+µu2) for some λ, µ ∈ Z according to Thom isomorphism
(2.14). Let us first find the value of λ by restricting the complex line bundle Em,n \ p−1

2 (CPn) to
the base space CPm ×CP0. This complex line bundle is Em,0 \ p−1

2 (CP0) and its Thom class t′ is
the restriction of t to

H2 (Em,0, p−1
2 (CP0)

)
' H2 (Em,0/p−1

2 (CP0)
)
,

so that t′2 = λt′ ^ (p1)∗u1. Since CP0 is just a point, p2 factors in a homeomorphism between
Em,0/p

−1
2 (CP0) and CPm ∗ CP0. Thus p2 induces an isomorphism of Z-algebras

(2.16) H∗(CPm ∗ CP0,CP0) '−→ H∗(Em,0, p−1
2 (CP0)).

According to the long exact sequence of the couple (CPm ∗ CP0,CP0), H2(CPm ∗ CP0,CP0) '
H2(CPm ∗ CP0) so that the generator u ∈ H2(CPm ∗ CP0) can naturally be seen in H2(CPm ∗
CP0,CP0). Under the isomorphism (2.16), u is mapped to t′ so that u2 is mapped to t′2. Thus t′2
must be a generator of H4(Em,0, p−1

2 (CP0)), hence λ = ±1. By applying the orientation preserving
morphism (p1)∗, we see that λ = 1.

Now, since u0 = t+ (p1)∗u2, one has

u2
0 = t ^ (p1)∗(u1 + (µ+ 2)u2) + (p1)∗u2

2

hence (p1)∗u2
0 = u1 + (µ+ 2)u2. By symmetry of (p1)∗u2

0 in u1 and u2, µ must be −1. Indeed, the
above identity is still true by restricting ourselves to E1,1 and must be invariant under the map
induced by (a, b, c) 7→ (b, a, c) that swaps u1 and u2. Since u0 = t+ (p1)∗u2, one has that

uk0 =
∑
i+j=k

(
k

i

)
ti ^ (p1)∗uj2.

Using ti = t ^ (p1)∗(u1 − u2)i−1 for i ∈ N and (p1)∗(t ^ (p1)∗w) = w, one finally gets

(2.17) (p1)∗uk0 =
∑
i+j=k

(
k

i

)
(u1 − u2)i−1uj2 =

∑
i+j=k−1

ui1u
j
2,

the last equality can be obtained by identification of coefficients of the polynomial expression in
u1 and u2. �

Proof of Proposition 2.8. We first remark that there is a well-defined cap-product

H∗(EA,B)×H∗(EA,B , p−1
2 (B))→ H∗(EA,B \ p−1

2 (B))
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compatible with the one defines in A ∗ B through the map p2 and defined the same way. This is
summed up by saying that the left hand side of the following diagram is “commutative”:

(2.18)

H∗(EA,B)×H∗(EA,B , p−1
2 (B)) _ //

(p2)∗
��

H∗(EA,B \ p−1
2 (B))

(p2)∗
��

(p1)∗
'
// H∗(A×B)

(pr1)∗
��

H∗(A ∗B)×H∗(A ∗B,B) _ //

(p2)∗
OO

H∗(A ∗B \B)
(pA)∗
'

// H∗(A)

.

In this diagram, pr1 : A×B → A is the projection onto the first factor. The commutativity of the
right hand side of the diagram comes from the obvious commutativity of the associated continuous
maps: pA ◦ p2 = pr1 ◦ p1 on EA,B \ p−1

2 (B). Let v′B := (p2)∗vB ∈ H2`(EA,B , p−1
2 (B)). The space

EA,B \ p−1
2 (B) is the restriction to A × B of the C-fiber bundle Em,n \ p−1

2 (CPn), so that the
following map is an isomorphism for the same reason the map (2.14) was:

H∗(A×B)→ H∗+2(EA,B , p−1
2 (B)), w 7→ t′ ^ (p1)∗w,

where t′ ∈ H2(EA,B , p−1
2 (B)) is the restriction of the class t in (2.14). Therefore, v′B = t′ ^ (p1)∗w

for some w ∈ H2`−2(A × B) satisfying w = (p1)∗(v′B) (we recall that (p1)∗t′ = 1). Seen in
H2`(A ∗ B), the class vB is the restriction of u`, so that, seen in H2`(EA,B), v′B is the restriction
of u`0. According to the identity (2.17), one has

(2.19) (p1)∗v′B = w =
∑

i+j=`−1
ui1u

j
2,

identifying u1 and u2 with their restrictions to H∗(A× B) by a slight abuse of notation. We can
now compute, for all α ∈ H∗(A),

(pA)∗(pj∗(α× β) _ vB) = (pA)∗ ◦ (p2)∗((p1)∗(α× β) _ v′B)
= (pr1)∗ ◦ (p1)∗((p1)∗(α× β) _ v′B)

= (pr1)∗

(α× β) _
∑

i+j=`−1
ui1u

j
2


=

∑
i+j=`−1

(pr1)∗
(
(α _ ui)× (β _ uj)

)
=

〈
u`−1, β

〉
α _ u0 = α.

The second equality follows from commutativity of the diagram (2.18), the third uses (2.19) to-
gether with the projection formula p∗(p∗γ _ w) = γ _ p∗w where p is a sphere bundle. By
grading issues, only the indices (i, j) = (0, ` − 1) contribute to the sum and, by definition of β,〈
u`−1, β

〉
= 1. The result of this computation is the statement we wanted to prove. �



CHAPTER 3

Generating function homology

In this core chapter, we develop the theory of generating function homology of Hamiltonian
diffeomorphisms of CPd.

The study of the homology of sublevel sets of generating functions was introduced by Viterbo
[79] who introduced spectral invariants of Hamiltonian diffeomorphisms of R2d with compact sup-
port. This work led to the definition of homology groups of these diffeomorphisms by Traynor
[77] (which are in fact isomorphic to their Floer theoretic analogue [80]). Here, we show how to
define similar homology groups for Hamiltonian diffeomorphisms of CPd by elaborating on works
of Givental [43] and Théret [75].

1. Outline of the chapter

Let (hs) : [0, 1] × CPd → R be a smooth periodic Hamiltonian map and let (ϕs) be the
associated Hamiltonian flow on CPd. This Hamiltonian map defines a unique Hamiltonian map
(Hs) : [0, 1]×Cd+1 → R that is 2-homogeneous, invariant under the diagonal action of S1 on Cd+1

given by λ·(z0, . . . , zd) := (λz0, . . . , λzd) (we will simply write “S1-invariant”) so that its restriction
on the unit sphere S2d+1 ⊂ Cd+1 is a lift of (hs) under the quotient map S2d+1 → CPd. Let (Φs)
be the C-equivariant Hamiltonian flow associated with (Hs). We will say that (Hs) and (Φs) are
the lifted Hamiltonian map and Hamiltonian flow of (hs). In Section 2, we study decompositions
of (Φs) into small Hamiltonian diffeomorphisms that we usually write σ = (σ1, . . . , σn) so that
σk ◦ · · · ◦ σ1 = Φtk , for some 0 ≤ t1 ≤ · · · ≤ tn = 1. For such a decomposition σ, homology groups
G

(a,b)
∗ (σ) are defined and studied for almost all −∞ ≤ a < b ≤ +∞ in Sections 3 and 4. In the

end of Subsection 4.3, we prove that these homology groups and their natural morphisms do not
depend on the choice of the decomposition σ of (Φs) (up to isomorphism) so that we can write

G
(a,b)
∗ (hs) := G

(a,b)
∗ (σ),

fixing a decomposition σ. We call these homology groups “Generating function homology groups
of (hs)” or simply “GF-homology of (hs)”.

Generating function homology groups of (hs) satisfy the same key properties as the Floer
homology groups of (hs) and one can hope that G(a,b)

∗ (hs) is isomorphic to HF (πa,πb)
∗ (hs) with

commuting inclusion and boundary morphisms (the π factor is due to our normalisation, see (3.1)
below). These groups are homology groups defined over any chosen ring R (in fact over any group
G). Given a fixed point z ∈ CPd of ϕ1 and a capping u : D2 → CPd, that is a smooth map from
the unit 2-disk of C to CPd so that u(e2iπs) = ϕs(z), one can define the action a(z̄) ∈ R of the
capped orbit z̄ := (z, u) by

(3.1) a(z̄) = − 1
π

(∫
D2
u∗ω +

∫ 1

0
hs ◦ ϕs(z)ds

)
.

Recapping gives a Z-orbit of action values: a(A#z̄) = a(z̄) + k where A ∈ π2(CPd) and πk =
−〈[ω], A〉. On Floer homology, the recapping by the generator A0 ∈ π2(CPd) ' Z of symplectic
area 〈[ω], A0〉 = −π induces the quantum operator

qHF : HF (a,b)
∗ (hs)

'−→ HF
(a+π,b+π)
∗+2(d+1) (hs).

The analogue isomorphism is defined at (3.22).
Taking R to be a field F, these homology groups are F-vector spaces and the family(

G
(−∞,t)
∗ (hs;F)

)
t

41
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together with its inclusion morphisms define a persistent module that we call the persistence
module associated with (hs) over the field F. Assuming that the Hamiltonian diffeomorphism ϕ1

has finitely many fixed points, the persistence modules of fixed degree (G(−∞,t)
k (hs;F))t, k ∈ Z,

satisfy suitable finiteness assumptions and one can define a finite barcode for each of them, giving
a global countable (graded) barcode for the persistence module associated with (hs). Let us
describe this barcode (see Figure 2 for an example). The isomorphism of persistence modules
G

(−∞,t)
∗ (hs) ' G(−∞,t+1)

∗+2(d+1) (hs) induces a Z-action on the bars of the barcode sending a bar (a, b) of
degree k on a bar (a + 1, b + 1) of degree k + 2(d + 1). Therefore, it is enough to describe a set
of representatives of bars under this action. In the case where ϕ1 is non-degenerate, end-points
of representative bars are in one-to-one correspondence with fixed points of CPd, the value of an
end-point being equal to the action of a capping of the associated fixed point. In general, a fixed
point should be counted with multiplicity equal to its local homology, which gives a homology
count N((hs);F) of the fixed points (see (3.13)). Among the representative bars, exactly d+ 1 are
infinite. This is a consequence of Théret’s proof of Fortune-Weinstein theorem [75], in fact the
increasing sequence (ck(hs))k∈Z of values of end-points of the infinite bars of the whole barcode
corresponds to the sequence of spectral invariants of (hs) (see Theorem 3.22).

2. Generating functions of C-equivariant Hamiltonian diffeomorphisms

2.1. “Broken trajectories” and generating functions of Cd. We follow the ideas of
Chaperon [26] and Givental [43] to build and study generating functions associated with a decom-
position of a Hamiltonian diffeomorphism.

Let Φ ∈ Ham(Cd) be a Hamiltonian diffeomorphism which can be decomposed as Φ = σn ◦
· · · ◦ σ1 where every σk ∈ Ham(Cd) is sufficiently C1-close to id such that they admit generating
functions fk : Cd → R satisfying:

(3.2) ∀zk ∈ Cd,∃!wk ∈ Cd, wk = zk + σk(zk)
2 and ∇fk(wk) = i(zk − σk(zk)).

We call such generating functions without auxiliary variable elementary generating functions. We
will say that the n-tuple σ = (σ1, . . . , σn) is associated with the Hamiltonian flow (Φt) if there
exist real numbers 0 = t0 ≤ t1 ≤ · · · ≤ tn = 1 such that σk = Φtk ◦ Φ−1

tk−1
. A continuous family

of such tuples (σs) will denote a family of tuples of the same size n ≥ 1, σs =: (σ1,s, . . . , σn,s)
such that the maps s 7→ σk,s are C1-continuous. Every compactly supported Hamiltonian flow and
every C-equivariant Hamiltonian flow (Φs)s∈[0,1] admit a continuous family of associated tuples
(σs) that is: σs is associated with Φs for all s ∈ [0, 1] (and the size can be taken as large as
wanted). For all k ∈ N, we denote εk the k-tuple

εk := (id, . . . , id).

Let us denote by Fσ the following function (Cd)n → R:

(3.3) Fσ(v1, . . . , vn) :=
n∑
k=1

fk

(
vk + vk+1

2

)
+ 1

2 〈vk, ivk+1〉 ,

with convention vn+1 = v1. Let An : (Cd)n → (Cd)n denotes the linear map such that, for
v = (v1, . . . , vn), An(v) = w with wk = vk+vk+1

2 . Let ψ : (Cd)n → (Cd)n be the diffeomorphism
ψ(z) = w defined by (3.2). The following proposition is a variation of ideas of Chaperon [26]; it is
implicit in the work of Givental [43].

Proposition 3.1. Under the above hypothesis, we have

∀k, ∀v ∈ (Cd)n, ∂vkFσ(v1, . . . , vn) = i(zk − σk−1(zk−1)),

where z := ψ−1 ◦An(v) and z0 := zn. Moreover, if n is odd, Fσ is a generating function of Φ with
v1 as main variable.
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zn

σn(zn)
z1

i∂v1Fσ

i∂v2Fσ

i∂v3Fσ

z2

z3

σ1(z1)

σ2(z2)

σ3(z3)

∇Fσ 6= 0

Figure 1. Geometric interpretation of the gradient of Fσ

Proof. Let F := Fσ. Given any n-tuple v ∈ (Cd)n, we associate n-tuples w and z in (Cd)n
given by w = An(v) and ψ(z) = w. Then

∂vkF (v) = 1
2

(
∇fk−1

(
vk−1 + vk

2

)
+∇fk

(
vk + vk+1

2

)
+ i(vk+1 − vk−1)

)
= 1

2
(
∇fk−1(wk−1) +∇fk(wk)

)
+ i(wk − wk−1)

= i(zk − σk−1(zk−1)).

where indices are seen in Z/nZ. Now let us suppose n is odd, so that An is an isomorphism. If
we denote by ξ := (v2, . . . , vn) the auxiliary variables, we thus have ∂ξF (v) = 0 if and only if
zk+1 = σk(zk) for 1 ≤ k ≤ n− 1. Moreover, since v1 =

∑
k(−1)k+1wk, if ∂ξF (v) = 0 then

v1 =
n∑
k=1

(−1)k+1 zk + σk(zk)
2 = z1 + σn(zn)

2 ,

as required (since σn(zn) = Φ(z1) recursively).
Finally we must show that ∂ξF is transverse to 0. This is clear in the z-coordinates: the matrix

d(∂ξF )(v) ·A−1
n · dψ(z) = i


−dσ1(z1) I2d

−dσ2(z2) I2d
. . . . . .

−dσn(zn) I2d


is invertible. �

This proposition provides a quantitative way to see how close a discrete trajectory (z1, . . . , zn)
given by (v1, . . . , vn) is to a discrete trajectory of the dynamics σn ◦ · · · ◦ σ1 (see Figure 1).

Let Qn : (Cd+1)n → R be the S1-invariant quadratic form

Qn(v) := Fεn(v) = 1
2

n∑
k=1
〈vk, ivk+1〉 = 2

n∑
k=1

k−1∑
l=1

(−1)k+l 〈wk, iwl〉 .

The following proposition is a direct consequence of the fact that Qn is both a quadratic form
and a generating function.

Proposition 3.2. The quadratic form Qn has nullity 2(d+ 1). Moreover

Qn(v1, v2, . . . , vn) = −Qn(v1, vn, vn−1, . . . , v2)

so that
indQn = coindQn = (n− 1)(d+ 1).
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2.2. Generating family of the S1-action. In this section we follow Théret [75] and study
generating families of the unitary (Hamiltonian) flow (δt) of Cd+1, δt(z) := e−2iπtz. Let us define
a family of “good” tuples of small Hamiltonian diffeomorphisms generating (δt) in t ∈ [−m,m] for
m ∈ N∗. For |t| < 1/2 the family (δt) is generated by the family of elementary generating functions

w 7→ − tan(πt)‖w‖2, ∀w ∈ Cd+1.

Let us fix once for all an even number n0 ≥ 4 and let (δ(1)
t ) be the family of n0-tuples(

δ
(1)
t

)
:=
(
δt/n0 , . . . , δt/n0

)
generating z 7→ e−2iπtz for t ∈ (−2, 2). For all m ∈ N∗, let (δ(m)

t ) be a family of mn0-tuples
generating z 7→ e−2iπtz for t ∈ (−m− 1,m+ 1) and satisfying

(3.4) δ
(m+1)
t =

(
δ

(m)
t , εn0

)
, ∀t ∈ [−m,m].

More precisely, let χ : R → R be an odd smooth non-decreasing map such that χm ≡ id on
[−m− 1/4,m+ 1/4] and χm ≡ m+ 1/2 on [m+ 3/4,+∞). We set

δ
(m+1)
t =

(
δ

(m)
χm(t), δ

(1)
t−χm(t)

)
, ∀t ∈ (−m− 2,m+ 2).

Lemma 3.3. Let m ∈ N∗ and t ∈ (−m− 1,m+ 1). With the above notation,

ind
(
F
δ

(m)
t

)
− ind

(
F
δ

(m)
0

)
= 2(d+ 1)btc.

Proof. This is a direct application of Proposition 1.1 (6) to the path (δs) for s between 0
and t. �

Given a tuple of small Hamiltonian diffeomorphisms σ, we set

σm,t :=
(
σ, δ

(m)
t

)
, ∀t ∈ [−m,m].

Lemma 3.4 ([75, Lemma 4.4]). Let σ be a m′-tuple, with m′ odd, such that Ft := Fσm,t :
(Cd+1)m′+mn0 → R is a smooth family of conical generating functions. Then for t ∈ [−m,m],
(i) ∂tFt(v) ≤ 0, ∀v ∈ (Cd+1)m′+mn0 ,
(ii) ∂tFt(v) < 0, ∀v ∈ ΣFt \ 0.

Proof. The first property is a direct consequence of the definitions and the fact that the deriv-
ative ∂t(tan(πt/m)) is > 0. Let v = (v1, . . . , vmn0+m′) ∈ (Cd+1)mn0+m′ be such that ∂tFt(v) = 0.
Then, for m′ + 1 ≤ k < m′ + n0, wk := vk+vk+1

2 = 0 thus zk = 0 where the family z = (zk) is
associated with the family w = (wk) via (3.2) as usual. Thus if v ∈ ΣFt , zk must be 0 for all k
for the sequence (z1, . . . , zm′+mn0) to be the discrete dynamics of conical diffeomorphisms, hence
w = 0 and v = 0. �

2.3. A discrete variational principle for C-equivariant Hamiltonian diffeomorph-
isms. Let (ϕt) be the Hamiltonian flow of CPd associated with the Hamiltonian map h : [0, 1] ×
CPd → R. Let h̃ : [0, 1] × S2d+1 → R be the S1-invariant lift of h defined by h̃t := ht ◦ π where
π : S2d+1 → CPd is the quotient map π(z) := [z]. Let H : [0, 1]×Cd+1 → R be the 2-homogeneous
Hamiltonian map such that Ht(λx) := λ2h̃t(x) for all x ∈ S2d+1. It defines a C-equivariant
symplectic flow (Φt) stabilizing the Euclidean sphere S2d+1 and such that
(3.5) π ◦ Φt|S2d+1 = ϕt ◦ π, ∀t ∈ [0, 1].
This flow (Φt) is uniquely defined by the choice of Hamiltonian map (ht) of (ϕt). In fact, if (Φ′t) is a
C-equivariant Hamiltonian flow stabilizing the sphere and such that (3.5), then Φ′t = eiθ(t)Φt with
θ : [0, 1]→ R which boils down to a change of equivalent Hamiltonian map (h′t) for (ϕt). We will
usually write ϕ := ϕ1 ∈ Ham(CPd) and Φ := Φ1 ∈ HamC(Cd+1). Given a choice of Hamiltonian
map (ht), one can define the action of capped fixed point z̄ by (3.1). We denote by a(z) ∈ R/Z
the reduction of a(z̄) modulo Z for any capping z̄ of z, we call a(z) the action of z. Fixed points
z ∈ CPd of action a ∈ R/Z are in one-to-one correspondence with C-lines CZ ⊂ Cd+1, [Z] = z,
such that Φ1(Z) = e2iπaZ, Z ∈ Cd+1 \0 (see [75, Prop. 5.8]). Since the action only depends on the
choice of lift (Φt), when such a lift is given, we will simply call it the action of (ϕt) or the action
of ϕ.
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Following Théret, for all m ∈ N∗, we now define a map Tm : Mm → R that provides a
variational principle for capped fixed points of (ϕt) with action in Im := (−m − 1,m + 1). Let
(σm,t), t ∈ Im, be the smooth family of tuples generating e−2iπtΦ1 defined in Section 2.2. Then
Fm,t := Fσm,t : CN+1 → R gives us a family of conical functions generating e−2iπtΦs. Let
f̃m : Im × S2N+1 → R be the S1-invariant function f̃m(t, ζ) := Fm,t(ζ) for |ζ| = 1 and fm :
Im×CPN → R be the induced function. Then there is a one-to-one correspondence between fixed
points of ϕ of action t ∈ Im and critical points of fm(t, ·) with value 0.

According to property (ii) of Lemma 3.4, the differential df̃m = ∂t(Fm,t)dt + dFm,t never
vanishes on CN+1 \ 0, so 0 is a regular value of fm. Let us define the submanifold

Mm := {(t, ζ) ∈ Im × CPN | fm(t, ζ) = 0}
and let Tm : Mm → Im be the projection onto the first factor. Fixed points of action t ∈ Im are in
one-to-one correspondence with critical points of Tm with critical value t: more precisely

dTm(t, ζ) = 0⇔ dζfm(t, ζ) = 0.
Moreover, if (t, ζ) ∈ Mm is a critical point of Tm, then the Hessian d2Tm(t, ζ) is equivalent as a
quadratic form to d2

ζ,ζfm(t, ζ) which is equivalent to d2Fm,t(ζ̃) restricted to a complement of the
C-line induced by ζ̃ ∈ S2N+1, where ζ̃ is a lift of ζ ∈ CPN (because Fm,t is conical). Since this line
Cζ̃ is included in ker d2Fm,t(ζ̃), critical points (t, ζ) ∈Mm and ζ̃ ∈ CN+1 share the same index:
(3.6) ind(ζ̃, Fm,t) = ind((t, ζ), Tm).
Moreover, if z ∈ CPd and Z ∈ Cd+1 are fixed points associated with ζ ∈ CPN and ζ̃ ∈ CN+1

respectively, since
dim ker d2Fm,t(ζ̃) = dim ker(e−2iπtdΦ(Z)− id)

one has
(3.7) dim ker d2

ζ,ζfm(t, ζ) = dim ker d2Tm(t, ζ) = dim ker(dϕ(z)− id) =: ν(z).

3. Morse theory of conical generating functions

3.1. Convention and notation. We recall that in this part of the thesis, H∗(X) and H∗(X)
denote respectively the singular homology and the singular cohomology of a topological space or
pair X over an indeterminate ring R. If we need to specify the ring R, we write H∗(X;R) and
H∗(X;R) instead. Let σ be an n-tuple of small C-equivariant Hamiltonian diffeomorphisms of
Cd+1. We denote by Z(σ) ⊂ CPn(d+1)−1 the sublevel set

Z(σ) :=
{
F̂σ ≤ 0

}
,

where F̂σ : CPn(d+1)−1 → R is the C1-map induced by Fσ|S2n(d+1)−1 . We denote by HZ∗(σ) the
shifted homology group

HZ∗(σ) := H∗+(n−1)(d+1)(Z(σ)),
and if Z(σ′) ⊂ Z(σ), with σ′ an n-tuple, we set

HZ∗(σ,σ′) := H∗+(n−1)(d+1)(Z(σ), Z(σ′)).
For m ∈ N∗ and a ≤ b in Im, one has Fσm,b ≤ Fσm,a according to Lemma 3.4 so Z(σm,a) ⊂

Z(σm,b) and we can set
G

(a,b)
∗ (σ,m) := HZ∗(σm,b,σm,a),

when a and b are not action values of σ.

3.2. Cohomology of sublevel sets of Tm. We take the notation σ, Fm,t, Mm etc. of
Section 2.3 of this chapter. Let p : Im × CPN → CPN be the projection onto the second space
and i : Mm ↪→ Im × CPN be the inclusion map. Let F̂t : CPN → R be the C1 map induced by
Fm,t|S2N+1 . According to Lemma 3.4, if s ≤ t, then F̂t ≤ F̂s so that the subspace

At :=
{

(s, ζ) ∈ (−m− 1, t]× CPN | F̂s(ζ) ≤ 0
}

retracts on t×
{
F̂t ≤ 0

}
= t× Z(σm,t) by deformation, hence p induces an isomorphism

H∗(At)→ HZ∗+(n−1)(d+1) (σm,t)
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for all t ∈ Im and thus induces isomorphisms

(3.8) p∗ : H∗(Ab, Aa) '−→ G
(a,b)
∗−(n−1)(d+1)(σ,m)

for a ≤ b in Im. Let a ≤ b in Im and e > 0 such that a − e ∈ Im, the subspace Ab retracts by
deformation on {Tm ≤ b} ∪Aa−e by (t, ζ) 7→ (s, ζ) where s is the maximal r ∈ (a− e, t] satisfying
F̂r(ζ) = 0 or s = a− e if such a maximum does not exist. By excision, we then have that i induces
an isomorphism

(3.9) i∗ : H∗({Tm ≤ b}, {Tm ≤ a})
'−→ H∗(Ab, Aa),

for all a ≤ b in I. Putting (3.8) and (3.9) together, we get the following

Lemma 3.5. For all a ≤ b in I, the composition p ◦ i induces an isomorphism in homology

G
(a,b)
∗−(n−1)(d+1)(σ,m) ' H∗({Tm ≤ b}, {Tm ≤ a}).

This result extends to local homology, the precise statement being given in the next section.
The dual cohomology statements are true for dual reasons.

3.3. Local cohomology of a fixed point. Let z̄ be a capped fixed point of ϕ with action
value t ∈ (−m,m). We denote by C∗(z̄) the local homology of F̂m,t at the associated critical point
ζ ∈ CPN graded with the usual shift:

C∗(σ; z̄,m) := H∗+(n−1)(d+1)

({
F̂m,t ≤ 0

}
,
{
F̂m,t ≤ 0

}
\ ζ
)
.

By an argument similar to the proof of Lemma 3.5, the map p ◦ i : M → CPN induces an
isomorphism between the local homology of z̄ and the local homology of (t, ζ) for Tm:
(3.10) C∗−(n−1)(d+1)(σ; z̄,m) ' H∗({Tm ≤ t}, {Tm ≤ t} \ (t, ζ)) = C∗(Tm, (t, ζ)).

Let us assume that there are finitely many capped fixed points z̄1, . . . , z̄q of action value t. For
ε > 0 small enough, the natural isomorphism (1.4) applied to Tm composed with (p ◦ i)∗ defines a
natural isomorphism

(3.11)
⊕
j

C∗(σ; z̄j ,m) ' G(t−ε,t+ε)
∗ (σ,m).

According to Proposition 3.2,
ind(ζ̃, Fm,t)− ind(Qn) = ind(ζ̃, Fm,t)− (n− 1)(d+ 1),

where ζ̃ ∈ CN+1 is a lift of ζ. Therefore, the relationship between Morse index and Maslov index,
together with the index identity (3.6) gives

ind(ζ̃, Fm,t)− (n− 1)(d+ 1) = mas(Z, (e−2iπtsΦs)) = mas(z̄),
where the last equality comes from Proposition 1.2. According to (1.5) and (3.7), the support of
the local homology of z̄ then satisfies
(3.12) suppC∗(σ; z̄,m) ⊂ [mas(z̄),mas(z̄) + ν(z)] ,
where we recall that ν(z) = dim ker(dϕ(z)− id) (it is independent of the capping of z).

The independence onm up to isomorphism of the definition of the local homology can easily be
deduced from the isomorphism induced by θm+1

m (defined in Section 4.2) on the local homologies.
Local homologies C∗(σ; z, t) and C∗(σ; z, t+ 1) are isomorphic up to a 2(d+ 1) shift in degree so
we will not specify the choice of representative t ∈ R when the grading is irrelevant. One can prove
it without using the isomorphism with local Floer homology by using the isomorphism induced by
(3.22) in local homology. Following Shelukhin [69], in the case where ϕ has finitely many fixed
points, we define the homology count of fixed point of σ generating ϕ over the field F by

(3.13) N(σ;F) :=
∑

z∈Fix(ϕ1)

dimC∗(σ; z;F) ∈ N.

We recall that an integer k ∈ N∗ is said to be an admissible period of a fixed point z of ϕ
if λk 6= 1 for all eigenvalues λ 6= 1 of dϕ(z). Until the end of the section, ϕ is associated with a
tuple σ and the periodic points of ϕ are isolated in order to simplify the statements. The following
proposition was proved by Ginzburg-Gürel in [40] for the local Floer homology.
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Proposition 3.6. Let k ∈ N∗ be an admissible period of the fixed point z of ϕ. Then as graded
R-modules,

C∗(σk; z) ' C∗−ik(σ; z),
for some shift in degree ik ∈ Z.

In our setting, one can prove this result by directly applying the shifting theorem of Gromoll-
Meyer [46, §3]. Let us shortly give the main steps of the proof when k is odd. One can assume
that the fixed point z has action 0 so that C∗(σk; z) is isomorphic to the local homology of F̂σk at
[v0 : · · · : v0], where [v0] ∈ CPN is the critical point of F̂σ associated with z. Let M ⊂ CPN be
a characteristic submanifold for F̂σ at [v0] (i.e. a submanifold containing [v0] which is tangent to
a pseudo-gradient of F̂σ and whose tangent space at [v0] coincides with the kernel of the Hessian
of F̂σ). Then the image of M under the embedding ι : [v] 7→ [v : · · · : v] is a characteristic
submanifold for F̂σk if and only if k is admissible (see Equation (3.7) and above). According to
the shifting theorem, the local homology of a function at a given point is isomorphic to the local
homology of the restriction of this function to a characteristic submanifold at the given point up
to a shift in degree. Since F̂σk ◦ ι = F̂σ, the conclusion follows. This proof needs small changes
when k is even (see Section 4.4 for an idea of the case k = 2), but it will not be needed to prove
the following corollary.

Corollary 3.7. For every fixed point z of ϕ, there exists B > 0 such that, for all prime p
dimC∗(σp; z;Fp) < B.

Proof. Applying Proposition 3.6 with R := Z, the C∗(σp; z;Z)’s are isomorphic up to a
shift in degree for sufficiently large prime numbers p. Since these Z-modules are finitely generated
(according to Gromoll-Meyer, see just above Equation (1.5)), the conclusion for an arbitrary finite
field of coefficients is a straightforward application of the universal coefficient theorem. �

4. Generating function homology

4.1. Composition of sublevel sets of generating functions. Given an odd number n ∈
N, let An be the linear automorphism of (Cd+1)n such that w = Anv with wk = vk+vk+1

2 . We will
often omit An in our changes of variables and talking about w-variables.

We denote by B̃n,m : (Cd+1)n × (Cd+1)m → (Cd+1)m+n+1 the C-linear map

B̃n,m(w,w′) :=
(

w,
m∑
k=1

(−1)k+1w′k,w′
)
,

and we denote by Bn,m : CP(d+1)n−1 ∗CP(d+1)m−1 → CP(d+1)(n+m+1)−1 the associated projective
map. A straightforward computation gives the following proposition.

Proposition 3.8. Given odd integers n,m ∈ N, for all w ∈ (Cd+1)n and w′ ∈ (Cd+1)m, one
has in w-variables,

Qn+m+1

(
B̃n,m(w,w′)

)
= Qn(w) +Qm(w′).

Corollary 3.9. Given tuples σ, σ′ of odd respective sizes n and m, one has

F(σ,ε,σ′)

(
B̃n,m(w,w′)

)
= Fσ(w) + Fσ′(w′).

Therefore, B̃n,m induces an injective map

{Fσ ≤ a} × {Fσ′ ≤ b} →
{
F(σ,ε,σ′) ≤ a+ b

}
by restriction. If σ and σ′ are tuples of C1-small C-equivariant Hamiltonian diffeomorphisms,
Bn,m induces a map

Z(σ) ∗ Z(σ′)→ Z(σ, ε,σ′).

Proof. This is a direct consequence of the form that takes Fσ in w-variables:

Fσ(w) =
n∑
k=1

fk(wk) +Qn(w).
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Therefore,

F(σ,ε,σ′)

(
B̃n,m(w,w′)

)
=

n∑
k=1

fk(wk) +
m∑
l=1

f ′l (w′l) +Qn+m+1

(
B̃n,m(w,w′)

)
=

n∑
k=1

fk(wk) +Qn(w) +
m∑
l=1

f ′l (w′l) +Qm(w′)

= Fσ(w) + Fσ′(w′).

�

By making use of the homology projective join defined in Chapter 2, we are now in position to
define a special map in homology involving two different Hamiltonian flows and their composition.
Let us fix 2 tuples σ, σ′ of odd respective sizes n and n′. According to Corollary 3.9, the map
Bn,n′ induces a natural morphism H∗(Z(σ) ∗ Z(σ′)) → H∗(Z(σ, ε,σ′)). The composition of this
morphism with the homology projective join defines a natural morphism

HZ∗(σ)⊗HZ∗(σ′)→ HZ∗−2d((σ, ε,σ′)).

It generalizes to the relative case Z(σ′′) ⊂ Z(σ′):

HZ∗(σ)⊗HZ∗(σ′,σ′′)→ HZ∗−2d((σ, ε,σ′), (σ, ε,σ′′));

the relative HZ∗ could be in the left hand factor of the tensor product as well, as long as one of the
two HZ∗’s is an absolute homology group. In symbols, we will write this map as α⊗ β 7→ α~ β.
The naturality of these morphisms under inclusion morphisms and boundary morphisms follows
directly from the naturality of the homology projective join.

In particular, the following diagram commutes

(3.14)

HZ∗(σ)⊗HZ∗(σ′)
~

//

��

HZ∗−2d((σ, ε,σ′))

��

H∗+r(CPN )⊗H∗+r′(CPN ′)
pj∗ // H∗+r+r′+2(CPN ′′)

,

where r := (n − 1)(d + 1), N := n(d + 1) − 1 etc. N ′′ := (n + n′ + 1)(d + 1) − 1 and we see
CPN and CPN ′ as the disjoint subspaces included in CPN ′′ via [w] 7→ [w : 0] and [w′] 7→ [0 : w′].
The commutativity of this diagram follows from the naturality of pj∗ and the fact that Bn,n′ is
homotopic to [w : w′] 7→ [w : 0 : w′] through maps CP(d+1)n−1∗CP(d+1)n′−1 → CP(d+1)(n+n′+1)−1.

Proposition 3.10. Composition morphisms are associative, that is the following diagram
commutes:

HZ∗(σ)⊗HZ∗(σ′)⊗HZ∗(σ′′)

��

// HZ∗(σ)⊗HZ∗−2d((σ′, ε,σ′′))

��

HZ∗−2d((σ, ε,σ′))⊗HZ∗(σ′′) // HZ∗−4d((σ, ε,σ′, ε,σ′′))

.

In symbols, given α ∈ HZ∗(σ), β ∈ HZ∗(σ′) and γ ∈ HZ∗(σ′′),

(α~ β)~ γ = α~ (β ~ γ).

This is also true for the relative case where one of the initial groups ( e.g. HZ∗(σ′′)) is replaced by
a relative homology group ( e.g. HZ∗(σ′′,σ(3))) while the other groups are still absolute homology
groups.

Proof. We first remark that

B̃n+n′+1,n′′
(
B̃n,n′(w,w′),w′′

)
=

w,
n′∑
k=1

(−1)k+1w′k,w′,
n′′∑
l=1

(−1)l+1w′′l ,w′′


= B̃n,n′+n′′+1

(
w, B̃n′,n′′(w′,w′′)

)
, ∀w,w′,w′′,
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so that Bn+n′+1,n′′ ◦ (Bn,n′ ∗ id) = Bn,n′+n′′+1 ◦ (id ∗ Bn′,n′′). Here, we denote by f ∗ g the map
(f ∗ g)[a : b] := [f̃(a) : g̃(b)] where f̃ and g̃ are C-linear lifts of the respective projective maps f
and g. Therefore, for all α ∈ HZ∗(σ), β ∈ HZ∗(σ′) and γ ∈ HZ∗(σ′′) (or γ ∈ HZ∗(σ′′,σ(3))),

(Bn+n′+1,n′′)∗
(
(Bn,n′)∗(α ∗ β) ∗ γ

)
= (Bn+n′+1,n′′)∗(Bn,n′ ∗ id)∗((α ∗ β) ∗ γ)
= (Bn,n′+n′′+1)∗(id ∗Bn′,n′′)∗((α ∗ β) ∗ γ)
= (Bn,n′+n′′+1)∗(id ∗Bn′,n′′)∗(α ∗ (β ∗ γ))
= (Bn,n′+n′′+1)∗

(
α ∗ (Bn′,n′′)∗(β ∗ γ)

)
where we use the naturality of the homology projective join (2.6) to get the first and last identity,
the previous remark to get the second equality and the associativity of the homology projective
join (Proposition 2.5) to get the third equality. �

4.2. The direct system of G(a,b)
∗ (σ). For a fixed m ∈ N, the long exact sequence of triple

induces inclusion and boundary morphisms fitting into a long exact sequence:

· · · ∂∗+1−−−→ G
(a,b)
∗ (σ,m)→ G

(a,c)
∗ (σ,m)→ G

(b,c)
∗ (σ,m) ∂∗−→ G

(a,b)
∗−1 (σ,m)→ · · ·

where −m− 1 < a ≤ b ≤ c < m+ 1. In order to precisely define these maps without reference of
m anymore, we will define an isomorphism

(3.15) θm+1
m : G(a,b)

∗ (σ,m)→ G
(a,b)
∗ (σ,m+ 1),

for −m ≤ a ≤ b ≤ m, that commutes with the above mentioned inclusion and boundary morphisms
and define G(a,b)

∗ (σ) as the direct limit of the direct system induced by (θm+1
m )m:

G
(a,b)
∗ (σ) := lim−→G

(a,b)
∗ (σ,m).

We will then have inclusion morphisms

· · · ∂∗+1−−−→ G
(a,b)
∗ (σ)→ G

(a,c)
∗ (σ)→ G

(b,c)
∗ (σ) ∂∗−→ G

(a,b)
∗−1 (σ)→ · · ·

for all a ≤ b ≤ c that are not action values; one can thus set

G
(−∞,b)
∗ (σ) := lim←−G

(a,b)
∗ (σ), a→ −∞,

and one can then define G(−∞,+∞)
∗ (σ) by taking a direct limit in a similar way. The inclusion and

boundary morphisms thus extend to the extended real number line R := R∪ {−∞,+∞} with the
convention that ±∞ are not action values.

In order to define the isomorphism (3.15), let us remark that for an odd n ∈ N, the space
Z(εn) retracts on the projectivization of the maximal non-positive linear subspace of Qn which is
a CPN−1 with N = (d+ 1)(n+ 1)/2 according to Proposition 3.2. Therefore,

HZ∗(εn) =
d⊕

k=−(d+1)(n−1)/2

Ra
(n)
k ' H∗+(n−1)(d+1)

(
CP(d+1)(n+1)/2−1

)
,

where a(n)
k is the generator of degree 2k identified with the class [CPl] of appropriate degree

2l = 2k + (n − 1)(d + 1) under the isomorphism induced by the inclusion of a maximal complex
projective subspace of Z(εn). With the help of the composition defined in the previous section,
we now define (3.15) by

θm+1
m (α) := α~ a(n0−1)

d ∈ G(a,b)
∗ (σ,m+ 1), ∀α ∈ G(a,b)

∗ (σ,m).
This is formally well-defined since

HZ∗((σm,b, εn0), (σm,a, εn0)) = G
(a,b)
∗ (σ,m+ 1),

for −m ≤ a ≤ b ≤ m, according to (3.4).

Proposition 3.11. For an odd n ∈ N, the morphism{
HZ∗(σm,b,σm,a) → HZ∗((σm,b, εn+1), (σm,a, εn+1))

α 7→ α~ a(n)
d

is an isomorphism (and the same is true for α 7→ a
(n)
d ~ α).
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Corollary 3.12. The morphism θm+1
m is an isomorphism.

Proof. Let A := Z(σm,b,σm,a), A′ := Z((σm,b, εn+1), (σm,a, εn+1)), B := Z(εn), n′ be the
size of σm,b and let us denote by θ the morphism in question. Up to a shift in degree, the morphism
θ can be written explicitly as the composition

H∗(A)
·∗a(n)

d−−−−→ H∗+i0(A ∗B)
(Bn′,n)∗−−−−−→ H∗+i0(A′),

for some i0 ∈ N. According to Corollary 2.2, the first morphism is an isomorphism. It remains to
show that (Bn′,n)∗ is also an isomorphism.

Let C be the following automorphism of (Cd+1)n′+n+1:

(3.16) C(v,v′) := (v,v′ + (v1, vn′ , v1, vn′ , . . . , v1, vn′)),

where v ∈ (Cd+1)n′ and v′ ∈ (Cd+1)n+1. By a direct computation

F(σm,t,εn+1) ◦ C(v,v′) = Fσm,t(v) +Qn+2(0,v′).

According to Givental [43, Proposition B.1], {F̂(σm,t,εn+1) ◦ C ≤ 0} retracts on {F̂σm,t ≤ 0} ∗
{Q̂n+2(0, ·) ≤ 0}. The quadratic form Qn+2(0, ·) is non-degenerate with index (n + 1)(d + 1),
so that the sublevel set {Q̂n+2(0, ·) ≤ 0} retracts on a complex projective space of C-dimension
(d+ 1)(n+ 1)/2− 1.

The injective linear map J : (Cd+1)n → (Cd+1)n+1, Jv := (v, v1) satisfies

Qn+2(0, Jv) = Qn(v).

Since the sum of the index and the nullity of Qn is (n+1)(d+1), {Q̂n ≤ 0} retracts on a projective
space of C-dimension (d+1)(n+1)/2−1 in such a way that J induces an isomorphism in homology

J∗ : H∗
({
Q̂n ≤ 0

})
'−→ H∗

({
Q̂n+2(0, ·) ≤ 0

})
.

Let P : (Cd+1)n+1 → (Cd+1)n be the surjective linear map

P (v1, . . . , vn+1) := (vn+1, v2, v3, . . . , vn)

so that PJ = id. Let P ′ : (Cd+1)n+n′+1 → (Cd+1)n+n′ be P ′(v,v′) = (v, Pv′) and let J ′ :
(Cd+1)n+n′ → (Cd+1)n+n′+1 be J ′(v,v′) = (v, Jv′) so that P ′J ′ = id. In v-variables, B̃n′,n takes
the form

(v,v′) 7→ (v, v1,v′ + (v′1 − v1, v1 − v′1, v′1 − v1, . . . , v1 − v′1)).

A direct computation then shows that the endomorphism f̃ := P ′C−1B̃n′,n is invertible. More
precisely, f̃(v,v′) = (v, g̃(v′)+h̃(v)) where g̃ and h̃ are C-linear and g̃ is invertible. Let f : A∗B →
A ∗B be the induced projective map.

We then have the following commutative diagram:

H∗(A ∗B)
(Bn′,n)∗

//

f∗'

��

H∗(A′)

H∗(A ∗B)
J′∗

'
//
H∗

(
A ∗

{
Q̂n+2(0, ·) ≤ 0

})
P ′∗

mm

C∗ '

OO

,

By the above discussion, the induced maps f∗, C∗, J ′∗ and P ′∗ are isomorphisms. Therefore, (Bn′,n)∗
is an isomorphism and so is θ. �
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By construction of the map θm+1
m , the following diagram commutes.

(3.17)

G
(a,b)
∗ (σ,m)

θm+1
m

'
// G

(a,b)
∗ (σ,m+ 1)

HZ∗(σm,b)
·~a(n0−1)

d //

OO

��

HZ∗(σm+1,b)

OO

��

H∗+r(CPN )

��

H∗+r(CPN+n0(d+1))
·∗[CP(d+1)n0/2]

// H∗+r+n0(d+1)(CPN+n0(d+1))

,

where the vertical arrows are induced by inclusions, r := (n1 + mn0 − 1)(d + 1), n1 is the size of
σ, N := (n1 +mn0)(d+ 1)− 1.

Applying the commutativity of (3.14) to σ = εn and σ′ = εn
′ , one has

a
(n)
k ~ a(n′)

l = a
(n+n′+1)
k+l−d ,

for −(d + 1)(n − 1)/2 ≤ k ≤ d and −(d + 1)(n′ − 1)/2 ≤ l ≤ d. By associativity of ~ (Proposi-
tion 3.10), we deduce that the isomorphism θm+k

m := θm+k
m+k−1◦· · ·◦θm+1

m is θm+k
m (α) = α~a(kn0−1)

d .
By using the same construction as for θm+k

m , one can define an isomorphism

ηk : G(a,b)
∗ (σ,m) '−→ G

(a,b)
∗ ((εk,σ),m),

sending α to a(k−1)
d ~ α for each even k ∈ N. This isomorphism commutes with the direct system

induced by the θm+1
m ’s and the inclusion morphisms and makes a diagram similar to (3.17) commute

where in particular σm+1,b is replaced by (εk,σ)m,b. The commutation with the direct system
induces a natural final isomorphism

(3.18) ηk : G(a,b)
∗ (σ) '−→ G

(a,b)
∗ ((εk,σ)).

The definition of θm+1
m easily extends to the local homology of any capped fixed point z̄ of

action t ∈ (−m,m) into an isomorphism

(3.19) θm+1
m : C∗(σ; z̄,m) '−→ C∗(σ; z̄,m+ 1)

that is compatible with inclusion morphisms. This morphism is still defined by composition of
the homology join with a(n0−1)

d with the morphism induced by a composition map Bn′,n. Proof of
Proposition 3.11 still holds in this case. Therefore, local homology does not depend on m and one
can define algebraically C∗(σ; z̄) by a direct limit.

4.3. Interpolation isomorphisms. We start this section with a general statement that is
easily deduced from Morse theory.

Proposition 3.13. Let X be a closed manifold and m > 0. Let fs,t : X → R, s ∈ [0, 1],
t ∈ [−m,m], be a C1-family of maps. We suppose that for all s ∈ [0, 1], t ∈ (−m,m) and x ∈ X,
d
dtfs,t(x) ≤ 0. If a, b ∈ (−m,m), a ≤ b, satisfy that 0 is a regular value of fs,a and fs,b for all
s ∈ [0, 1], then the inclusion X ↪→ [0, 1] × X, x 7→ (s, x), induces the following isomorphism in
homology for all s ∈ [0, 1]

H∗
(
{fs,b ≤ 0}, {fs,a ≤ 0}

) '−→ H∗
(
{(r, x) | fr,b(x) ≤ 0}, {(r, x) | fr,a(x) ≤ 0}

)
,

where (r, x) are describing [0, 1]×X in the right hand side of the arrow. The analogous non-relative
statement is also true: let fs : X → R, s ∈ [0, 1], be a C1-family of maps with 0 as a regular value.
Then the inclusion X ↪→ [0, 1]×X, x 7→ (s, x), induces the following isomorphism in homology for
all s ∈ [0, 1]

H∗ ({fs ≤ 0}) '−→ H∗ ({(r, x) | fr(x) ≤ 0}) .
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Proof. For all interval I ⊂ [0, 1], let fI,t : I ×X → R be the map fI,t(r, x) := fr,t(x). Let
a ≤ b be real numbers as above. By compactness of [0, 1], there exists an ε > 0 such that [−ε, 2ε]
contains only regular values of fs,a and fs,b for all s ∈ [0, 1]. By compactness, there also exists a
δ > 0 such that ‖fs,c − fr,c‖∞ < ε for |s− r| ≤ δ and c ∈ {a, b}.

We recall that if topological pairs A ⊂ B ⊂ C ⊂ D satisfy that the inclusion morphisms
H∗(A) → H∗(C) and H∗(B) → H∗(D) are isomorphisms, then the inclusion morphism H∗(B) →
H∗(C) is also an isomorphism. We apply this result to A := ({fI,b ≤ −ε}, {fI,a ≤ −ε}), B := (I×
{fs,b ≤ 0}, I×{fs,a ≤ 0}), C := ({fI,b ≤ ε}, {fI,a ≤ ε}) and D := (I×{fs,b ≤ 2ε}, I×{fs,a ≤ 2ε})
for I ⊂ [0, 1] an interval of length less than δ and s ∈ I. Indeed, these topological pairs are
increasing for ⊂ by definition of δ and the needed isomorphisms come from Morse deformation
lemma which can be applied by definition of ε. We thus have the following commutative diagram:

H∗(I × {fs,b ≤ 0}, I × {fs,a ≤ 0}) ' // H∗({fI,b ≤ ε}, {fI,a ≤ ε})

H∗({s} × {fs,b ≤ 0}, {s} × {fs,a ≤ 0}) ' //

'

OO

H∗({fI,b ≤ 0}, {fI,a ≤ 0})

'

OO

,

where every morphism is induced by inclusion. The top arrow is an isomorphism by the above
general fact. The left hand side arrow is an isomorphism because I retracts on {s}. The right hand
side arrow is an isomorphism by the Morse deformation lemma, since [0, ε] contains only regular
values of fI,a and fI,b. Therefore, the bottom arrow is an isomorphism.

According to the Mayer-Vietoris long exact sequence, given topological pairs A and B, if
the inclusion morphism H∗(A ∩ B) → H∗(A) and H∗(A ∩ B) → H∗(B) are isomorphisms, then
the inclusion morphism H∗(A ∩ B) → H∗(A ∪ B) is an isomorphism. We apply this result to
A := ({fI,b ≤ 0}, {fI,a ≤ 0}) and B := ({fJ,b ≤ 0}, {fJ,a ≤ 0}) for increasing length of I and
length(J) ≤ δ to show inductively the result. �

Another way to proceed is to remark that ({fI,b ≤ 0} \ {fI,a < 0}, {fI,a = 0}) retracts
on ({fs,b ≤ 0} \ {fs,a < 0}, {fs,a = 0}) relative to boundaries through the gradient flow of the
restriction of the projection I × X → I, which has no critical points under the hypothesis made
on a and b.

Let s 7→ σ(s) be a C1-family (or more generally C1-piecewise) of tuples associated with the
same C-equivariant Hamiltonian diffeomorphism Φ without C-line of fixed points. We apply Pro-
position 3.13 to the following family of maps:

fs := F̂σ(s) : CPN → R.
Assumptions of Proposition 3.13 are fulfilled and we define ∆ so that the following diagram com-
mutes:

HZ∗(σ(0)) ' //

∆'
��

H∗+i0(A)

HZ∗(σ(1))

'
88

,

where the non-vertical arrows are the inclusions maps and
A := {(r, x) | fr(x) ≤ 0} .

Since these isomorphisms are defined with inclusion maps the above way, it clearly commutes with
inclusion and boundary morphisms. In the same way, let (η(s)

t ) be a C1-family of tuples so that
s 7→ η

(s)
t is associated with the same C-equivariant Hamiltonian diffeomorphism for a fixed t. If the

associated map fs,t : CPN → R satisfies the assumption of Proposition 3.13, then we can define
the associated isomorphism

∆ : HZ∗(η(0)
b ,η(0)

a ) '−→ HZ∗(η(1)
b ,η(1)

a ).

As an important example, Let s 7→ σ(s) be a C1-family (or more generally C1-piecewise) of tuples
associated with the same C-equivariant Hamiltonian diffeomorphism Φ. If a ≤ b are not action
values of σ, then η(s)

t := σ
(s)
m,t satisfies the above assumption and ∆ is an isomorphism

∆ : G(a,b)
∗ (σ(0),m) '−→ G

(a,b)
∗ (σ(1),m).
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We will call ∆ the interpolation isomorphism associated with (σ(s)) and write in symbols ∆←→
s 7→ σ(s).

Interpolation isomorphisms are compatible with the partition of small action windows into
local homologies in the following sense. Let (η(s)

t ), t ∈ I, be a C1-family of tuples so that s 7→ η
(s)
t

is associated with the same C-equivariant Hamiltonian diffeomorphism e−2iπtΦ for a fixed t and
denote by ϕ the associated Hamiltonian diffeomorphism of CPd. Let us assume that t0 ∈ I is an
action value with only finitely many fixed points z1, . . . , zn. Let ζ(s)

1 , . . . , ζ
(s)
n be the associated

family of critical points of fs,t0 .

Proposition 3.14. Under the assumptions of the above paragraph, for every ε > 0 small
enough, if the assumption of Proposition 3.13 are satisfied at a = t0 − ε and b = t0 + ε, the
following diagram commutes

⊕
j C∗+i0

(
f0,t0 ; ζ(0)

j

)
' //

⊕jδj'
��

HZ∗

(
η

(0)
t0+ε, η

(0)
t0−ε

)
∆'
��⊕

j C∗+i0
(
f1,t0 ; ζ(1)

j

)
' // HZ∗

(
η

(1)
t0+ε, η

(1)
t0−ε

) ,

where the horizontal isomorphisms are defined in the same way as (3.11) and δj is an isomorphism
from C∗(f0,t0 ; ζ(0)

j ) to C∗(f1,t0 ; ζ(1)
j ).

Proof. Assuming fs,t : CPN → R, with s ∈ [0, 1] and t ∈ I, let M ⊂ [0, 1]× I × CPN be the
submanifold

M :=
{
fs,t(ζ) = 0 | (s, t, ζ) ∈ [0, 1]× I × CPN

}
,

and T : M → I be the projection onto the t coordinate. For s ∈ [0, 1], let Ms := M ∩ s ×
I × CPN and Ts : T |Ms

. Fixing a Riemannian metric on M , let (s × ψτs )τ be the reversed
gradient flow of Ts for the induced metric. Let U1, . . . , Un ⊂ M be respective neighborhoods of
the paths (s, t0, ζ(s)

1 ), . . . , (s, t0, ζ(s)
n ) ∈ M that are disjoint restricted to the small action window

I× [t0−ε, t0 +ε]×CPN and that are invariant under the flow ((s, x) 7→ (s, ψτs (s, x))τ . Taking back
the notation of Section 2 of Chapter 1, one gets the following commutative diagram of inclusion
morphisms ⊕

j H∗

(
T ≤t0+ε

0 ∩ Uj , T ≤t0−ε0 ∩ Uj
)

' //

'
��

H∗

(
T ≤t0+ε

0 , T ≤t0−ε0

)
'
��⊕

j H∗
(
T ≤t0+ε ∩ Uj , T ≤t0−ε ∩ Uj

)
// H∗

(
T ≤t0+ε, T ≤t0−ε

)
⊕

j H∗

(
T ≤t0+ε

1 ∩ Uj , T ≤t0−ε1 ∩ Uj
)

' //

'

OO

H∗

(
T ≤t0+ε

1 , T ≤t0−ε1

)'

OO
.

The top and bottom arrows are the natural isomorphisms in a small window of regular values
around t0 (1.3). The vertical arrows come from Proposition 3.13 applied with the isomorphism of
Lemma 3.5. We recall that inclusion morphisms define a natural isomorphism (1.2)

C∗
(
Ts;
(
s, t0, ζ

(s)
j

))
' H∗

(
T ≤t0+ε
s ∩ Uj , T ≤t0−εs ∩ Uj

)
,

and that the left-hand side of this equation is naturally isomorphic to the local homology of fs,t0 at
ζ

(s)
j through (3.10). The conclusion follows from the definition of the interpolation isomorphisms
and Lemma 3.5. �
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Proposition 3.15. Let ∆, ∆′ and ∆′′ be the interpolation isomorphisms associated with (σ(s)),
(η(s)
t ) and (σ(s), ε,η

(s)
t ) respectively. The following diagram commutes:

HZ∗
(
σ(0))⊗HZ∗ (η(0)

1 ,η
(0)
0

)
~
//

∆⊗∆′'
��

HZ∗−2d

((
σ(0), ε,η

(0)
1

)
,
(
σ(0), ε,η

(0)
0

))
∆′′'
��

HZ∗
(
σ(1))⊗HZ∗ (η(1)

1 ,η
(1)
0

)
~
// HZ∗−2d

((
σ(1), ε,η

(1)
1

)
,
(
σ(1), ε,η

(1)
0

)) .

Proof. One can assume that either (σ(s)) or (η(s)
t ) is independent of s. This is a direct

consequence of the naturality of (Bn,n′)∗ and a slightly generalized version of pj∗ to projective
bundles. Let I := [0, 1] and let us extend pj∗ to subsets of I × CPN the following way. Let
A ⊂ CPn and B ⊂ I × CPm, we set Bs := B ∩ s × CPm and define A ∗ B ⊂ I × CPm+n+1 by
A ∗ B :=

⋃
s s × (A ∗ Bs). Let EA,B be the set of those (a, (s, b), (t, c))’s with a ∈ A, (s, b) ∈ B

and (t, c) ∈ A ∗B such that s = t and c ∈ (ab); let p1 : EA,B → A×B and p2 : EA,B → A ∗B be
associated projection maps. Now p1 is a CP1-fiber bundle and pj∗ : H∗(A × B) → H∗+2(A ∗ B)
is defined by (p2)∗ ◦ (p1)∗. Since EA,Bs is the restriction of the fiber bundle EA,B to A × Bs, by
naturality of the morphisms involved, the following diagram commutes for all s ∈ I:

H∗(A×Bs)

��

pj∗ // H∗+2(A ∗Bs)

��

H∗(A×B)
pj∗ // H∗+2(A ∗B)

,

where the vertical arrows are inclusion morphisms induced by s ↪→ I. By giving to Z(ηIt ) the
meaning of

⋃
s s× Z(η(s)

t ) and then extending the definition of HZ∗ accordingly, we deduce that
the following diagram commutes for all s ∈ I:

HZ∗ (σ)⊗HZ∗
(
η

(s)
1 ,η

(s)
0

)
~
//

'
��

HZ∗−2d

((
σ, ε,η

(s)
1

)
,
(
σ, ε,η

(s)
0

))
'
��

HZ∗ (σ)⊗HZ∗
(
ηI1,η

I
0
) ~

// HZ∗−2d
((
σ, ε,ηI1

)
,
(
σ, ε,ηI0

)) ,

where the vertical arrows are inclusion morphisms. The conclusion follows. �

In particular, the interpolation isomorphisms ∆ : G(a,b)
∗ (σ(0),m)→ G

(a,b)
∗ (σ(1),m) commutes

with the direct system (θm+1
m ), so it ultimately defines the interpolation isomorphism

∆ : G(a,b)
∗ (σ(0)) '−→ G

(a,b)
∗ (σ(1))

that commutes with inclusion and boundary morphisms.
It can also be easily deduced from the definition that the interpolation morphisms are homotopy

invariant.

Proposition 3.16. Let (η(r,s)
t ), t ∈ I, (r, s) ∈ [0, 1]2 be a C1-family of tuples so that (r, s) 7→

η
(r,s)
t is associated with the same C-equivariant Hamiltonian diffeomorphism e−2iπtΦ for a fixed
t and r 7→ η

(r,0)
t and r 7→ η

(r,1)
t are constant maps. In other words, (η(r,s)

t ) is a homotopy with
fixed extremities between (η(0,s)

t ) and (η(1,s)
t ). Then the interpolation isomorphisms associated with

(η(0,s)
t ) and (η(1,s)

t ) are equal.

We are now in position to prove that G(a,b)
∗ (σ) and its inclusion and boundary morphisms are

independent, up to isomorphism, of the choice of continuous family of n-tuple of small Hamiltonian
flows (σs) generating the C-equivariant Hamiltonian flow (Φs) lifting (ϕs) with σ0 = εn and σ1 =
σ. Indeed, let (σs) and ((σ′)s) be a n-tuple and a n′-tuple of small Hamiltonian flows generating
(Φs) with n ≥ n′. One can define an isomorphism G

(a,b)
∗ (σ) '−→ G

(a,b)
∗ (σ′) by composition of
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morphism ηk defined at (3.18) and interpolation maps ∆ in the following way:

G
(a,b)
∗ (σ) ' //

η2n'
��

G
(a,b)
∗ (σ′)

η3n−n′'
��

G
(a,b)
∗ ((ε2n,σ))

∆'
��

G
(a,b)
∗ ((ε3n−n′ ,σ′))

G
(a,b)
∗ ((σ, ε2n)) ∆′

'
// G

(a,b)
∗ ((σ,σ−1, εn−n

′
,σ′))

∆′′ '

OO
,

where ∆, ∆′ and ∆′′ are interpolation isomorphisms associated with isotopies of 3n-tuples gener-
ating the same Hamiltonian diffeomorphism Φ in the following way

∆ ←→ s 7→

{
(σ2s,σ−2s,σ), 0 ≤ s ≤ 1/2,
(σ,σ−2(1−s),σ2(1−s)), 1/2 ≤ s ≤ 1,

∆′ ←→ s 7→ (σ,σ−s, εn−n
′
, (σ′)s),

∆′′ ←→ s 7→ (σ1−s,σs−1, εn−n
′
,σ′).

4.4. Composition of generating function homology groups. Let us fix 2 tuples σ, σ′
of odd respective sizes n and n′, a, b, c ∈ R that are not action values of σ and σ′ respectively. Let
m,m′ ∈ N such that m > 2m′ > 4n. The composition map has the form

HZ∗(σ′m′,c)⊗G
(a,b)
∗ (σ,m) ~−→ HZ∗(ηb,ηa),

where
ηt :=

(
σ′, δ(m′)

c , ε,σ, δ
(m)
t

)
.

Let (ηst )s be a homotopy of tuples of small Hamiltonians from η0
t = ηt to η1

t = (σ′, ε,σ)t+c,m+m′ ,
for 2|t| < m, generating the same diffeomorphism for a fixed value of t. The condition m′ > 2m >
4n′ makes the construction of such a homotopy possible, we sketch the successive stages of it:

ηt =
(
σ′, δ(m′)

c , ε,σ, δ
(m)
t

)
 
(
σ′, εm

′n0+1,σ, δ
(m)
t+c

)
 
(
σ′, ε,σ,σ−1, εk,σ, δ

(m)
t+c

)
 
(
σ′, ε,σ, εm

′n0 , δ
(m)
t+c

)
 
(
σ′, ε,σ, δ

(m+m′)
t+c

)
= (σ′, ε,σ)t+c,m+m′ .

According to the previous section, this homotopy induces an interpolation isomorphism

∆ : HZ∗(ηb,ηa) '−→ G
(a+c,b+c)
∗ ((σ, ε,σ′),m+m′).

The composition of the above composition morphism with ∆ gives this generating function homo-
logy version of the composition morphism:

HZ∗(σ′m′,c)⊗G
(a,b)
∗ (σ,m)→ G

(a+c,b+c)
∗−2d ((σ′, ε,σ),m+m′).

We define the same way composition morphism of absolute homology groups:

HZ∗(σm,t)⊗HZ∗(σ′m′,t′)→ HZ∗−2d((σ, ε,σ′)m+m′,t+t′).

We will denote these maps α⊗ β 7→ α � β so that in symbols

α � β := ∆(α~ β).

Since interpolation isomorphisms commute with inclusion in the total space, the commutativity
of (3.14) implies the commutativity of the analogous square

(3.20)

HZ∗(σm,t)⊗HZ∗(σ′m′,t′)
� //

��

HZ∗−2d((σ, ε,σ′)m+m′,t+t′)

��

H∗+r(CPN )⊗H∗+r′(CPN ′)
pj∗ // H∗+r+r′+2(CPN ′′)

.

This new form of the composition morphism is also associative.
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Corollary 3.17. The following diagram of composition morphisms commutes:

HZ∗(σm,c)⊗HZ∗(σ′m′,c′)⊗G
(a,b)
∗ (σ′′,m′′)

��

// HZ∗(σm,c)⊗G(a+c′,b+c′)
∗−2d ((σ′, ε,σ′′),m′ +m′′)

��

HZ∗−2d((σ, ε,σ′)m+m′,c+c′)⊗G(a,b)
∗ (σ′′,m′′) // G

(a+c+c′,b+c+c′)
∗−4d ((σ, ε,σ′, ε,σ′′),m+m′ +m′′)

.

In symbols, given α ∈ HZ∗(σm,c), β ∈ HZ∗(σ′m′,c′) and γ ∈ G(a,b)
∗ (σ′′,m′′),

(α � β) � γ = α � (β � γ).

Proof. According to Proposition 3.15,

(α � β) � γ = ∆2(∆1(α~ β)~ γ) = ∆2 ◦ ∆̃1((α~ β)~ γ),

where the interpolation isomorphisms are associated with homotopies in the following way:

∆1 ←→ (σm,c, ε,σ′m′,c′) (σ, ε,σ′)m+m′,c+c′ ,

∆̃1 ←→ ((σm,c, ε,σ′m′,c′), ε,σ′′m′′,t) ((σ, ε,σ′)m+m′,c+c′ , ε,σ
′′
m′′,t),

∆2 ←→ ((σ, ε,σ′)m+m′,c+c′ , ε,σ
′′
m′′,t) (σ, ε,σ′, ε,σ′′)m+m′+m′′,c+c′+t.

In the same way,

α � (β � γ) = ∆′2(α~∆′1(β ~ γ)) = ∆′2 ◦ ∆̃′1(α~ (β ~ γ)),

with convenient interpolation isomorphisms ∆′1, ∆̃′1 and ∆′2. According to the associativity of
~ (Proposition 3.10), it is enough to prove that ∆2 ◦ ∆̃1 = ∆′2 ◦ ∆̃′1. These two interpolation
isomorphisms are associated with homotopies that are themselves homotopic through homotopies
preserving the associated family of diffeomorphisms. According to Proposition 3.16, they are thus
equal. �

As a consequence, the following diagram commutes

HZ∗(σ′m′,c)⊗G
(a,b)
∗ (σ,m) � //

id⊗θm+1
m'

��

G
(a+c,b+c)
∗−2d ((σ′, ε,σ),m+m′)

θm+m′+1
m+m′

'
��

HZ∗(σ′m′,c)⊗G
(a,b)
∗ (σ,m+ 1) � // G

(a+c,b+c)
∗−2d ((σ′, ε,σ),m+m′ + 1)

.

It ultimately defines a morphism

HZ∗(σ′m′,c)⊗G
(a,b)
∗ (σ) �−→ G

(a+c,b+c)
∗−2d ((σ′, ε,σ)),

for almost all a, b ∈ R.
By naturality of the composition morphism, given t ≥ 0 and m ∈ N∗, the following diagram

commutes

(3.21)

G
(a,b)
∗ (σ)⊗HZ∗(εm,0) � //

id⊗inc∗
��

G
(a,b)
∗−2d((σ, ε2))

inc∗
��

G
(a,b)
∗ (σ)⊗HZ∗(εm,t)

� // G
(a+t,b+t)
∗−2d ((σ, ε2))

.

5. Properties of the generating function homology

Let σ and σ′ be two different tuples of (hs). We proved that the graded modules G(a,b)
∗ (σ)

and G(a,b)
∗ (σ′) are isomorphic and that there exists a family of isomorphisms compatible with the

inclusion morphism so that it makes sense to define G(a,b)
∗ (hs) as the isomorphism class of these

graded modules. We will keep track of the specific choice of σ in our statements for the sake of
precision.
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5.1. Generating function homology of the identity. Let us first focus on the special
case σ = ε. Let us denote by Tm,t the family of generating functions associated with (εm,t)t.
Since the elementary generating function of δs is u 7→ − tan(πs)‖u‖2, the map Tm,t is a quadratic
form. Since Tm,t is a generating function, its kernel as a quadratic form has dimension 2(d+1). We
had already remarked that Tm,0 is equivalent to −Tm,0 (they both generates the identity) which
implies that indTm,0 = mn0(d + 1) (Proposition 3.2). The variation of index is governed by the
Maslov index of (e−2iπt) so that

indTm,t − indTm,0 = 2(d+ 1)btc, ∀t ∈ (−m− 1,m+ 1) \ Z

(See Proposition 1.1). Therefore, there exists an increasing sequence of complex projective sub-
spaces Pm,−m ⊂ Pm,−m+1 ⊂ · · · ⊂ Pm,m such that Pm,k ' CP(d+1)(k+mn0/2) and Z(εm,t)
retracts on Pm,btc inducing an equivalence between the persistence modules (H∗(Pm,btc)) and
(H∗(Z(εm,t))), −m− 1 < t < m+ 1. Thus, as a graded R-module,

HZ∗(εm,t) =
d+(d+1)btc⊕

k=−(d+1)mn0/2

Ra
(mn0+1)
k (t),

where a(mn0+1)
k (t) is the generator of degree 2k identified with the class [CPl] of appropriate degree

2l = 2k+(d+1)mn0 under the isomorphism induced by Pm,btc ↪→ Z(εm,t). The inclusion morphism
HZ∗(εm,t) → HZ∗(εm,s) maps each a

(mn0+1)
k (t) to a(mn0+1)

k (s) (for −m − 1 < t ≤ s < m + 1).
Hence,

G
(a,b)
∗ (ε,m) =

d+(d+1)bbc⊕
k=d+(d+1)bac

Rα
(m)
k (a, b),

for −m − 1 < a ≤ b < m + 1, where α(m)
k (a, b) is the image of a(mn0+1)

k (b) under the inclu-
sion morphism HZ∗(εm,b) → G

(a,b)
∗ (ε,m). According to the commutativity of (3.17), one has

θm+1
m α

(m)
k (a, b) = α

(m+1)
k (a, b). We set αk(a, b) := θ∞mα

(m)
k (a, b). For a < b < c, if αk(b, c) is

well-defined, then αk(a, c) is also well-defined and sent to the former. We deduce that there exists
a well-defined αk(−∞, c) ∈ G

(−∞,c)
2k (ε) sent to αk(a, c) for all a ≤ c. Let αk be the image of

αk(−∞, c) under G(−∞,c)
2k (ε)→ G

(−∞,+∞)
2k (ε). Finally,

G
(−∞,+∞)
∗ (ε) =

⊕
k∈Z

Rαk,

we will show in Theorem 3.22 that this is also the case for any σ.

5.2. “Periodicity” of the generating function homology. In order to show the “period-
icity” of the persistence module of σ, let us define a natural isomorphism

(3.22) q : G(a,b)
∗ (σ) '−→ G

(a+1,b+1)
∗+2(d+1) (σ).

In order to simplify the exposition, let us set ad := a
(mn0+1)
d (0) ∈ HZ2d(εm,0) and a2d+1 :=

a
(mn0+1)
2d+1 (1) ∈ HZ2(2d+1)(εm,1). According to Proposition 3.11, the morphism G

(a+1,b+1)
∗ (σ) →

G
(a+1,b+1)
∗ ((ε2,σ)), α 7→ ad �α, is an isomorphism; let us write α 7→ a−1

d �α its inverse morphism.
We define the morphism q by α 7→ a−1

d � a2d+1 � α.

Proposition 3.18. The morphism q is an isomorphism commuting with inclusion and bound-
ary morphisms.

Proof. The naturality of this morphism comes from the naturality of α 7→ ad � α and
α 7→ a2d+1 � α. It remains to prove that α 7→ a2d+1 � α is an isomorphism. Let us set a−1 :=
a

(mn0+1)
−1 (−1) ∈ HZ−2(εm,−1). According to the commutativity of (3.20), a2d+1 � a−1 = a−1 �
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a2d+1 = ad where ad is identified with a(2mn0+3)
d (0). Thus, the following diagram commutes

G
(a,b)
∗ (σ)

a2d+1�·
//

ad�·
'

))

G
(a+1,b+1)
∗+2(d+1) ((ε2,σ))

a−1�·
��

ad�·
'

**

G
(a,b)
∗ ((ε4,σ))

a2d+1�·
// G

(a+1,b+1)
∗+2(d+1) ((ε6,σ))

so every arrow in it is an isomorphism. �

We remark that this morphism commutes by definition with the isomorphism G
(a,b)
∗ (σ,m)→

G
(a+1,b+1)
∗+2(d+1) (σ,m) defined by the same formula, as long as (a, b+ 1) ⊂ Im. We still denote it q. We

recall that the powers of the oriented generator u of H2(CP∞) acts naturally on G(a,b)
∗ (σ,m) by

cap-product since Z(σm,b) ⊂ CP∞. The action of u on the G(a,b)
∗ (σ,m)’s by cap-product then

extends easily on the G(a,b)
∗ (σ)’s for a, b ∈ R by taking direct (and projective if b = +∞) limits.

Proposition 3.19. Let m ∈ N and a < b such that (a, b + 1) ⊂ Im and let us assume that
σ = (ε2,σ′), the following diagram commutes:

G
(a,b)
∗ (σ,m) q

'
//

''

G
(a+1,b+1)
∗+2(d+1) (σ,m)

·_ud+1

��

G
(a+1,b+1)
∗ (σ,m)

.

where the top arrow is the isomorphism α 7→ a−1
d �a2d+1 �α and the diagonal arrow is the inclusion

morphism. By taking the limit as m tends to ∞, we thus have for a < b in R the commutative
diagram

G
(a,b)
∗ (σ) q

'
//

&&

G
(a+1,b+1)
∗+2(d+1) (σ)

·_ud+1

��

G
(a+1,b+1)
∗ (σ)

.

Proof. For all α ∈ G(a,b)
∗ (σ,m), one has

a−1
d � a2d+1 � α = a−1

d ~ (∆′−1∆(a2d+1 ~ α)),

where

∆ ←→ (εm,1, ε,σm,t) (ε2,σ′)2m,t+1,

∆′ ←→ (εm,0, ε,σm,t+1) (ε2,σ′)2m,t+1.

Let ∆′′ be the interpolation isomorphism associated with s 7→ (εm,1−s, ε,σm,t+s). By producing
a homotopy between the interpolation associated with ∆′−1∆ and this last interpolation, we see
that ∆′′ = ∆′−1∆ (Proposition 3.16), so that

a−1
d � a2d+1 � α = a−1

d ~ (∆′′(a2d+1 ~ α)), ∀α ∈ G(a,b)
∗ (σ,m).

In order to simplify the expressions, we set with abuse of notation

HZ∗(ε1−j , ε,σt+j) := HZ∗((εm,1−j , ε,σm,b+j), (εm,1−j , ε,σm,a+j))

G
(a+j,b+j)
∗ (σ) := G

(a+j,b+j)
∗ (σ,m),

for j ∈ {0, 1}. The simplified notation ad is too abusive here and we will distinguish ad(0) :=
a

(mn0+1)
d (0) ∈ HZ2d(εm,0) from ad(1) := a

(mn0+1)
d (1) ∈ HZ2d(εm,1). According to Section 5.1,

ad(1) is the image of ad(0) under the inclusion morphism.
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In order to prove the result, we will show that the following diagram commutes:
(3.23)

G
(a,b)
∗ (σ)

a2d+1

'
((

ad(1)

��

q

'
//

//

G
(a+1,b+1)
∗+2(d+1) (σ)

ad(0)
'

uu

·_ud+1

��

HZ∗+2(d+1)(ε1, ε,σt)
∆′′

'
//

·_ud+1

��

HZ∗+2(d+1)(ε0, ε,σt+1)

·_ud+1

��

HZ∗(ε1, ε,σt)
∆′′

'
// HZ∗(ε0, ε,σt+1)

G
(a+1,b+1)
∗ (σ)

ad(0)
'

ii

,

where arrows marked ad(0), ad(1) and a2d+1 correspond respectively to morphisms α 7→ ad(0)~α
etc. Indeed, objects and arrows that bound this diagram represent the diagram we want to prove
the commutativity of.

Our first computation proves that the top trapezoid commutes.
The commutativity of the left (and only) triangle is a direct consequence of the commutativity

of (2.7), the definition of ~ and the fact that B∗u = u for any composition map B = Bm,n (defined
in the beginning of Section 4.4). The relation B∗u = u comes from the fact that B is a C-projective
map.

The commutativity of the middle square is a consequence of the compatibility of inclusion
morphisms (that define ∆′′) with respect to the cap-product.

The commutativity of the right trapezoid is a consequence of Corollary 2.10 and the definition
of ~. In order to apply Corollary 2.10, one must show that the set

A :=
(
Z(εm,1, ε,σm,b), Z(εm,1, ε,σm,a)

)
is homotopy equivalent to a projective stabilization B ∗ CPd through projective maps. Since
σ = (ε2,σ′) by hypothesis,

A
f←−
{
Q̂3(0, ·) ≤ 0

}
∗B,

where f is the projective map induced by the automorphism (3.16) for n′ = 1 up to a transposition
of coordinates. According to the paragraph following (3.16), f induced an isomorphism in homology
and B ∗ {Q̂3(0, ·) ≤ 0} retracts on B ∗ P where P is a CPd. Therefore, the inclusion of B ∗ P
composed with f gives a continuous map satisfying the hypothesis of Corollary 2.10.

Let us show that the bottom “square” commutes, that is composition of inclusion with ad(0) is
the same as the composition of ad(1) with ∆′′. Let us consider the following commutative diagram:

HZ∗(ε1, ε,σt)
∆′′

'
//

'

((

HZ∗(ε0, ε,σt+1)

'
vv

H∗+i0(E)

HZ∗(ε0, ε,σt)

aa

OO

<<

,

where
E :=

⋃
s∈[0,1]

s×
(
Z(εm,1−s, ε, εm,b+s), Z(εm,1−s, ε, εm,a+s)

)
,

and unlabelled arrow are inclusion morphisms. This diagram commutes by naturality of inclusion
map and by definition of ∆′′ (i.e. the commutativity of the top triangle). Let α ∈ G(a,b)

∗ (σ). We
must show that the element ad(1) ~ α in the top-left object is sent to ad(0) ~ α under ∆′′. By
naturality of the homology join (2.6) and by definition of ~, since ad(1) is the image of ad(0) under
the inclusion morphism, ad(1) ~ α is the image of ad(0) ~ α under the inclusion map that is the
arrow from the bottom to the top-left. It is then a consequence of the commutativity. �
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In the sequel, we will always assume without loss of generality that our σ’s have the form
(ε2,σ′).

Corollary 3.20. For a < b in R that are not action values, the following diagram commutes:

G
(a,b)
∗ (σ)

''

·_ud+1

��

G
(a,b)
∗−2(d+1)(σ) q

'
// G

(a+1,b+1)
∗ (σ)

,

which also implies the commutativity of the following square:

G
(a,b)
∗ (σ) q

'
//

·_ud+1

��

G
(a+1,b+1)
∗+2(d+1) (σ)

·_ud+1

��

G
(a,b)
∗−2(d+1)(σ) q

'
// G

(a+1,b+1)
∗ (σ)

.

These results are also true without taking limits as long as every map is well-defined.
Proof. In the same spirit as for the proof of Lemma 2.9, the commutativity of the triangle

is due to Proposition 3.19 and the naturality of the isomorphism q with respect to inclusion
morphisms. �

Let us recall that α 7→ ad ~ α is compatible with the decomposition in local homologies
(3.11) (see the argument surrounding (3.19)) and so is α 7→ a2d+1 ~ α by the same argument.
According to the compatibility of the interpolation isomorphism (Proposition 3.14), it follows
that the isomorphism q is also compatible. That is: if there is finitely many capped fixed points
z̄1, . . . , z̄n with action value t, the following diagram commutes for all sufficiently small ε > 0:⊕

j C∗(σ; z̄j ,m) ' //

⊕jqj'
��

G
(t−ε,t+ε)
∗ (σ,m)

q'
��⊕

j C∗+2(d+1)(σ; z̄j#A0,m) ' // G
(t+1−ε,t+1+ε)
∗+2(d+1) (σ,m)

,

where the horizontal arrows are natural isomorphisms (3.11) and z̄j#A0 denote the recapping of
z̄j by the generator A0 of π2(CPd) such that −〈ω,A0〉 = π, that is the capping of zj with action
t+ 1.

The above last propositions informally implies, that for an isolated capped fixed point z̄,
“C∗(σ; z̄#A0) _ ud+1 = C∗−2(d+1)(σ; z̄)”.

This statement is rather informal since the two local homologies are not subgroups of the same
group. However, if these groups “persist” in a common action window, a clear relation can be
stated. Let us assume that a(z̄) = 0 and let z̄1 := z̄#A0 in order to simplify the notation. The
decomposition in local homologies (3.11) gives us a natural injective morphism C∗(z̄) ↪→ G

(−ε,ε)
∗ (σ).

We assume that the composition of this injection with the inclusion morphism gives an injection
C∗(z̄) ↪→ G

(−ε,1+ε)
∗ (σ); we say that the local homology C∗(z̄) “persists in the action window

(−ε, 1 + ε)”. Moreover, we assume that there exists a graded subgroup Γ∗ of G(−ε,1+ε)
∗ (σ) whose

image under the inclusion morphism in the window (1 − ε, 1 + ε) is C∗(z̄1); we also say that the
local homology C∗(z̄1) “persists in the action window (−ε, 1 + ε) as Γ∗”. The last propositions
together with the compatibility with the decomposition in local homologies imply the following
proposition.

Proposition 3.21. Let i∗ : G(−ε,ε)
∗ (σ) → G

(−ε,1+ε)
∗ (σ) denote the inclusion morphism. Let

us assume that both the isolated capped fixed point z̄ with action 0 and z̄#A0 persist in the action
window (−ε, 1 + ε) as the subgroups i∗C∗(z̄) and Γ∗ respectively. Then,

Γ∗ _ ud+1 = i∗C∗−2(d+1)(σ; z̄).
This is also true without taking limits (with m ≥ 1).
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We will use this fact in the proof of Ginzburg-Gürel theorems. Since this proof will be using
the cohomology groups rather than the homology groups, let us explicitly write the dual equality:

ud+1 ^ Γ∗ = i∗C∗+2(d+1)(σ; z̄#A0),
where Γ∗ is a subgroup of G∗(−ε,1+ε)(σ) whose image under the inclusion morphism in the window
(−ε, ε) is C∗(z̄) whereas i∗ is the inclusion morphism G∗(1−ε,1+ε)(σ) → G∗(−ε,1+ε)(σ). This dual
analogue can be seen as a consequence of Proposition 3.21 and Poincaré duality stated below in
Proposition 3.25.

5.3. Spectral invariants.

Theorem 3.22. Let σ be a tuple of small C-equivariant Hamiltonian diffeomorphisms associ-
ated with the Hamiltonian diffeomorphism ϕ of CPd. As a graded R-module,

G
(−∞,+∞)
∗ (σ) =

⊕
k∈Z

Rαk

for some non-zero αk’s with degαk = 2k and αk+1 _ u = αk for all k ∈ Z. For all k ∈ Z, let

ck(σ) := inf
{
t ∈ R | αk ∈ im

(
G

(−∞,t)
∗ (σ)→ G

(−∞,+∞)
∗ (σ)

)}
.

Then for all k ∈ Z, ck(σ) ∈ R is an action value of σ and ck+d+1(σ) = ck(σ) + 1. Moreover
ck(σ) ≤ ck+1(σ)

for all k ∈ Z, and if there exists k ∈ Z such that ck(σ) = ck+1(σ), then ϕ has infinitely many fixed
points with action ck(σ). If d+ 1 consecutive ck(σ)’s are equal then ϕ = id.

We will call the classes αk associated with σ the spectral classes of σ and the action values
ck(σ), the spectral values of σ.

Corollary 3.23 (Fortune-Weinstein theorem). Every Hamiltonian diffeomorphism of CPd
has at least d+ 1 fixed points.

Proof of Corollary 3.23. According to the end of Theorem 3.22, one sees that a Hamilto-
nian diffeomorphism ϕ of CPd with finitely many fixed points must have spectral values ck(σ) that
are all distinct. Since ck+d+1(σ) = ck(σ) + 1, it implies that ϕ has at least d + 1 action values
modulo Z. �

The following proposition is contained in the proof of Theorem 3.22. It makes precise the fact
that one could informally think of αk as “the class [CPk+∞] ∈ H2(k+∞)(CP2∞)”.

Proposition 3.24. Let σ be an n1-tuple of small C-equivariant Hamiltonian diffeomorphisms
and let k ∈ Z. Let m ∈ N, K ∈ R and t ∈ R such that −m − 1 < −K < ck(σ) < t < m + 1.
We set r := (n1 + mn0 − 1)(d + 1) and N := (n1 + mn0)(d + 1) − 1. Let α′k ∈ G

(−∞,t)
2k (σ) be

a class sent to αk under the inclusion morphism G
(−∞,t)
∗ (σ) → G

(−∞,+∞)
∗ (σ). Then the image

α′′k ∈ G
(−K,t)
2k (σ) under the inclusion morphism is non-zero and there exists b′k ∈ G

(−K,t)
2k (σ,m)

such that θ∞m (b′k) = α′′k. The class b′k is the image of a class bk ∈ HZ2k(σm,t) that is sent to
[CPk+r/2] ∈ H2k+r(CPN ) under the morphism induced by inclusion Z(σm,t) ↪→ CPN .

Proof of Theorem 3.22. In Section 5.1, we have proved the theorem for σ = ε; hence for
σ = εn for all odd n ∈ N. Let us show that the persistence module of any n-tuple σ and the
persistence module of εn are δ-interleaved for some δ > 0.

Let σ be an n-tuple and let us denote f1, . . . , fn : Cd+1 → R the elementary generating
functions of σ1, . . . , σn respectively. For all ζ ∈ (Cd+1)n+mn0 , one has∣∣∣F̂σm,t(ζ)− F̂(εn)m,t(ζ)

∣∣∣ ≤M(σ) := max
z1,...,zn∈B

∣∣f1(z1) + · · ·+ fn(zn)
∣∣,

where B ⊂ Cd+1 denotes the closed unit ball. It follows that the inclusion maps induce a
natural (i.e. that commutes with inclusions and the direct system) M(σ)-interleaving between
G

(−K,t)
∗ (σ,m) and G

(−K,t)
∗ (εn,m) with K ∈ (−m, 1 − m) fixed and almost every t ∈ (−K,m).

These natural interleavings induced a M(σ)-interleaving between G
(−∞,t)
∗ (σ) and G

(−∞,t)
∗ (εn).

The fact that G(−∞,+∞)
∗ (σ) is isomorphic as a graded R-module to G(−∞,+∞)

∗ (εn) is now a direct
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consequence of the existence of an interleaving between their associated persistence modules. The
characterisation of ck(σ) and αk given by Proposition 3.24 is true for σ = εn by the above discus-
sion. Since the M(σ)-interleaving is induced by inclusion, Proposition 3.24 is still true for σ that
is “αk corresponds to [CPN(m)+k]” seen in G(a,b)

∗ (σ,m) for m, −a and b large enough. It is easy
to see that αk+1 _ u = αk in the case σ = ε. Indeed,

α
(m+1)
k+1 (−m− ε,m+ ε) _ u = α

(m+1)
k (−m− ε,m+ ε)

for a small ε > 0, m ∈ N∗ and k in between d −m(d + 1) + 1 and d + m(d + 1) since [CPl+1] _
u = [CPl]. The conclusion for all σ then follows from the M(σ)-interleaving.

The fact that ck+d+1(σ) = ck(σ) + 1 is a direct consequence of Proposition 3.18 applied to
a = −∞ and b = ck(σ) + ε for ε > 0. The last statements of the Theorem 3.22 are consequences of
the Lyusternik-Schnirelmann theory, as one can see that G(a,b)

∗ (σ,m) is naturally isomorphic to the
relative homology of sublevel sets of one single map according to Lemma 3.5 and αk+1 _ u = αk
for all k ∈ Z. �

The dual statement holds for the generating function cohomology groups with the additional
structure of R-algebra induced by the cup-product: the R-algebra G∗(−∞,+∞)(σ) is generated by
a class e of degree 2 that is invertible, of infinite order and satisfies eu = e2:

G∗(−∞,+∞)(σ) =
⊕
k∈Z

Rek.

Informally one could think of ek as “the class uk+∞ ∈ H2(k+∞)(CP2∞)”. Therefore, one can define
alternatively the spectral values ck(σ) by

ck(σ) = inf
{
t ∈ R | ek 6∈ ker

(
G∗(−∞,+∞)(σ)→ G∗(−∞,t)(σ)

)}
.

Given an n-tuple σ = (σ1, . . . , σn), we denote by σ−1 the n-tuple (σ−1
n , . . . , σ−1

1 ). We recall
that if f : Cd+1 → R is an elementary generating function of σ then −f is an elementary generating
function of σ−1. Therefore, one has

(3.24) Fσ−1(v1, v2, . . . , vn) = −Fσ(v1, vn, vn−1, . . . , v2)

(this identity has already been stated in the special case σ = εn in Proposition 3.2).
Given an n-tuple σ and an m-tuple σ′, one has

(3.25) F(σ,σ′)(v,v′) = F(σ′,σ)(v′,v), ∀v ∈ (Cd+1)n,∀v′ ∈ (Cd+1)m.

Proposition 3.25 (Poincaré duality). Let σ be a tuple of small C-equivariant Hamiltonian
diffeomorphisms of Cn+1. There exists a duality isomorphism between generating function homo-
logy and cohomology

PD : G∗(a,b)(σ) '−→ G
(−b,−a)
d−∗ (σ−1),

with −∞ ≤ a ≤ b ≤ +∞ and a, b not action values. This isomorphism is natural: it commutes
with inclusion, boundary maps and the action by u (that is PD(v ^ u) = PD(v) _ u).

Proof. Let us recall a version of the classical Poincaré duality (see for instance [50, The-
orem 3.43]). Let M be a compact R-orientable n-dimensional manifold whose boundary ∂M is
the union of two disjoint manifolds A and B. Then the cap-product with the fundamental class
[M ] ∈ Hn(M,∂M) gives a natural isomorphism H∗(M,A)→ Hn−∗(M,B). This general statement
can be applied to sublevel sets of a C1 map of a closed R-orientable n-manifold f : W → R in the
following way. Let a < b be regular values of f so that A := {f = a} and B := {f = b} are the
disjoint pieces of the boundary of the compact R-orientable n-manifold M := {a ≤ f ≤ b}. Now,
by excision (which can be used because the boundary of M admits a collar neighborhood)

H∗(M,A) ' H∗
(
{f ≤ b}, {f ≤ a}

)
and H∗(M,B) ' H∗

(
{−f ≤ −a}, {−f ≤ −b}

)
.

Finally, one has the duality isomorphism

PD : H∗
(
{f ≤ b}, {f ≤ a}

) '−→ Hn−∗
(
{−f ≤ −a}, {−f ≤ −b}

)
.
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Let us apply the same idea in W := CPN with N := (n+mn0)(d+ 1)− 1:

G∗(a,b)(σ,m) = H(n+mn0−1)(d+1)+∗
({
F̂σm,b ≤ 0

}
,
{
F̂σm,a ≤ 0

})
' H2N−((n+mn0−1)(d+1)+∗)

({
F̂σm,a ≥ 0

}
,
{
F̂σm,b ≥ 0

})
,

where we have used that 0 is not a critical value of either F̂σm,a or F̂σm,b . This last homology
group is isomorphic to

H(n+mn0−1)(d+1)+(2d−∗)

({
F̂(σ−1)m,−a ≤ 0

}
,
{
F̂(σ−1)m,−b ≤ 0

})
= G

(−b,−a)
2d−∗ (σ−1,m).

Indeed, according to identity (3.24), this homology group is naturally isomorphic to the homo-
logy group of a pair of sublevel sets of functions −F̂(σm,t)−1 . The conclusion follows by applying
Proposition 3.13 to an interpolation from (σm,t)−1 to (σ−1)m,−t.

Let us precise the interpolation argument. One has (σm,t)−1 = ((δ(m)
t )−1,σ−1). According to

(3.25), the sublevel set induced by this tuple is homeomorphic to the one induced by (σ−1, (δ(m)
t )−1)

so it is enough to find an interpolation from (δ(m)
t )−1 to δ(m)

−t . By definition,

(δ(m)
t )−1 = (εqn0 , δ−1

s , δ−1
1 , . . . , δ−1

1 )

with s = t− btc. We remark that δ−1
t = δ−t. It is then easy to find the wanted homotopy among

tuples of the form (δt1 , δt2 , . . .) with t1 + t2 + · · · = −t. �

Using both equivalent definitions of the spectral values ck(σ), the Poincaré duality implies the
following identity.

Corollary 3.26. Let σ be a tuple of small C-equivariant Hamiltonian diffeomorphisms, then

ck(σ−1) = −cd−k(σ), ∀k ∈ Z.

Finally, let us apply the composition morphisms to spectral classes in order to prove the
sub-additivity of the spectral values.

Proposition 3.27. Let m,m′ ∈ N and k, l ∈ Z be such that ck(σ) ∈ Im and cl(σ′) ∈ Im′ and
let t ∈ (ck(σ),m) and t′ ∈ (cl(σ′),m′). Let bk ∈ HZ2k(σm,t) and b′l ∈ HZ2l(σ′m′,t′) be classes
associated with the respective spectral classes αk and α′l in the way expressed in Proposition 3.24.
Then the composition morphism

HZ∗(σm,t)⊗HZ∗(σ′m′,t′)→ HZ∗−2d((σ, ε,σ′)m+m′,t+t′)

maps the class bk ⊗ b′l to a class b′′k+l−d that is sent to the [CPr] ∈ H∗(CPN ) of appropriate degree
under the inclusion morphism.

Proof. This is a direct consequence of the commutativity of (3.20). �

Corollary 3.28. Given any tuples σ and σ′ of small C-equivariant Hamiltonian diffeomorph-
isms, one has

ck+l−d((σ, ε,σ′)) ≤ ck(σ) + cl(σ′), ∀k, l ∈ Z.

5.4. Barcodes of the generating function homology groups. As explained in Section 1,
we can now associate to every σ a persistence module (G(−∞,t)

∗ (σ))t that satisfies the “periodicity”
property G

(−∞,t+1)
∗ (σ) ' G

(−∞,t)
∗+2(d+1)(σ), the isomorphism being an isomorphism of persistence

modules according to the naturality of (3.22). While discussing barcodes properties, we assume
that the persistence module is over a field. Since this periodicity property shifts the degree by a
constant positive integer 2(d + 1), it induces a permutation of the bars of the barcode sending a
bar (a, b) on a bar (a + 1, b + 1) that generates a free Z-action on the bars (in order to simplify
notation, we write (a, b) for the finite bar (a, b]). A family of representatives of the bars is given by
the union of the barcodes of (G(−∞,t)

k (σ))t for 0 ≤ k ≤ 2d+ 1. For instance, Figure 2 represents a
part of the barcode of some σ associated with a Hamiltonian diffeomorphism of CP1. This barcode
has 2 Z-orbits of finite bars and d + 1 = 2 Z-orbits of infinite bars corresponding to the spectral
values c1 + Z and c2 + Z where ck := ck(σ).
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c5 c6

persistence classes

t

α1

α2

...

k k + 1

α6

c3 c4c1 c2

Figure 2. Barcode of a Hamiltonian diffeomorphism of CP1 in the neighborhood
of [k, k + 1] for some k ∈ Z (bars of degree less than 2 are missing).

Lemma 3.29. Let σ be a tuple of C-equivariant Hamiltonian diffeomorphisms of Cn+1 with a
finite number of fixed C-lines. For every coefficient field F and a < b that are not action values of
σ, the number of bars of the barcode of σ over the field F that intersect t = a or t = b but not both
is equal to dimG

(a,b)
∗ (σ;F).

Proof. Let us consider the long exact sequence

(3.26) · · · ∂∗+1−−−→ G
(−∞,a)
∗ (σ;F)→ G

(−∞,b)
∗ (σ;F)→ G

(a,b)
∗ (σ;F)

∂∗−→ G
(−∞,a)
∗−1 (σ;F)→ G

(−∞,b)
∗−1 (σ;F)→ · · · .

Applying the normal form theorem of persistence modules, one can find bases ((αi), (δ−j )) and
((βk), (δ+

j )) of the F-vector spaces G(−∞,a)
∗ (σ;F) and G(−∞,b)

∗ (σ;F) that are in a canonical bijection
with bars of the barcode intersecting t = a and t = b respectively, δ−j and δ+

j being associated
with the same bar for each j while the bars associated with the αi’s do not intersect t = b and the
bars associated with the βk’s do not intersect t = a (see Figure 3). In other words, the following
diagram commutes

G
(−∞,a)
∗ (σ;F) =

⊕
i Fαi ⊕

⊕
j Fδ

−
j

��

'
��

G
(−∞,b)
∗ (σ;F) =

⊕
j Fδ

+
j ⊕

⊕
k Fβk

,

where the left arrow is the inclusion morphism and the right arrow sends δ−j to δ+
j for all j. Let

us recall that, according to the finiteness assumption on the number of fixed points, the number
of αi’s and βk’s is finite (here a and b are finite). With the above diagram, one can extract a short
exact sequence of finite dimensional vector spaces from the long exact sequence (3.26)

0→
⊕
k

Fβk → G
(a,b)
∗ (σ;F)→

⊕
i

Fαi → 0.

Hence the result. �

Proposition 3.30. Given a tuple σ of C-equivariant Hamiltonian diffeomorphisms with a
finite number of fixed C-lines, for every field F,

N(σ;F) = d+ 1 + 2K(σ;F),
where K(σ;F) is the number of Z-orbits of finite bars of the persistence module of σ over the field
F. In other words, N(σ;F) is the number of (finite) extremities of a set of representative bars.



5. PROPERTIES OF THE GENERATING FUNCTION HOMOLOGY 65

a b

βk

δ−j δ+
j

α1

α2

α3

Figure 3. Relationship between the barcode of σ in the interval (a, b) and its
persistence module (there are infinitely many bars that does not appear in the
figure). The value dimG

(a,b)
∗ (σ;F) gives the number of αi’s and βk’s.

Proof. According to the Z-symmetry of the barcode, it boils down to proving that the num-
bers of extremities of the barcode lying inside [0, 1) is equal to N(σ;F). Let 0 ≤ t1 < t2 < · · · <
tn < 1 be the action values of σ in [0, 1), that is the points where extremities of the barcode
could appear. Let t±j := tj ± ε where ε > 0 is strictly less than the minimum distance between
two action values so that tj is the only action value inside [t−j , t

+
j ]. According to Lemma 3.29,

dimG
(t−
j
,t+
j

)
∗ (σ;F) equals the number of extremities at t = tj . Therefore, we just have to prove

that

N(σ;F) =
n∑
j=1

dimG
(t−
j
,t+
j

)
∗ (σ;F).

Let us denote by ϕ the Hamiltonian diffeomorphism associated with σ. Since tj is the only
action value in [t−j , t

+
j ], by (3.11)

G
(t−
j
,t+
j

)
∗ (σ) '

⊕
z

C∗(σ; z, tj),

where the direct sum is over the fixed points z ∈ CPd of ϕ with action value tj . By taking these
isomorphisms over the field F for all j, the conclusion follows. �





CHAPTER 4

Two theorems of Ginzburg and Gürel

1. Statements of the theorems

A compact invariant set K ⊂ CPd of a homeomorphism ϕ is said to be isolated if there exists
a neighborhood U of K such that, for all p ∈ U \ K, ϕk(p) 6∈ U for some k ∈ Z. A fixed point
of a Hamiltonian diffeomorphism is said to be homologically visible if its local Floer homology is
non-trivial. The purpose of this chapter is to provide an elementary proof of the following theorem
of Ginzburg-Gürel [42]:

Theorem 4.1. Every Hamiltonian diffeomorphism ϕ of CPd has infinitely many periodic points
provided it has a fixed point that is homologically visible for all iterates ϕk, k ∈ N∗, and isolated
as an invariant set.

As Ginzburg-Gürel already pointed out, Theorem 4.1 has two important corollaries. If x is a
hyperbolic point then it is always isolated as an invariant set and the local cohomology of every
iterate has rank 1.

Corollary 4.2. Every Hamiltonian diffeomorphism of CPd with a hyperbolic fixed point has
infinitely many periodic points.

In fact, this theorem of Ginzburg-Gürel was originally proven in [41] in a more general setting,
including some complex Grassmannians, CPd×P 2k where P is symplectically aspherical and k ≤ d,
monotone products CPd × CPd. We mention that the case of CPd × T2k, when k ≤ d, can be
deduced as well from our techniques.

In the special case of pseudo-rotations, every fixed point arises from a spectral invariant and
thus has a non-trivial local cohomology.

Corollary 4.3. No fixed point of a pseudo-rotation of CPd is isolated as an invariant set.

The original proof of Theorem 4.1 involves a non-trivial estimate on the energy of Floer traject-
ories leaving a periodic orbit called crossing energy theorem by Ginzburg-Gürel [41, Theorem 3.1]
[42, Theorem 6.1] and proved with a Gromov compactness like theorem on J-holomorphic curves
due to Fish [34]. The second ingredient of the original proof is quantum homology, which is
defined by means of Gromov-Witten invariants. Although we closely follow the original argument,
our proof employs only Morse theory and classical algebraic topology.

2. Proof of Theorem 4.1 and its corollaries

In this section, we prove Theorem 4.1, postponing the proof of the crossing energy theorem to
Section 3. We then provide the proofs of Corollaries 4.2 and 4.3 sketched in the introduction.

2.1. Preliminaries. Let ϕ ∈ Ham(CPd) be the time-one map of a Hamiltonian flow (ϕs)
with a fixed point x ∈ CPd which is isolated as an invariant set. Moreover, let (Φs) be a C-
equivariant Hamiltonian flow of Cd+1 lifting (ϕs) and let us suppose that the action value a(x) = 0
(by adding a constant to the Hamiltonian map (hs), see (3.1) for the definition of a) and that the
local cohomology groups of x associated with the iterations of ϕ are all non-zero.

Let us fix a C1-family of n1-tuples (σs) associated with (Φs) with n1 even of the form σs =
(ε,σ′s) (in order to apply Proposition 3.21). We will exclusively work inside the small action
window I := (−ε, 1 + ε) where ε > 0 is small enough. In order to study iterations of ϕ, let us set
for all m ∈ N∗ and t ∈ I

Fmt := F(ε,σm)1,t : CN(m)+1 → R,

67
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Figure 4. Crossing energy theorem

with N(m) = (d+ 1)(n1m+ n0 + 1)− 1. Let Mm be the submanifold of I × CPN(m) defined by

Mm :=
{

(t, [z]) ∈ I × CPN(m) | Fmt (z) = 0
}

and T m : Mm → I be the projection onto the first coordinate. Therefore, according to Lemma 3.5,
for all a ≤ b in I, one has a natural isomorphism

H∗
(
{T m ≤ b}, {T m ≤ a}

)
' G∗−i(m)

(a,b) ((ε,σm), 1),

with i(m) := (n1m+ n0)(d+ 1).
We will prove Theorem 4.1 by contradiction: let us assume that ϕ has only finitely many

periodic points so that T m has only isolated critical points in a finite number for all m ∈ N∗. In
our construction of T m, we take ε < 1/2 so that any fixed point of ϕ have at most 2 associated
critical points. Taking an iteration, we might suppose that any periodic point is a fixed point of
ϕ. For all m ∈ N∗, let (j, ζmj ) ∈ Mm, j ∈ {0, 1}, be the critical points of T m associated with x.
In Section 3, we prove the crossing energy theorem which applies to our point x, isolated as an
invariant set, in the following way:

Theorem 4.4. There exist c∞ > 0, families of open neighborhoods V mj ,Wm
j ⊂Mm of (j, ζmj )

with Wm
j ⊂ V mj which do not intersect Crit(T m) \ (j, ζmj ) and an adapted pseudo-gradient Xm of

T m, such that any flow or reversed-flow line u : R → Mm, u̇ = ±Xm(u), with u(s) 6∈ V mj and
u(t) ∈Wm

j for some m ∈ N∗ and j ∈ {0, 1} satisfies
|T m(u(s))− T m(u(t))| > c∞.

Let c∞ > 0 be given by the above result. Without loss of generality, we suppose that

(4.1) 0 < c∞ <
1

2(d+ 1) .

2.2. Augmented action. We will follow an arithmetic trick due to Ginzburg-Gürel in order
to find a good power m ∈ N∗ so that the actions of the fixed points of ϕm are well distributed with
respect to their indices.

For a fix point y ∈ CPd, let us denote by ym the unique associated capped fixed point of ϕm
that has action a(ym) ∈ [0, 1). With a slight abuse of notation, a(y) ∈ [0, 1) will mean a(y1).
Hence,

a(ym) = ma(y)− bma(y)c.
According to (3.12),

suppC∗((ε,σm); ym) ⊂ [mas(ym),mas(ym) + ν(ym)] ,
so Bott’s iteration inequalities (1.10) imply
(4.2) suppC∗((ε,σm); ym) ⊂ [mas(ym)− d,mas(ym) + d] .
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Lemma 4.5. Let y ∈ CPd be a fixed point of ϕ, then
mas(ym) = mmas(y)− 2(d+ 1)bma(y)c, ∀m ∈ N∗.

Proof. Let y ∈ CPd be fixed by ϕ, ỹ ∈ Cd+1 \ 0 a lift, m ∈ N∗ and k ∈ N∗. In Sp(2(d+ 1)),
the path s 7→ d

(
e−2iπkma(y)sΦkms

)
(ỹ) is homotopic relative to endpoints to the concatenation of

the path s 7→ d
(
e−2iπka(ym)sΦkms

)
(ỹ) and the loop Γ : s 7→ e−2iπkbma(y)cs, thus Proposition 1.1

(1) and (5) imply

mas
(
ỹ,
(
e−2iπkma(y)sΦkms

))
= mas

(
ỹ,
(
e−2iπka(ym)sΦkms

))
+ mas(Γ),

According to Proposition 1.1, mas(Γ) = 2(d+ 1)kbma(y)c, thus, dividing by k and letting k →∞,
we get

mas
(
ỹ,
(
e−2iπma(y)sΦms

))
= mas

(
ỹ,
(
e−2iπa(ym)sΦms

))
+ 2(d+ 1)bma(y)c.

It implies the result according to Proposition 1.2. �

By analogy with Ginzburg-Gürel augmented action, for any fixed point y ∈ CPd we define the
real number

ã(ym) := m

(
a(y)− 1

2(d+ 1) mas(y)
)

= mã(y).

According to Lemma 4.5,
mas(ym)−mas(xm) = m

(
mas(y)−mas(x)

)
− 2(d+ 1)bma(y)c

= 2m(d+ 1)
(
ã(x)− ã(y)

)
+ 2(d+ 1)a(ym).

(4.3)

By Dirichlet’s lemma, one can find m ∈ N∗ such that, for all fixed point y, the fraction part of
each ma(y), which is a(ym), satisfies

a(ym) ∈ [0, c∞) ∪ (1− c∞, 1)
with m taken sufficiently large so that

|ã(y)− ã(x)| = 0 or m|ã(y)− ã(x)| > 3.
Thus Equation (4.3) together with assumption (4.1) implies the following lemma.

Lemma 4.6. With this specific choice of m ∈ N∗, given any fixed point y ∈ CPd, we have:
• |mas(ym)−mas(xm)| ≤ 2d+ 1 implies a(ym) < c∞,
• |mas(ym)− (mas(xm) + 2(d+ 1))| ≤ 2d+ 1 implies a(ym) > 1− c∞.

Given two subsets A,B ⊂ R, we denote the smallest distance among their points by
dist(A,B) := inf {|a− b| | a ∈ A, b ∈ B} ∈ [0,+∞].

Let (xm, j), j ∈ {0, 1}, denote the capped fixed point of ϕm associated with x with action j.
According to the inclusion of support (4.2), Lemma 4.6 implies

Corollary 4.7. With this specific choice of m ∈ N∗, given any capped fixed point ȳ of ϕm of
action t ∈ (−ε, 1 + ε), if

dist
(

suppC∗
(
(ε,σm); ȳ

)
, suppC∗

(
(ε,σm); (xm, j)

))
≤ 1,

then |t− j| < c∞, for j ∈ {0, 1}.

2.3. Subordinated min-max. By taking the m-th iteration of ϕ ∈ CPd, we can suppose
that ϕ satisfies Corollary 4.7 for m = 1 and write T := T m and M := Mm. Let Gt : M → M be
the gradient flow associated with the pseudo-gradient of Theorem 4.4 at time t ∈ R. In order to
simplify notation in this section, given any subset U ⊂M and any b ∈ I, we set U≤b := U∩{T ≤ b}
and U<b := U ∩ {T < b}, whereas we denote by C∗(y) the local cohomology associated with a
critical points y ∈ M . For all critical points y ∈ M , let us define a specific flow-out U(y), that is
an open neighborhood of y which is invariant under Gt for all t ≥ 0. We take a small neighborhood
B of y, then we set

U ′(y) :=
⋃
t≥0

Gt(B),
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let {zj} be the family of critical points in the closure of U ′(y), we then define

U(y) := U ′(y) ∪
⋃
j

U ′(zj).

Let z0 := (0, ζ0) and z1 := (1, ζ1) be the two critical points associated with the fixed point x ∈ CPd.
Applying Theorem 4.4 together with Corollary 4.7, we choose B small enough such that zj ∈ U(y)
implies that
(4.4) dist

(
suppC∗(y), suppC∗(zj)

)
> 1,

and in the case where y = zj , we do the same so that this last equation holds also for critical
points y ∈ U(zj) (we recall that the local cohomologies with respect to T are isomorphic to the
local cohomologies with respect to (ε,σ) up to a shift in degree that is independent on the critical
points, according to Section 3.3). We first prove that the local cohomology C∗(z0) “persists in the
action window [0, 1 + ε)”. Let v0 ∈ C∗(z0) be a non-zero class, which exists by hypothesis.

Lemma 4.8. For all b ∈ [0, 1 + ε), there exists a class v ∈ H∗(M≤b,M<0) such that its image
under the morphism induced by the inclusion H∗(M≤b,M<0)→ H∗(M≤0,M<0) is v0. Moreover,
given one of the above flow-outs U = U(y),

v 6∈ ker
(
H∗(M≤b,M<0)→ H∗(U≤b, U<0)

)
if and only if z0 ∈ U , where the morphism is induced by inclusion.

Proof. According to Morse deformation lemma, if the lemma is true for b and (b, c] ⊂ I does
not contain any critical value, then the lemma is also true for c. Since there is a finite number of
critical values, we can thus prove this lemma inductively on the critical value b ≥ 0. We start with
the case b = 0. As we have seen, by excision C∗(z0) ⊂ H∗(M≤0,M<0) and taking v = v0 under
this injection is enough.

Let us assume that b > 0 is a critical value and that the lemma is true on [0, b). Let (yk) be
the family of critical points of value b and Uk := U(yk) be their associated flows-out. We will work
with the following commutative diagram:

(4.5)

H∗(M≤b,M<b) j∗
//

��

H∗(M≤b,M<0) i∗ //

��

H∗(M<b,M<0)

��

H∗(U≤bk , U<bk )
j∗k // H∗(U≤bk , U<0

k )
i∗k // H∗(U<bk , U<0

k )

where every arrow is induced by inclusion. By Morse deformation lemma the M<b and U<b in the
right hand side of the diagram can be replaced by M≤c and U≤c for some c < b close enough. By
induction, there thus exists v′ ∈ H∗(M<b,M<0) satisfying the lemma (with symbol ≤ b replaced
by < b). Let us first show that v′ is in the image of i∗. According to the long exact sequence of
the triple (M≤b,M<b,M<0), it boils down to showing that ∂∗v′ = 0 where ∂∗ is the coboundary
morphism. By contradiction let us assume that ∂∗v′ 6= 0. By excision, we recall that

H∗(M≤b,M<b) '
⊕
k

C∗(yk),

thus if ∂∗v′ 6= 0 then ∂∗kv′ 6= 0 for some k, where ∂∗k is the composition of the coboundary morphism
with the projection on C∗(yk) with respect to the above direct sum. Identifying H∗(U≤bk , U<bk )
with C∗(yk) by excision, one has the following commutative diagram:

H∗(M<b,M<0) ∂∗ //

��

∂∗k

))

H∗+1(M≤b,M<b)

��

H∗(U<bk , U<0
k ) // C∗+1(yk)

where the vertical arrows are induced by inclusions and the horizontal are coboundary morphisms.
Thus we see that v′ is not in the kernel of the left hand side arrow, so that by induction hypothesis
z0 ∈ Uk. But according to Equation (4.4), if ` is the degree of v′ (which maps to v0 ∈ C`(z0)),
then C`+1(yk) = 0, a contradiction.
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Hence ∂∗v′ = 0 and there exists v′′ ∈ H∗(M≤b,M<0) such that i∗v′′ = v′. This v′′ maps to
v0 as required but does not satisfy the second conclusion of the lemma a priori. We now explain
how to build v in the inverse image of v′. For a fixed k, let v′′k ∈ H∗(U

≤b
k , U<0

k ) be the image of
v′′ under the vertical arrow of (4.5). For v′′ to satisfy the conclusions of the lemma, we need v′′k
to be zero if and only if the image of v′ = i∗v′′ under its vertical arrow is zero. If i∗kv′′k = 0, then
there exists w′k ∈ H∗(U

≤b
k , U<bk ) such that j∗kw′k = v′′k . We recall that the left hand side arrow is

equivalent to the projection ⊕
`

C∗(y`)→ C∗(yk),

let wk ∈ H∗(M≤b,M<b) be then the image of w′k under the inclusion C∗(yk) ⊂ H∗(M≤b,M<b).
We finally set

v := v′′ −
∑
k

j∗(wk) ∈ H∗(M≤b,M<0)

to be the wanted solution.
The conclusion is true for the U = Uk with this choice of v, by construction. Let U be the

flow-out of some critical point. If U does not contain any of the yk, by the Morse deformation
lemma, U≤b retracts on U<b so that the conclusion follows by induction. Otherwise, let (ykq )
be the sub-family of (yk) included in U , so that Ukq ⊂ U by construction of our flows-out. If
z0 ∈ U , then by hypothesis, v′ is not in the kernel of H∗(M<b,M<0) → H∗(U<b, U<0) and,
as i∗v = v′, v is neither in the kernel of H∗(M≤b,M<0) → H∗(U≤b, U<0). Conversely, if v
is not in the above kernel, either v′ is not in the kernel of its restriction to U , in which case
z0 ∈ U by induction, or its image vU ∈ H∗(U≤b, U<0) under the above map has the form j∗UwU
where j∗U : H∗(U≤b, U<b) → H∗(U≤b, U<0). Now by excision H∗(U≤b, U<b) is isomorphic to the
direct sum of the H∗(U≤bkq , U

<b
kq

)’s. Thus, there is a kq such that wU projects on wkq 6= 0. The
commutativity of the left hand square of (4.5) for k = kq together with the construction of v yields
a contradiction. �

Corollary 4.9. There exists a subgroup G ⊂ H∗(M≤1,M<0) which image under the morph-
ism H∗(M≤1,M<0)→ H∗(M≤0,M<0) is C∗(z0) and such that its image under H∗(M≤1,M<0)→
H∗(U≤1, U<0) is non-zero if and only if z0 ∈ U , where U := U(y) is a flow-out.

Proof. It is enough to take G to be the subgroup of H∗(M≤1,M<0) generated by every v
given by Lemma 4.8 for b = 1 and each v0 ∈ C∗(z0) \ 0. �

By using (4.4) for z1, one can prove dually the following lemma.

Lemma 4.10. The subgroup C∗(z1) ⊂ H∗(M≤1,M<1) trivially intersects the kernel of the
morphism

H∗(M≤1,M<1)→ H∗(U≤1, U<0)
induced by inclusion, where U := U(z1) is the flow-out of z1.

Proof of Theorem 4.1. Let v ∈ H∗(M≤1,M<0) be the class given by Lemma 4.8 for b = 1.
Thus, applying Proposition 3.21 (see also the paragraph just after) to Corollary 4.9, there exists
a class w ∈ C∗(z1) that maps to ud+1v ∈ H∗(M≤1,M<0) (here we have implicitly used the
isomorphism of Lemma 3.5 that naturally commutes with cup-product). Considering the restriction
map H∗(M≤1,M<0)→ H∗(U≤1, U<0), where U := U(z1) is the flow-out of z1, the image of ud+1v
is non-zero by Lemma 4.10, thus the image v′ of v is non-zero. Therefore, Lemma 4.8 implies that
z0 ∈ U(z1). For t ∈ [0, 1], let i∗t be the morphism induced by inclusion

i∗t : H∗(U≤1, U<0)→ H∗(U≤t, U<0),
and, for 0 ≤ k ≤ d+ 1, let τk ∈ [0, 1] be the family of min-max values
(4.6) τk := inf

{
t ≥ 0 | ukv′ 6∈ ker i∗t

}
.

As we have just seen, ud+1v′ 6= 0 so that ukv′ 6= 0 for k ≤ d + 1. Lemma 4.8 implies that
τ0 = 0. By the long exact sequence of the triple (U≤1, U<1, U<0), the image of ud+1v′ under
H∗(U≤1, U<0)→ H∗(U<1, U<0) is zero, thus τd+1 = 1. By Lyusternik-Schnirelmann theory, τ1 is
a critical value of T |U and τ0 < τ1 < τd+1 since T has a finite number of critical values (we recall
that d ≥ 1). Let (yj) be the family of critical points of value τ1 in U . According to Theorem 4.4, if
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the flow-out U has been taken small enough, τ1 ≤ 1− c∞, thus τ1 < c∞ since there are no critical
points with value in [c∞, 1− c∞]. Since H∗(U≤τ1 , U<τ1) decomposes in the direct sum of the local
cohomologies of the yj ’s, we find by similar arguments as before that there exists a j such that
the image of uv′ on H∗(U≤τ1

j , U<0
j ) is non-zero. For this j, the image of v′ under the same map

is thus also non-zero, hence z0 ∈ Uj by Lemma 4.8. But according to Theorem 4.4, for Uj taken
small enough in our proofs, one must have τ1 ≥ c∞, a contradiction. �

2.4. Corollaries.

Proof of Corollary 4.2. Let x ∈ CPd be a hyperbolic fixed point of ϕ ∈ Ham(CPd) and
Φ ∈ HamC(Cd+1) be a lift of ϕ. According to Theorem 4.1, it is enough to prove that the local
cohomology group C∗((ε,σk);x) is non zero for all iteration k ∈ N∗. In Section 3.3, we have seen
that C∗((ε,σk);x) and C∗(F̂t(xk); ζk) are isomorphic up to a shift in degree, where ζk ∈ CPN(k)

is the critical point of the map F̂t(xk) : CPN(k) → R induced by the generating function Ft(xk) of
e−2iπt(xk)Φ ∈ HamC(Cd+1). Since x is hyperbolic, dim ker(dϕ(x)k − id) = 0 for all k ∈ N∗, thus
d2F̂t(xk) is non-degenerate according to (3.7) and C∗((ε,σk);x) has rank 1. �

Proof of Corollary 4.3. According to Theorem 4.1, it is enough to prove that the local
cohomology groups of each the d+ 1 fixed points of any pseudo-rotation of CPd are non-zero. This
is a direct consequence of Theorem 3.22. Indeed, since a pseudo-rotation has finitely many fixed
points, its spectral values ck are all distinct. Since ck+d+1 = ck + 1, there are exactly d+ 1 distinct
spectral values in the action window [0, 1). By definition of the action value ck as min-max, there
are at least one homologically visible capped fixed point with action ck for all k ∈ Z. �

3. Ginzburg-Gürel crossing Theorem for generating functions

In this section, we prove the analogue of Ginzburg-Gürel crossing theorem for generating
functions. Since the proof in CPd is essentially the same as the one in Cd with some technical
changes which could make it less transparent to the reader, we first provide the argument for Cd,
even though the Cd setting will not be employed here.

3.1. Crossing energy theorem in Cd. If σ := (σ, . . . , σ) is a tuple of even size associated
with Φ, then σm is a tuple of even size of the iterated diffeomorphism Φm. Given any x ∈ Cd, let
B2d
r (x) := {z ∈ Cd | |z − x| < r} or simply Br(x). We will denote by Am the linear isomorphism

of (Cd)mn+1 defined by Am(v) := w where wk = vk+vk+1
2 . Throughout this section, we will

study the generating functions F(σm,ε) of Φm with a linear change of coordinates: let Fm(w) :=
F(σm,ε) ◦ A−1

m (w). Given a tuple η = (η1, . . . , ηm), x ∈ Cd and a radius r > 0, we denote by
Br(x,η) ⊂ (Cd)m the open set

Br

(
x+ η1(x)

2

)
×Br

(
η1 + η2 ◦ η1(x)

2

)
× · · · ×Br

(
ηm−2 ◦ · · · ◦ η1(x) + ηm−1 ◦ · · · ◦ η1(x)

2

)
,

that is Br(x,η) =
∏
j Br(wj) where the m-tuple w is associated with the discrete trajectory

(x, η1(x), . . . , ηm−1 ◦ · · · ◦ η1(x))

of the discrete dynamics of η.

Lemma 4.11. Let σ := (σ1, . . . , σn) be such an n-tuple and x ∈ Cd be a fixed point of σn◦· · ·◦σ1.
Suppose there exists a sequence (mj)j≥0 such that there exists a sequence (wj)j≥0 with wj ∈
Br(x, (σmj , id)) \Br/2(x, (σmj , id)) satisfying,

(4.7)
∣∣∇Fmj (wj

)∣∣2 =
mjn+1∑
k=1

∣∣∂wkFmj (wj
)∣∣2 j→∞−−−→ 0.

Let (a1, . . . , an) ∈ (Cd)n be such that Br(x,σ) = Br(a1) × · · · × Br(an). Then, there exist a
sequence (zj)j∈Z ∈ (Cd)Z and some integer 1 ≤ q ≤ n such that zj+1 = σj(zj) with

(4.8)
{

zj+σj(zj)
2 ∈ B2d

r (aj mod n) for all j ∈ Z,
zq+σq(zq)

2 6∈ B2d
r/2(aq) or zq = z1 6∈ B2d

r/2(x).
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Let us remark that Proposition 3.1 and (4.7) imply

|zjk − σk−1(zjk−1)| j→∞−−−→ 0 for 1 < k ≤ mjn+ 1 and |zj1 − z
j
mjn+1|

j→∞−−−→ 0,

where zj is the discrete trajectory associated with wj via relations (3.2). Indeed, ∂vkFmj =
1
2 (∂wkFmj + ∂wk−1F

mj ). Thus, the proof essentially consists in an elementary application of the
Cantor’s diagonal argument to ultimately get a discrete trajectory of the dynamics σn ◦ · · · ◦ σ1
whose special property (4.8) comes from the domain of the wj ’s.

Proof. We first prove the case where (mj)j≥0 admits a bounded subsequence for a better
understanding of the general case. Taking an extracted subsequence, we might suppose that
mj ≡ m ∈ N∗. Then by relative compactness, we might suppose that wj → w ∈ Br(x, (σm, ε)) \
Br/2(x, (σm, ε)). Let us define (z′j)1≤j≤mn+1 ∈ (Cd)mn+1 by the relations (3.2) for w. According to
Proposition 3.1, since ∇Fm(w) = 0, one has z′j+1 = σj mod n(z′j) for 1 ≤ j ≤ mn and z′1 = z′mn+1.
Since w 6∈ Br/2(x, (σm, ε)), there is some integer 1 ≤ q′ ≤ mn+ 1 such that wq′ 6∈ B2d

r/2(aq′ mod n)
if q′ 6= mn + 1 or wq′ 6∈ B2d

r/2(x) otherwise. If q′ 6= mn + 1, let k ∈ N be such that kn + 1 ≤ q′ <

(k + 1)n + 1 and let 1 ≤ q ≤ n be the integer q = q′ − kn. The wanted sequence (zj)j∈Z is then
the mn-periodic sequence such that

zj = z′j+kn, −kn+ 1 ≤ j ≤ (m− k)n.
In this case,

zq + σq(zq)
2 = wq′ 6∈ B2d

r/2(aq).

If q′ = mn + 1, then the wanted sequence is the mn-periodic sequence such that zj = z′j for
1 ≤ j ≤ mn with q = 1 and in this case

zq = z1 = wmn+1 6∈ B2d
r/2(x).

Now suppose that (mj)j≥0 admits no bounded infinite subsequence. Taking an extracted
subsequence, we might suppose that (mj) is increasing. For all j ∈ N, let 1 ≤ q′j < mjn + 1 be
such that wjq′

j
6∈ Br/2(aq′

j
mod n) or q′j = mjn+ 1 if such an integer does not exist. Similarly to the

bounded case, we first suppose that we can take an extracted subsequence q′j 6= mjn + 1 for all
j ≥ 0. Let kj ∈ N be such that kjn + 1 ≤ q′j < (kj + 1)n + 1 and let 1 ≤ qj ≤ n be the integer
qj = q′j − kjn. Taking an extracting subsequence, we might suppose qj ≡ q. For all j ≥ 0, let
(w′j) ∈ (Cd)Z be themjn-periodic sequence such that w′jk = wjk+kjn for −kjn+1 ≤ j ≤ (mj−kj)n.

LetM ∈ N∗ and let us consider the sequence (wM,j)j≥0 in (Cd)2M+1 defined by restriction: for
all j ≥ 0, (wM,j

k )−M−1≤k≤M := (w′jk )−M−1≤k≤M . Now, we can extract a subsequence jMp → ∞,
such that (wM,jMp )p converges. Since ∂wk+kjn

Fmj (wj)→ 0 for all −M−1 ≤ k ≤M , the associated
(2M + 1)-tuple (zj)−M≤j≤M , now satisfies zj+1 = σj(zj) for −M ≤ j ≤ M − 1. By a diagonal
extraction associated with subsequences (jMp )p asM goes to infinity, we extend our (2M+1)-tuples
(zj) to a sequence in Z with the wanted properties. In particular zq+σq(zq)

2 6∈ B2d
r/2(aq).

If one cannot extract a subsequence such that q′j 6= mjn + 1, we can extract a subsequence
such that q′j ≡ mjn + 1. Then take q = 1 and define (w′j) to be the mjn-periodic sequence such
that w′jk = wjk for 1 ≤ k ≤ mjn. By the same way as above, one gets the wanted (zj) by a diagonal
extraction and in this case zq = z1 6∈ B2d

r/2(x). �

Theorem 4.12. Let Φ ∈ Ham(Cd) admitting C1-small n-tuples σ. Suppose that x ∈ Cd is a
fixed point of Φ which is isolated as an invariant set. Then for every sufficiently small r > 0, there
exists c∞ > 0 and a n-tuple σ associated with Φ, with n even, such that for all m ≥ 1, any gradient
or reverse-gradient flow line u : R→ (Cd)mn+1, u̇ = ±∇Fm(u), with u(0) ∈ ∂Br(x, (σm, ε)) and
u(τ) ∈ Br/2(x, (σm, ε)) for some τ ∈ R satisfies

|Fm(u(0))− Fm(u(τ))| > c∞.

Proof. Since x is isolated as an invariant set, there exists some R > 0 such that for all
z ∈ B2d

R (x) \ {x}, there exists k ∈ Z such that Φk(z) 6∈ B2d
R (x). Fix such an R > 0 and choose

an even tuple σ = (σ1, . . . , σn) such that |z − σj(z)| < R/8 for all z ∈ B2d
R (x). Let m ≥ 1 and



74 4. TWO THEOREMS OF GINZBURG AND GÜREL

u : R+ → (Cd)mn+1 be as the statement of the theorem, we may suppose that u takes its values in
BR/2(x, (σm, ε)). Let τ > 0 be such that u(τ) ∈ ∂BR/4(x, (σm, ε)). In order to prove the theorem,
it is enough to show that there exists c∞ > 0 independent of m ≥ 1 and u satisfying

|Fm(u(0))− Fm(u(τ))| > c∞.

By contradiction, suppose there exist a sequence (mj)j≥0 and a sequence of gradient or
reverse-gradient flow lines uj : [0, τj ] → BR/2(x, (σmj , ε)), u̇j = ±∇Fmj (uj), with uj(0) ∈
∂BR/2(x, (σmj , ε)) and uj(τj) ∈ ∂BR/4(x, (σmj , ε)) such that∣∣Fmj (uj(0))− Fmj (uj(τj))

∣∣→ 0.

For some 1 ≤ kj ≤ mjn+ 1, one has |ujkj (0)− ujkj (τj)| ≥ R/4 so

R/4 ≤
∫ τj

0
|u̇jkj (s)|ds ≤

∫ τj

0
|u̇j(s)|ds =

∫ τj

0
|∇Fmj (uj(s))|ds,

but (∫ τj

0
|∇Fmj (uj(s))|ds

)2
≤ τj

∫ τj

0
|∇Fmj (uj(s))|2ds = τj

(
Fmj (uj(0))− Fmj (uj(τj))

)
,

thus τj → +∞. Combined with
∫ τj

0 |∇F
mj (u(s))|2ds → 0, it implies that there exists a sequence

(sj)j≥0 with sj ∈ [0, τj ], such that the sequence (uj(sj)))j≥0 satisfies the hypothesis of Lemma 4.11
with r = R/2.

Therefore, according to Lemma 4.11, there exist a sequence (zj)j∈Z ∈ (Cd)Z and some integer
1 ≤ q ≤ n, such that |zj + σj(zj)− 2x| ≤ R which implies that |zj − x| ≤ R/2 +R/16 < R by the
specific choice of σj , |zq−x| > R/4 and zj+1 = σj(zj). Thus, for all k ∈ Z, Φk(z1) = zkn+1 ∈ B2d

R (x)
with z1 6= x since

σq−1 ◦ · · · ◦ σ1(z1) = zq 6= x = σq−1 ◦ · · · ◦ σ1(x),

a contradiction. �

3.2. Crossing energy theorem in CPd. We employ the notation of Section 2. We recall
that σ = (σ1, . . . , σn1) is a specific n1-tuple, with n1 even, associated with Φ, δt := δ

(1)
t is a

n0-tuple, with n0 even, associated with e−2iπt, Fmt = F(ε,σm,δt) is a conical generating function of
the conical Hamiltonian diffeomorphism e−2iπtΦm, Mm := {(t, [z]) ∈ I ×CPN(m) | Fmt (z) = 0} is
the domain of the projection map T m : Mm → I with N(m) = (d+1)(n1m+n0 +1)−1. Similarly
to the Cd-case, we apply a linear change of coordinates. First, we apply a cyclic permutation so
that Fmt is replaced by the generating function of (σm, δt, ε) and then one take w-coordinates, so
that Fmt is replaced by Fmt ◦A−1

m and by a slight abuse of notation we will still denote by Mm and
T m domains and functions seen in the induced projective chart.

The proof of the crossing energy theorem in CPd follows the same lines as the Cd case. First,
we need an analogue to Lemma 4.11. We have to define a neighborhood of CPN(m) similar to
B(x, (σm, ε)) in the Cd case. Let B1 ⊂ Cd+1 be the unit Euclidean ball centered at the origin, so
that, for k ∈ N∗, ∂(Bk1 ) ⊂ (Cd+1)k denotes the sphere

∂(Bk1 ) =
⋃

1≤j≤k
Bj−1

1 × S2d+1 ×Bk−j1 .

Let πm : ∂(Bmn1+n0+1
1 ) → CPN(m) be the quotient map by the diagonal action of S1. We define

now a S1-equivariant neighborhood in the sphere ∂(Bmn1+n0+1
1 ) of the normalized w-coordinates of

some point x ∈ Cd+1 \ 0 relative to Fmt . Let a = (a1, . . . , amn1+n0+1) ∈ (Cd+1)mn1+n0+1 be the w-
coordinates of x, that is Br(x, (σm, δt, ε)) =

∏
j Br(aj). Let λ > 0 such that λa ∈ ∂(Bmn1+n0+1

1 ).
For r > 1 we define

Ur(x,m, t) := S1 ·Br(λx, (σm, δt, ε)) ∩ ∂(Bmn1+n0+1
1 ),

where S1 ·E := {µz | z ∈ E, µ ∈ S1} for any subset E ⊂ (Cd)mn1+n0+1. Let Vr(x,m, t) ⊂ CPN(m)

be the projection of this neighborhood on CPN(m).
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Lemma 4.13. Let x ∈ Cd+1\0 be a fixed point of Φ. Suppose there exists an increasing sequence
of positive integers (mj)j≥0 such that there exist a sequence (tj)j≥0 in I satisfying (tj)→ t ∈ {0, 1}
and a sequence (wj)j≥0 with wj ∈ Ur(x,mj , t) \ Ur/2(x,mj , t) satisfying,∣∣∣∇Fmjtj

(
wj
)∣∣∣2 =

mjn1+n0+1∑
k=1

∣∣∣∂wkFmjtj

(
wj
)∣∣∣2 j→∞−−−→ 0.

Let a := (a1, . . . , an1) ∈ (Cd+1)n1 be such that Br(x,σ) =
∏
j Br(aj) and ã := (ã1, . . . , ãn0+1) ∈

(Cd+1)n0+1 be the (n0 + 1)-tuple

ãk :=
δ(k−1)t/n0(x) + δkt/n0(x)

2 for 1 ≤ k ≤ n0 and ãn0+1 = x.

Then, there exists a possibly infinite integer κ ∈ Z ∪ {+∞} such that there exist a sequence (bj) ∈
(Cd+1)Z defined by

bj :=


aj mod n1 if j ≤ κn1,

ãj−κn1 if κn1 + 1 ≤ j ≤ κn1 + n0 + 1,
aj−(n0+1) mod n1 if j ≥ κn1 + n0 + 2,

a sequence (zj)j∈Z ∈ (Cd+1 \ 0)Z satisfying

zj+1 =


σj mod n1(zj) if j ≤ κn1,

gt/n0(zj) if κn1 + 1 ≤ j ≤ κn1 + n0 + 1,
σj−n0−1 mod n1(zj) if j ≥ κn1 + n0 + 2,

and some integer 1 ≤ q ≤ n1 + n0 + 1 such that{
zj+zj+1

2 ∈ C ·B2d
r (bj) for all j ∈ Z,

zq+zq+1
2 6∈ C ·B2d

r/2(bq).

Proof. The proof follows along the same lines as Lemma 4.11 with just additional calligraphic
difficulties, we will only underline the key changes.

Let x ∈ Cd+1 \ 0, a ∈ (Cd+1)n1 and ã ∈ (Cd+1)n0+1 satisfying the assumptions of the lemma.
Let λ > 0 be such that (λa, λã) ∈ ∂(Bn1+n0+1

1 ) (it exists since x 6= 0), then

Ur(x,m, t) = S1 ·

[(
n1∏
k=1

B2(d+1)
r (λak)

)m
×
n0+1∏
k=1

B2(d+1)
r (λãk)

]
∩ ∂(Bmn1+n0+1

1 ).

Let (wj) be satisfying the assumptions of the lemma. By S1-invariance of the function |∂Fmjtj | and
the neighborhood Ur(x,mj , t), we can suppose that

wj ∈

(
n1∏
k=1

B2(d+1)
r (λak)

)mj
×
n0+1∏
k=1

B2(d+1)
r (λãk).

The result follows from Cantor’s diagonal argument applied to the sequence (wj/λ) in the same
way as in the proof of Lemma 4.11. �

In order to state the crossing energy theorem in CPd, we will need to define a “good” pseudo-
gradient Xm for the function T m. For technical reasons, the projection πm : ∂(Bmn1+n0+1

1 ) →
CPN(m) is the most natural for our problem. However the sphere ∂(Bmn1+n0+1

1 ) is not smooth,
we thus introduce a smooth S1-invariant sphere Σm ⊂ (Cd+1)mn1+n0+1:

Σm :=
{

z ∈ (Cd+1)mn1+n0+1 |
mn1+n0+1∑

k=1
|zk|pm = 1

}
,

where pm ≥ 2 is chosen such that,
∀z ∈ Σm,∃λ ∈ [1, 2], λz ∈ ∂(Bmn1+n0+1

1 ),
(necessarily (pm) → ∞). We endow CPN(m) with the Riemannian metric induced by the S1-
invariant projection π′m : Σm → CPN(m). Since

dist(∂Ur(x,m, t), Ur/2(x,m, t)) ≥ r/2,
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the condition on pm implies that
(4.9) dist(∂Vr(x,m, t), Vr/2(x,m, t)) ≥ r/4.

Let fm : I × CPN(m) → R be the C1 function satisfying fm(t, π′m(z)) = Fmt (z) for all z ∈ Σm, so
that Mm = {(t, ζ) ∈ I × CPN(m) | fm(t, ζ) = 0}. The pseudo-gradient Xm of T m is defined by

Xm(t, ζ) := ∂tf
m(t, ζ)∇fm(t, ζ)− |∇fm(t, ζ)|2 ∂

∂t

We have
〈
Xm,− ∂

∂t

〉
≥ 0 with equality if and only if ∇fm = 0, that is to say dT m = 0.

Theorem 4.14. Let Φ ∈ HamC(Cd+1) be a lift of ϕ ∈ Ham(CPd). Suppose that x ∈ Cd+1 \ 0
is a fixed point of Φ such that [x] ∈ CPd is isolated as an invariant set of ϕ. Then for every
sufficiently small r > 0, there exist c∞ > 0 and a tuple σ associated with Φ such that for all
m ≥ 1, if (t, ζmt ) ∈ Mm denotes the critical point of T m with critical value t ∈ {0, 1} associated
with x, any gradient flow line u : R → Mm, u̇ = ±Xm(u), with u(0) ∈ I × ∂Vr(x,m, t) and
u(τ) ∈ I × Vr/2(x,m, t) for some τ ∈ R satisfies

|T m(u(0))− T m(u(τ))| > c∞.

Proof. We follow the steps of the proof of Theorem 4.12. By contradiction, suppose there
exist a sequence (mj)j≥0 and a sequence of pseudo-gradient flow line uj : [0, τj ] → Ur(x,mj , t),
u̇j = ±Xmj (uj) with uj(0) ∈ ∂Vr(x,mj , t) and uj(τj) ∈ Vr/2(x,mj , t) such that∣∣T mj (uj(0))− T mj (uj(τj))

∣∣ j→+∞−−−−→ 0 and T mj (uj(0)) j→+∞−−−−→ 0.
First we must show that τj 6→ 0. Let p2 : I ×CPN → CPN be the projection on the second factor,
then (4.9) implies that

r

4 ≤
∫ τj

0
|dp2 · u̇j |ds,

so (r
4

)2
≤ τj

∫ τj

0
|dp2 ·Xmj (uj)|2ds = τj

∫ τj

0
(∂tfmj (uj))2|∇ζfmj (uj)|2ds.

Remark that there exists some C > 0 independent of m (it only depends on (δt)) such that
0 ≤ −∂tfm < C, thus ∫ τj

0
|dp2 ·Xmj (uj)|2ds ≤ C2

∫ τj

0
|∇ζfmj (uj)|2ds.

This last term goes to 0 since∣∣T mj (uj(0))− T mj (uj(τj))
∣∣ =

∫ τj

0

〈
− ∂

∂t
,Xmj (u)

〉
ds =

∫ τj

0
|∇ζfmj (uj)|2ds.

Therefore, τj → +∞ and thus there exists a sequence (sj)j≥0 in I × Vr(x,m, t) \ I × Vr/2(x,m, t)
such that |∇ζfmj (sj)| → 0.

Let (tj ;λjwj) ∈ I × Ur(x,mj , t) be lifted from sj with wj ∈ Σmj and λj ∈ [1, 2] such that
λjwj ∈ ∂(Bmjn1+n0+1

1 ) (which exists by definition of Σmj ). Since tj = T mj (sj), one has tj → t.
Since |∇ζfmj (sj)| → 0, the norm of the orthogonal projection of ∇Ftj (wj) ∈ CN(mj)+1 on the
sphere Σmj goes to zero as j → ∞. The radial component is

〈
wj ,∇Ftj (wj)

〉
= 2Ftj (wj) = 0,

hence |∇Fmjtj (wj)| → 0. Since λj ∈ [1, 2], the homogeneity of Fmjtj implies that∣∣∇Fmjtj (λjwj)
∣∣ j→∞−−−→ 0.

We can thus apply Lemma 4.13 to the sequences (mj), (λjwj) and the fixed point x ∈ Cd+1.
We then find a sequence (zj)j∈Z in Cd+1 such that ϕk([z0]) stays close to [x] for all k ∈ Z with
[z0] 6= [x]. �



CHAPTER 5

On the Hofer-Zehnder conjecture

1. Statement of the theorem

In this chapter, we give an alternative proof of the theorem of Shelukhin on the Hofer-Zehnder
conjecture “that could have been given in the 90s”. Let ϕ be a Hamiltonian diffeomorphism of
CPd with finitely many fixed points and let (ht) be the associated Hamiltonian map. Shelukhin
introduced a homology count over a field F of the number of fixed points of ϕ. In our setting, it
has been defined as N((hs);F) at (3.13). In fact, one can prove that C∗((hs);x;F) is isomorphic
to the local Floer homology of x over the field F, so that N((hs);F) equals the homological count
defined by Shelukhin. One always has N((hs);F) ≥ d+ 1, according to Théret’s proof of Fortune-
Weinstein theorem (i.e. the existence of spectral invariants stated in Theorem 3.22). The theorem
of Shelukhin that we prove is the following.

Theorem 5.1 ([69, Theorem A for M = CPd]). Every Hamiltonian diffeomorphism ϕ of CPd
such that N((hs);F) > d+ 1 for some field F has infinitely many periodic points. Moreover, when
ϕ has finitely many fixed points, if F has characteristic 0 in the former assumption, there exists
A ∈ N such that, for all prime p ≥ A, ϕ has a p-periodic point that is not a fixed point; if F has
characteristic p 6= 0, ϕ has infinitely many periodic points with period in {pk | k ∈ N}.

In the special case where every fixed point of ϕ is non-degenerate, one has dimC∗((hs);x;F) = 1
for every fixed point; hence, N((hs);F) equals the number of fixed points of ϕ. As a special case,
every Hamiltonian diffeomorphism of CPd that has at least d + 2 non-degenerate periodic points
has infinitely many periodic points and the number grows at least like the sum of prime numbers
(i.e. the number of periodic points of period less than k is & k2

log k ).
Our proof follows the same main steps as the original one and takes advantage of the new

proof given by Shelukhin in [3, Appendix B] of inequality (5.1) below. Let us give a short outline
of it. Our analogue of the Floer homology of the Hamiltonian diffeomorphism associated with the
Hamiltonian map (hs) defines with its inclusion morphisms a persistence module (G(−∞,t)

∗ (hs;F))t.
Such a persistence module can be represented in a graphical way by a barcode (see Figure 2).
Infinite bars of the barcodes always exist in the same cardinality: they are associated with the
spectral invariants of (hs). On the other hand, finite bars exist if and only ifN((hs);F) > d+1. The
barcodes always have infinitely many bars but there is a natural free Z-action on their collection,
preserving the length of bars in such a way that, if ϕ has finitely many fixed points, there are only
finitely many Z-orbits of finite bars. Moreover, if ϕ has finitely many periodic points, the number
of finite bars associated with its iterations is uniformly bounded. The proof consists in showing
that the existence of a finite bar implies an unbounded growth of the number of Z-orbits of finite
bars.

Since Z acts on the collection of finite bars by preserving their length, one can define the
sequence of bar length of each Z-orbit 0 < β1((hs);F) ≤ β2((hs);F) ≤ · · · ≤ βn((hs);F). We
denote by βtot((hs);F) the sum of these lengths. The proof relies on two results: the length of a
finite bar is bounded by 1 (with our normalization, see (3.1) below), the sum of the lengths satisfies
the Smith-type inequality

(5.1) βtot((hps);Fp) ≥ pβtot((hs);Fp),

for all prime p. These two steps easily imply Theorem 5.1.

77
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2. Outline of the proof

Here, we introduce the main tools of the proof. We postpone the proof of technical statements
and the definition of technical objects to the remaining sections in order to give the proof of
Theorem 5.1 at the end of this section.

Theorem 5.1 is proved by studying the length of the finite bars of the barcode of (hs). Let
us denote by I1, . . . , In ⊂ R representatives of the Z-orbit of finite bars over the field F. Up to a
permutation, one can assume that (length Ik)k is non-decreasing. Let βk((hs);F) be the length of
Ik, β((hs);F) := βn((hs);F) be the length of the longest bar and

βtot((hs);F) :=
∑
k

βk((hs);F).

The number β((hs);F) was first introduced by Usher and called the boundary depth of (hs) [78].
The first important property is that every finite bar has a length less than 1 (see Theorem 5.2).
This is the analogue of [69, Theorem B] in the special caseM = CPd and the proof follows the same
key ideas: we define a product between GF-homologies and use it to find an interleaving between
the GF-homology of (hs) and the one of (h′s) ≡ 0 that does not have any finite bar. The second
important property is the Smith inequality (5.1) stated in Corollary 5.6 which is the analogue
of [69, Theorem D] in the special case M = CPd. The general strategy follows a new proof of
[69, Theorem D] given by Shelukhin in [3, Appendix B]. In the realm of generating functions, the
proof is rather short and very elementary: it essentially relies on the classical Smith inequality
(5.4); it might seem surprising regarding the extraordinary machinery necessary to prove its Floer
theoretical analogue (although the Floer theoretical proof is available for every closed monotone
symplectic manifold).

Proof of Theorem 5.1. Let σ be any tuple of C-equivariant Hamiltonian diffeomorphisms
associated with ϕ, so that N(σ;F) = N((hs);F). Let us denote by K(σ;F) the number of Z-
orbits of finite bars of the barcode associated with σ over the field F. According to the universal
coefficient theorem, one can assume that F = Q if F has characteristic 0 and F = Fp if it has
characteristic p 6= 0.

Let us assume that F = Q. According to Proposition 3.30, N(σ;Q) > d + 1 implies that
K(σ;Q) > 0 so βtot(σ;Q) > 0. According to Corollary 5.6, for all prime number p ≥ 3,

K(σp;Fp)β(σp;Fp) ≥ βtot(σp;Fp) ≥ pβtot(σ;Fp).

Thus, by Proposition 5.7, for all sufficiently large prime p,

K(σp;Fp)β(σp;Fp) ≥ pβtot(σ;Q),

that is to say that K(σp;Fp)β(σp;Fp) grows at least linearly with prime numbers p. According
to Theorem 5.2, β(σp;Fp) ≤ 1 so K(σp;Fp) must diverge to +∞ with prime numbers p and so
must N(σp;Fp) by Proposition 3.30. Let z1, . . . , zn ∈ CPd be the fixed points of ϕ. According to
Corollary 3.7, there exists B > 0 such that dimC∗(σp; zk;Fp) < B for all k and all prime p. Let
A ∈ N be such that for all prime p ≥ A, N(σp;Fp) > nB. Then, for all prime p ≥ A, there must
be at least one fixed point of ϕp that is not one of the zk’s, that is, there must be at least one
p-periodic point that is not a fixed point. Hence, the conclusion for the case F of characteristic 0.

Let us assume that F = Fp for some prime number p. By contradiction, let us assume that ϕ
has only finitely many periodic points with period in P := {pk | k ∈ N}. According to Corollary 5.6,

βtot(σp
k

;Fp) ≥ pkβtot(σ;Fp), ∀k ∈ N,

in particular, N(σpk ;Fp) > d + 1 for all k ∈ N. Thus, by replacing ϕ with ϕpk for a sufficiently
large k, one can assume that every periodic point of ϕ with period belonging to P has only
admissible periods (see the paragraph just above Proposition 3.6 for the definition of an admissible
period). According to Proposition 3.6, it implies that N(σpk ;Fp) = N(σ;Fp) for all k ∈ N. But
Corollary 5.6 together with Proposition 3.30 imply that the left-hand side of this equation must
diverge to +∞ as k grows, a contradiction. �
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3. Uniform bound on β

Theorem 5.2. For all tuples of small C-equivariant Hamiltonian diffeomorphisms σ generat-
ing a Hamiltonian diffeomorphism of CPd with finitely many fixed points, the longest finite bar of
its barcode is less than 1:

β(σ) ≤ 1.

As a matter of fact, the proof allows us to give the more precise bound:

β(σ) ≤ cd+k(σ)− ck(σ),

for all k ∈ Z (in particular, one can always replace ≤ 1 by < 1). Moreover, the finiteness of the set
of fixed points is irrelevant if one take the more general definition of β given by (5.2) below (which
is closer to the original definition of the boundary depth introduced by Usher in [78]).

We will essentially prove that the persistence modules of σ and ε are (cd(σ),−c0(σ))-inter-
leaved. The isometry theorem between the interleaving distance and the barcode distance states
that the distance between the two associated barcodes is not more than cd(σ)− c0(σ). Since the
barcode of ε does not have any finite bar, the conclusion follows.

In order to simplify the proof, we will use a slightly weaker result than the isometry theorem.
We recall that the maximal length of a finite bar β(V t) ≥ 0 in the persistence module (V t) can
alternatively be defined by

(5.2) β(V t) = sup
{
β ≥ 0 | ∃t ∈ R, ker(V t → V t+β) 6= ker(V t → V +∞)

}
.

Lemma 5.3. Let ((V t), π) be a persistence module and ((W t), κ) be a persistence module without
any finite bar. If there exist δ, δ′ ∈ R with δ + δ′ ≥ 0 and f : (V t) → (W t+δ) and g : (W t) →
(V t+δ′) that are morphisms of persistence modules such that gt+δft = πt+δ+δ

′

t for all t ∈ R, then
β(V t) ≤ δ + δ′.

Proof of Lemma 5.3. By contradiction, let us assume that there exist t ∈ R and v ∈ V t such
that πt+δ+δ

′

t v 6= 0 and π+∞
t v = 0. Since π+∞

t v = 0, there exists s ≥ t+ δ + δ′ such that πst v = 0.
By hypothesis, πt+δ+δ

′

t = gt+δft so w := ftv 6= 0. Since (W t) does not have any finite bars,
κst+δw 6= 0. Since f is a morphism of persistence modules, fsπst = κs+δt+δ ft so fsπst v = κs+δt+δw 6= 0.
A contradiction with πst v = 0. �

Proof of Theorem 5.2. Let ε > 0 and let η := cd(σ)+ε/2 and η′ := cd(σ−1)+ε/2. One can
assume that the size n of σ satisfies 2n = mn0 for some integerm > max(|η|, |η′|, |cd(σ)|, |cd(σ−1)|),
by concatenation of σ with some εk. Let bd ∈ HZ2d(σm,η) and b′d ∈ HZ2d(σ−1

m,η′) be classes
associated with the spectral class αd in the sense of Proposition 3.24 (well-defined by definition of
η, η′ and m). In order to simplify the exposition, let us set ad := a

(2n+1)
d (0) ∈ HZ2d(ε2n+1) and

a′d := a
(2n+1)
d (η + η′) ∈ HZ2d(εm,η+η′) (we recall that ε2n+1 = εmn0+1 = εm,0 by our assumption

on n). Let us denote by ∆1 the interpolation isomorphism associated with (σs−1, ε,σ1−s)s∈[0,1]
and by ∆2 the interpolation isomorphism associated with (σ1−s, ε,σs−1)s∈[0,1]. Let us denote by
∆̃1 the interpolation isomorphism associated with (σ, ε,σs−1, ε,σ1−s)s∈[0,1] and by ∆̃2 the one
associated with (σ1−s, ε,σs−1, ε,σ)s∈[0,1].

We define the following morphisms of persistence modules:

ft :
{
G

(−∞,t)
∗ (σ) → G

(−∞,t+η′)
∗ (ε2n+1),

α 7→ ∆1(b′d � α),

gt :
{

G
(−∞,t)
∗ (ε2n+1) → G

(−∞,t+η)
∗ (σ),

α 7→ a−1
d � ∆̃2 ◦ ∆̃−1

1 (bd � α).

Indeed, these morphisms commute with inclusion morphisms by naturality of the morphisms in-
volved in their definitions. Let us denote by πst : G(−∞,t)

∗ (σ)→ G
(−∞,s)
∗ (σ) the inclusion morphism

for t ≤ s.
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In order to apply Lemma 5.3, one just needs to show that gt+η′ ◦ ft = πt+η+η′
t for all t ∈ R.

For all α ∈ G(−∞,t)
∗ (σ), one has

gt+η′ ◦ ft(α) = a−1
d � ∆̃(bd �∆1(b′d � α))

= a−1
d � ∆̃2(bd � b′d � α)

= a−1
d �∆2(bd � b′d) � α

= a−1
d � a

′
d � α

= πη+η′
t α,

where the second and third equalities come from Proposition 3.15 and the identity a−1
d �a′d = πη+η′

t

is a direct consequence of the commutativity of (3.21). The conclusion follows from Lemma 5.3
since the persistence module of ε2n+1 does not have any finite bar (see Section 5.1) and

η + η′ = cd(σ) + cd(σ−1) + ε = cd(σ)− c0(σ) + ε ≤ 1 + ε,

where the second equality comes from Corollary 3.26. �

4. Smith inequality

In this section, we show how the classical Smith inequality (5.4) can be applied to the sublevel
sets of generating functions to prove inequality (5.1). Çineli-Ginzburg used the same kind of
argument to prove a Smith inequality between the dimension of the local homology of a Hamiltonian
orbit and its p-iterate for p prime [29].

4.1. Z/pZ-symmetry of a p-iterated generating function. Let us fix a prime number
p ≥ 3. Let us fix t ∈ R and study generating function of (e−2iπtΦ1). In order to fix notation, we
recall that

Fσm,t(v) :=
n∑
k=1

fk

(
vk + vk+1

2

)
+ 1

2 〈vk, ivk+1〉 ,

where v := (v1, . . . , vn) ∈ (Cd+1)n and the fk : Cd+1 → R are S1-invariant and 2-homogeneous.
Thus Fσpm,t : (Cn(d+1))p → R is invariant under the action of Z/pZ by cyclic permutation of
coordinates generated by

(v1,v2, . . . ,vp) 7→ (vp,v1, . . . ,vp−1),
(here σpm,t means (σm,t)p). The induced F̂σpm,t : CPpn(d+1)−1 → R is then invariant under the
Z/pZ-action by permutation of homogeneous coordinates induced by

[v1 : v2 : · · · : vp] 7→ [vp : v1 : · · · : vp−1].

Fixed points (CPN )Z/pZ of this action are the disjoint union
⊔
q Pq of the p following (n(d+1)−1)-

complex projective subspaces:

Pq :=
{[

v : ζqv : ζ2qv : · · · : ζ(p−1)qv
]
| [v] ∈ CPn(d+1)−1

}
, ζ := e

2iπ
p ,

where q is an integer in
{ 1−p

2 , . . . , p−1
2
}
.

Using the fact that the fk’s are S1-invariant and 2-homogeneous,

1
p
Fσpm,t(v, ζ

qv, . . . , ζq(p−1)v) =
n−1∑
k=1

[
fk

(
vk + vk+1

2

)
+ 1

2 〈vk, ivk+1〉
]

+ fn

(
vn + ζqv1

2

)
+ 1

2 〈vn, iζ
qv1〉 .

We apply the linear change of variables v 7→ u given by uk := vk + (−1)k 1−ζq
2 v1 so that

u1 + u2 = v1 + v2,
u2 + u3 = v2 + v3,

...
un−1 + un = vn−1 + vn,
un + u1 = vn + ζqv1.
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A direct computation gives
n−1∑
k=1
〈vk, ivk+1〉+ 〈vn, iζqv1〉 =

n∑
k=1
〈uk, iuk+1〉 − 2 tan

(
qπ

p

)
‖u1‖2,

for all integer q ∈
{ 1−p

2 , . . . , p−1
2
}
, so that

Fσpm,t(v, ζ
qv, . . . , ζq(p−1)v) = p

[
Fσm,t(u)− tan

(
qπ

p

)
‖u1‖2

]
=: pGt,q(u),

for q ∈
{ 1−p

2 , . . . , p−1
2
}
. This last function Gt,q is the fiberwise sum of a generating function of

e−2iπtΦ1 and a generating function of e−2iπq/p. We recall that in this case, a C-line of critical points
of this function are in one-to-one correspondence with a C-line of fixed points of the composed
diffeomorphism e−2iπ(t+q/p)Φ1 (see the paragraph surrounding Equation (1.8)). Let (fs,t) be the
family of functions

fs,t(u) := Fσm,t+(1−s)q/p(u)− tan
(
s
qπ

p

)
‖u1‖2, s ∈ [0, 1].

The function fs,t is the fiberwise sum of a generating function of e−2iπ(t+(1−s)q/p)Φ1 and a gen-
erating function of e−2iπsq/p, so 0 is a regular value of fs,t if and only if e−2iπ(t+q/p)Φ1 does not
have any C-line of fixed points, that is if and only if t+ q/p is not an action value of σ. According
to Proposition 3.13,

(5.3) H∗

({
Ĝb,q ≤ 0

}
,
{
Ĝa,q ≤ 0

})
' G(a+q/p,b+q/p)

∗−i0 (σ,m) ' G(a+q/p,b+q/p)
∗−i0 (σ),

where −m ≤ a + q/p ≤ b + q/p ≤ m, i0 is some integer and a + q/p and b + q/p are not action
values of σ.

4.2. Application of Smith inequality. According to Smith inequality,

(5.4) dimH∗(X;Fp) ≥ dimH∗(XZ/pZ;Fp),

where X is a locally compact space or pair such that H∗(X;Fp) is finitely generated, a space on
which the group Z/pZ acts (see for instance [20, Chapter IV, §4.1]). Here dimH∗ means the total
dimension

∑
k dimHk.

Proposition 5.4. Given any tuple σ of small C-equivariant Hamiltonian diffeomorphisms,
for every prime number p and every a ≤ b such that a+ q/p and b+ q/p are not action values of
σ and pa and pb are not action values of σp,

dimG
(pa,pb)
∗ (σp;Fp) ≥

∑
(1−p)/2≤q≤(p−1)/2

dimG
(a+q/p,b+q/p)
∗ (σ;Fp).

Proof. Let us assume that p ≥ 3 and refer the reader to Section 4.4 for the modifications
specific to p = 2. By concatenating σ with some εk if needed, it is not difficult to find a homotopy
interpolating σpm,t := (σm,t)p and (σp)pm,pt. Therefore, the associated interpolation isomorphism
gives us

(5.5) HZ∗(σpm,b,σ
p
m,a) ' G(pa,pb)

∗ (σp, pm) ' G(pa,pb)
∗ (σp).

Now, we apply the Smith inequality (5.4) to the couple

X :=
({
F̂σp

b
≤ 0
}
,
{
F̂σpa ≤ 0

})
.

According to the last section,

XZ/pZ '
⊔

(1−p)/2≤q≤(p−1)/2

({
Ĝb,q ≤ 0

}
,
{
Ĝa,q ≤ 0

})
.

Therefore, Smith inequality (5.4), (5.5) and (5.3) yield the conclusion. �
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4.3. Computation of βtot. The arguments of this section follow the proof of [3, Theorem B.1]
given by Shelukhin in the realm of Floer theory that applies to every closed monotone symplectic
manifold.

Proposition 5.5. Let σ be a tuple of small C-equivariant Hamiltonian diffeomorphisms of
Cd+1 with a finite number of associated fixed points in CPd. For all a ∈ R, all integer n ∈ N∗ and
all field F,

βtot(σ;F) = 1
2

(∫ 1

0
dimG

(a+t,a+t+n)
∗ (σ;F) dt− n(d+ 1)

)
.

Proof. Let I1, . . . , In ⊂ R be representatives of each Z-orbit of finite bars of the persistence
module (G(−∞,t)

∗ (σ;F))t and let J1, . . . , Jd+1 ⊂ R be representatives of each Z-orbit of infinite bars
of this persistence module. Given an interval I ⊂ R, let χI : R → {0, 1} denote its characteristic
map. According to Lemma 3.29, for a < b which are neither infinite nor action values of σ, one
has

dimG
(a,b)
∗ (σ;F) =

∑
k∈Z

[
n∑
r=1

∣∣χIr (b+ k)− χIr (a+ k)
∣∣+

d+1∑
s=1

∣∣χJs(b+ k)− χJs(a+ k)
∣∣] .

Therefore, in order to prove the statement, it is enough to prove that for all I ∈ {I1, . . . , In},

(5.6)
∑
k∈Z

∫ 1

0

∣∣χI(a+ t+ k + n)− χI(a+ t+ k)
∣∣dt = 2 length I,

while for all J ∈ {J1, . . . , Jd+1},

(5.7)
∑
k∈Z

∫ 1

0

∣∣χJ(a+ t+ k + n)− χJ(a+ t+ k)
∣∣dt = n.

In order to prove (5.6), let us write I = (u, v). According to Theorem 5.2, length I = v−u ≤ 1.
If the integer parts bu−ac and bv−ac are equal, then only the terms k = bu−ac and k = bu−ac+n
are non-zero, both equal to length I. Otherwise, one must compute the four non-zero terms and
gets

(1− {u− a}) + {v − a}+ (1− {u− a}) + {v − a} = 2(v − u) = 2 length I,

where {x} denotes the fractional part x − bxc for x ∈ R (at the first equality, we have used
bv − ac = bu− ac+ 1).

Identity (5.7) is proven by a similar straightforward computation. �

Corollary 5.6 ([69, Theorem D forM = CPd]). For all tuple of small C-equivariant Hamilto-
nian diffeomorphisms of Cd+1 with a finite number of associated fixed points in CPd, for all prime
number p,

βtot(σp;Fp) ≥ pβtot(σ;Fp).

Proof. Let us take the integral over almost all t ∈ [0, 1] of the inequality stated in Proposi-
tion 5.4 for a = t and b = 1 + t. On the left hand side,∫ 1

0
dimG

(pt,p+pt)
∗ (σp;Fp)dt = 1

p

∫ p

0
dimG

(s,p+s)
∗ (σp;Fp)ds

= 1
p

p−1∑
k=0

∫ 1

0
dimG

(k+s,k+s+p)
∗ (σp;Fp)ds

= 1
p

p−1∑
k=0

[
2βtot(σp;Fp) + p(d+ 1)

]
= 2βtot(σp;Fp) + p(d+ 1),
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where we have applied Proposition 5.5 at the third line. On the right hand side, by applying
Proposition 5.5 once again,∑

(1−p)/2≤q≤(p−1)/2

∫ 1

0
dimG

(q/p,q/p+t)
∗ (σ;Fp)dt =

∑
(1−p)/2≤q≤(p−1)/2

[
2βtot(σ;Fp) + d+ 1

]
= 2pβtot(σ;Fp) + p(d+ 1).

Therefore,
2βtot(σp;Fp) + p(d+ 1) ≥ 2pβtot(σ;Fp) + p(d+ 1)

and the conclusion follows. �

Proposition 5.7. For all tuple of small C-equivariant Hamiltonian diffeomorphisms σ of
Cd+1 with a finite number of associated fixed points in CPd, there exists an integer N ∈ N such
that for all prime number p ≥ N ,

βtot(σ;Fp) = βtot(σ;Q).

Proof. According to Proposition 5.5, it is enough to prove that for some N ∈ N every prime
number such that p ≥ N satisfies

(5.8) dimG
(t,t+1)
∗ (σ;Fp) = dimG

(t,t+1)
∗ (σ;Q), ∀t ∈ [0, 1].

If there is no action value of σ in [a, b] then dimG
(a,a+1)
∗ (σ;F) = dimG

(b,b+1)
∗ (σ;F) for all field F.

Since there is a finite number with action values in [0, 1], it is enough to prove (5.8) for a finite
number of value t (one in between each critical value of [0, 1]). For each t (that is not an action
value), G(t,t+1)

∗ (σ;F) ' H∗+i0(At, Bt;F) for a topological pair (At, Bt) of some complex projective
space with a finitely generated homology group with integral coefficients. According to the universal
coefficient theorem, there exists Nt ∈ N such that dimH∗(At, Bt;Q) = dimH∗(At, Bt;Fp) for all
prime number p ≥ Nt. The conclusion follows by taking the maximum among the Nt’s for our
finite set of t’s. �

4.4. The special case p = 2. Here, we briefly explain how to modify the above arguments
in the special case p = 2 — that is only useful to prove Theorem 5.1 when F has characteristic 2.

In order to study the Z/2Z-symmetry of a generating function associated with (Φ2
t ), one cannot

take the generating function of σ2
m,t since it is an even tuple. Instead, we take the generating

function of (σm,t, ε,σm,t) which is invariant under the following action of Z/2Z written in w-
variables:

(w1, w2,w3) 7→
(

w3,−w2 +
n∑
k=1

(−1)k(w1
k + w3

k),w1

)
.

Indeed, Q2n+1 is invariant under this action and, in w-variables,

F(σm,t,ε,σm,t)(w
1, w2,w3) = F ′(w1) + F ′(w3) +Q2n+1(w1, w2,w3),

where F ′ is the direct sum of the elementary generating functions of σm,t. The set of fixed points
of the induced action on CP(2n+1)(d+1)−1 is the disjoint union of the complex projective spaces P0
and P1 defined by

P0 :=
{[

w :
n∑
k=1

(−1)kwk : w
]
| w ∈ (Cd+1)n

}
,

P1 :=
{

[w : w′ : −w] | (w, w′) ∈ (Cd+1)n × Cd+1} .
The restriction of the generating function to P0 gives us back the generating function F̂σm,t whereas,
still in w-variables,

1
2F(σm,t,ε,σm,t)(w, w

′,−w) = Fσm,t(w) + 2
〈

n∑
k=1

(−1)k+1wk, iw
′

〉
,

By the change of variables Anv = w and ξ = 2w′, one gets, in v-variables, the function

(v, ξ) 7→ Fσm,t(v) + 〈v1, iξ〉
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which is the fiberwise sum of a generating function of e−iπtΦ1 with the generating function (x; ξ) 7→
〈x, iξ〉 that generates −id. This time, we can take (fs,t) to be the family of functions

fs,t(v, vn+1) := Fσm,t+(1−s)/2(v) + sin
(
s
π

2

)〈
v1 − i cos

(
s
π

2

) ξ
2 , iξ

〉
, s ∈ [0, 1],

that interpolates the latter with (v, ξ) 7→ Fσm,t+1/2(v). That being said, it is not difficult to
conclude.



Part 2

Geodesic loops and geodesic chords





CHAPTER 6

Homologically visible closed geodesics on complete surfaces

This chapter is a joint work with Tobias Soethe.

1. Introduction

Let S1 := R/Z and let M ' S1 × R be a complete Riemannian cylinder. Let ΛM be its loop
space. Two loops α, β ∈ ΛM are said to be geometrically distinct if their images are distinct:
α(S1) 6= β(S1). Throughout this chapter, by writing that two closed geodesics are distinct we will
always mean that they are geometrically distinct. Given a ring R, a closed geodesic γ ∈ ΛM is
said to be homologically visible over R if the local homology of the critical circle S1 · γ ⊂ ΛM of
the energy functional is non-zero over the coefficients ring R (see Section 2 for precise definitions).
With the exception of the Möbius band, every result is true over any coefficients ring R (once
fixed), so the ring R will not be mentioned explicitly.

Theorem 6.1. LetM be a complete Riemannian cylinder where all closed geodesics are isolated
and assume one of the following hypothesis:
1. there exists a contractible closed geodesic,
2. there exists a self-intersecting closed geodesic,
3. there exist two distinct closed geodesics that intersect,
4. there exists a closed geodesic of non-zero average index,
5. there exist two homologically visible closed geodesics.
Then M contains infinitely many homologically visible closed geodesics intersecting some common
compact set K ⊂M and at least one without self-intersection.

Notice that according to Bott’s iteration theory, a closed geodesic c has a non-zero average index
if and only if some iterate cm has a non-zero index. The fact that hypothesis 5 implies that there
exists infinitely many homologically visible closed geodesics proves a conjecture of Abbondandolo:

Corollary 6.2. Any complete Riemannian cylinder where all closed geodesics are isolated
has zero, one or infinitely many homologically visible closed geodesics.

By essentially taking the double cover (see Section 7 for details), one can thus deduce the
following counterpart of Theorem 6.1 when M is a complete Möbius band.

Corollary 6.3. Let M be a complete Riemannian Möbius band where all closed geodesics are
isolated and assume one of the following hypothesis:
1. there exists a contractible closed geodesic,
2. there exists a self-intersecting closed geodesic,
3. there exist two distinct closed geodesics that intersect,
4. there exists a closed geodesic of non-zero average index,
5. there exist two homologically visible closed geodesics over F2.
Then M contains infinitely many closed geodesics intersecting some common compact set K ⊂M
that are homologically visible over F2.

According to Thorbergsson [76, Theorem 3.2], any complete Möbius band has at least one
homologically visible closed geodesic without self-intersection (it is homologically visible as a local
minimum of the energy, see Section 2 below).

Corollary 6.4. Any complete Riemannian Möbius band where all closed geodesics are isolated
has one or infinitely many homologically visible closed geodesics over F2.

Similar results can also be obtained when M ' R2 is a complete plane:

87
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Theorem 6.5. Let M be a complete Riemannian plane where all closed geodesics are isolated
and assume one of the following hypothesis:
1. there exists a self-intersecting closed geodesic,
2. there exist two distinct closed geodesics that intersect,
3. there exists a closed geodesic of non-zero average index,
4. there exists a homologically visible closed geodesic.
Then M contains infinitely many homologically visible closed geodesics intersecting some common
compact set K ⊂M and at least one without self-intersection.

Corollary 6.6. Any complete Riemannian plane where all closed geodesics are isolated has
zero or infinitely many homologically visible closed geodesics.

It is easy to give counter-examples to Theorem 6.1 when none of the assumptions 1-5 hold by
considering embedded cylinders of revolution
(6.1) (θ, z) 7→ (r(z) cos θ, r(z) sin θ, z),
for well-chosen smooth maps r : R → (0,+∞). A complete cylinder may have no closed geodesic
at all: take r′ > 0. It can have an arbitrary large finite number k ∈ N of homologically invisible
closed geodesics: take r′(z) > 0 for all z ∈ R \ {z1, . . . , zk} and r′(zi) = 0. It can also have
a unique visible closed geodesic: take r′ < 0 on (−∞, 0), r′(0) = 0 and r′ > 0 on (0,+∞)
(one can as well add to this cylinder an arbitrary large finite number of homologically invisible
closed geodesic the same way as before). By taking such an r even and taking the quotient under
the involution (θ, z) 7→ (θ + π,−z), one gets Möbius bands with only one homologically visible
closed geodesic and as many homologically invisible closed geodesic as wanted. Remark that in
our examples closed geodesics are without self-intersections and not contractible as implied by
the theorem. Counter-examples where the theorem fails by lack of completeness can be found as
well by choosing embedded cylinders of revolution restricting the domain of the embedding (6.1) to
(θ, z) ∈ R/2πZ×(a, b) for a, b ∈ R. We could proceed as follows: take an even r : [−1, 1]→ (0,+∞)
with r′ > 0 on [−1, 0) such that z = 0 is the only closed geodesic of the associated compact
embedded cylinder. One can find such an r by slightly modifying a Tannery surface: a sufficient
condition is that the metric g on the interior of the cylinder can be written as

g = [α+ h(cos ρ)]2 dρ2 + sin2 ρdθ2,

for a good choice of coordinates (ρ, θ) ∈ (0, π)×S1, where α is irrational and h : (−1, 1)→ (−α, α)
is a smooth odd function (see for instance [18, Theorem 4.13]). Then extend r to a smooth map
(−3, 1] → (0,+∞) with r|(−3,−1) < r(−1), r′ < 0 on (−3,−2) and r′ > 0 on (−2,−1). Then
z = −2 and z = 0 are the only closed geodesic of the cylinder embedded by r|(−3,1) and are both
visible.

In a similar way, we can give examples of complete planes with only an arbitrary finite number
of homologically invisible closed geodesics by considering surfaces of revolution (6.1) parametrized
by R/2πZ × [0,+∞) with r : [0,+∞) → [0,+∞) being increasing and smooth on (0,+∞) with
r(0) = 0 and r′(z)→ +∞ when z → 0 in a suitable way (i.e. so that the surface is smooth at the
origin). Then, as above, we get homologically invisible closed geodesics on the inflexion points of
r, and nowhere else.

We say that C− ⊂ M (resp. C+) is a neighborhood of −∞ (resp. of +∞) if C− contains
S1 × (−∞, a) for some a ∈ R (resp. S1 × (b,+∞) for some b ∈ R) for an arbitrarily fixed
identification of M with S1 × R. In order to prove Theorem 6.1, we will extensively use the
following theorem due to Bangert (where for the notion of local convexity, we refer to Section 2.2):

Theorem 6.7 ([9, Theorem 3, Remark 2]). Let M be a complete Riemannian cylinder where
all closed geodesics are isolated and suppose there exist disjoint locally convex open neighborhoods
C− and C+ of −∞ and +∞ respectively such that the boundaries ∂C± are not totally geodesic.
Then M contains infinitely many homologically visible closed geodesics intersecting M \ (C−∪C+)
and at least one without self-intersections.

Since Bangert did not give the precise proof of that statement, for the sake of completeness we
give a comprehensive proof in this chapter. The proof of Theorem 6.5 is quite similar and relies
extensively on the analogous theorem of Bangert when M is a plane where all closed geodesics are
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isolated: if there exists a locally convex open neighborhood of infinity C 6= M with a boundary
∂C which is not totally geodesic, M contains infinitely many homologically visible closed geodesics
[9, Theorem 3]. These two theorems were originally used by Bangert to prove that any complete
Riemannian plane of finite area has infinitely many closed geodesics.

In fact, our results extend verbatim to the case where M is a complete reversible Finsler
manifold as we will essentially use variational properties of geodesics in our proof with no concern
for geometric notion specific to Riemannian manifold. However, nothing can be said concerning
the more general case of a complete (asymmetrical) Finsler manifold. The major issue is that, in
the asymmetrical case, a closed subset of M which is bounded by a geodesic is not locally convex.
In this direction, we point out that the related question of whether or not infinitely many closed
geodesics exist on every irreversible Finsler cylinder of finite area is still open [22, Question 2.3.2].

In Section 2, we fix notation and recall results of the variational theory of geodesics that we
will need. In Section 3, we give a comprehensive proof of Theorem 6.7 of Bangert. In Section 4,
we prove Theorem 6.1 when hypothesis 1, 2 or 3 is assumed. In Section 5, we prove Theorem 6.1
when hypothesis 4 is assumed. In Section 6, we prove the last case of Theorem 6.1. In Section 7,
we prove Corollary 6.3. In Section 8, we prove Theorem 6.5.

2. Preliminaries

In this section, we recall some results of Riemannian geometry that we will use in our proofs
and fix some notation. For the extension of these notions to the Finsler case, the reader may for
instance look at [23, Section 2].

2.1. The energy functional. Given a complete Riemannian manifold with boundaryW , we
denote by ΛW the space of H1-maps S1 → W . In fact, if one wants to avoid analytic questions,
we can always reduce our space to a finite-dimensional manifold of broken geodesics. For γ ∈ ΛW
and m ∈ N∗, the iterated loop γm ∈ ΛW is defined by t 7→ γ(mt). A geodesic is an immersed path
γ : R→W such that

∇γ̇ γ̇ = 0,
where ∇ denotes the Levi-Civita connection of the metric and γ̇ stands for the derivative of γ.
Therefore, in our convention, geodesics have constant speed. A closed geodesic is a geodesic γ
which is periodic: γ(t + 1) = γ(t) so that γ ∈ ΛW . Closed geodesics of W are the critical points
with non-zero critical value of the energy functional E : ΛW → [0,+∞),

E(γ) :=
∫
S1
gγ(γ̇, γ̇)dt, ∀γ ∈ ΛW.

The energy functional E is C2. IfW is a locally convex compact manifold (possibly with boundary),
E also satisfies the Palais-Smale condition and the (−∇E)-flow is defined for all time t ≥ 0 (for a
real-valued map f on a Riemann-Hilbert manifold, ∇f denotes its gradient). We notice that every
closed geodesic lies on a critical circle S1 ·γ, where S1 acts on ΛW by t ·γ := γ(t+ ·). In our study
we assume that E has only isolated critical circles (except for the constant loops which have zero
value). Two closed geodesics c1 and c2 are said to be geometrically distinct if they do not have the
same image in W .

2.2. Finite-dimensional approximation of the loop space. Morse’s finite-dimensional
approximation of the curve space over W , as presented by Bangert in [9] consists of the following
data: an open set O ⊂ W , an energy bound κ > 0 and a parameter j ∈ N satisfying 1

j <
ε2

κ

where ε > 0 is smaller than the injectivity radius on O. The positivity of ε will be fulfilled if for
instance O has compact closure, as will be the case in our considerations. The finite-dimensional
approximation Ω = Ω(O, κ, j) is constructed as follows: it is the set of all curves γ ∈ ΛW such
that E(γ) < κ, γ(i/j) ∈ O and such that γ|[i/j,(i+1)/j] is a geodesic of length less than ε for
0 ≤ i ≤ j − 1.

Let d(p, q) ∈ R denote the Riemannian distance between two points p, q ∈ W and Br(p) :=
{q ∈ W | d(p, q) < r} denote the Riemannian ball of radius r ≥ 0 centered at p. In this chapter,
given any open subset C ⊂W , we will say that C is locally convex if there exists an ε > 0 so that
for every p ∈ C and every pair of points q, q′ ∈ C lying in the connected component of B2ε(p) ∩C
containing p, there exists a unique geodesic of length d(q, q′) joining q and q′ and it is entirely
contained in C. Let Ω be a finite-dimensional approximation of ΛW and C ⊂W a locally convex
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set with compact boundary such that C ⊂ O and let us fix an ε > 0 given by the definition of local
convexity. The negative gradient of the restriction of the energy functional to Ω is given by

−∇E|Ω(γ) = −2
(
γ̇1(1/j)− γ̇2(1/j), . . . , γ̇j−1((j − 1)/j)− γ̇j((j − 1)/j)

)
for γ ∈ Ω, where γi = γ|[(i−1)/j,i/j] for 1 ≤ i ≤ j (see [45, p. 252]). Now from our choice of j and
Cauchy-Schwarz inequality, we get

d(γ((i− 1)/j), γ(i/j))2 ≤ 1
j
E(γ|((i−1)/j,i/j)) ≤

ε2

κ
κ = ε2

and consequently by local convexity of C, the negative gradient flow of the finite-dimensional
approximation of the energy functional respects C.

2.3. Index of a closed geodesic. The index of a closed geodesic γ is the Morse index of E:

ind(γ) := ind(E, γ).

It is always finite. The behavior of this index under iteration k 7→ ind(γk) was extensively studied
by Bott in [21]. We simply recall that

(6.2) ind(γk) ≥ k ind(γ)− dim(W ) + 1, k ∈ N,

where ind(γ) ≥ 0 is the average index of γ defined by

ind(γ) := lim
k→∞

ind(γk)
k

.

Let p ∈ W and ΩpW ⊂ ΛW be the set of loops based at p, that is H1-paths γ : [0, 1] → W such
that γ(0) = γ(1) = p. Given a closed geodesic γ ∈ ΛW , we denote by indΩ(γ) ∈ N the Morse index

indΩ(γ) := ind
(
E|Ωγ(0)W , γ

)
.

By inclusion, indΩ(γ) ≤ ind(γ). In fact, we have the concavity inequality [7, Eq. (1.5)]:

(6.3) ind(γ)− dim(W ) + 1 ≤ indΩ(γ) ≤ ind(γ).

A Jacobi field of the geodesic path γ is a smooth map J : R→ γ∗TW , satisfying

J(t) ∈ Tγ(t)W, ∀t ∈ R and ∇2
γ̇J = R(γ̇, J)γ̇,

where R denotes the Riemann tensor. Let µ(t) be the number of linearly independent Jacobi fields
of γ such that J(0) = J(t) = 0; the Morse index theorem states that

(6.4) indΩ(γ) =
∑

0<t<1
µ(t).

The local homology of an isolated critical circle S1 · γ over the ring R is by definition

C∗(S1 · γ;R) := H∗({E < E(γ)} ∪ S1 · γ, {E < E(γ)};R),

where the set {E < E(γ)} is {δ ∈ ΛW | E(δ) < E(γ)}, and H∗ denotes the singular homology.
When the choice of fixed ring R is irrelevant, the symbol R will not be written. According to
the Gromoll-Meyer theory, local homology groups are finitely generated (see [46, remark following
Lemma 1] for the case of an isolated critical point and [6, Proposition 3.1] for the reduction to
this case). A closed geodesic is said to be homologically visible if C∗(S1 · γ) 6= 0 and is said to be
homologically invisible otherwise. Although this notion depends on the choice of coefficients ring
R, the universal coefficients theorem implies that a closed geodesic is homologically invisible over
every ring R if and only if it is homologically invisible over Z. By excision, for all neighborhood
U ⊂ ΛW of S1 · γ,

(6.5) C∗(S1 · γ) ' H∗
(
U ∩

(
{E < E(γ)} ∪ S1 · γ

)
, U ∩ {E < E(γ)}

)
.

Therefore, every local minimum of E is homologically visible. We will be interested in the properties
of the local homology C∗(S1 ·γ) especially in the case where γ is a closed geodesic of average index
ind(γ) = 0 and whose image γ(S1) lies in the interior ofW (ind(γ) = 0 is equivalent to the fact that
ind(γm) vanishes for all m ≥ 1). Let γ ∈ ΛW be such a closed geodesic. Given m ∈ N, we denote
by ψm : ΛW → ΛW the iteration map ψm(δ) := δm. According to a theorem of Gromoll-Meyer
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[47, Theorem 3], the local homology Cd(S1 · γ) is zero in degrees d ≥ 2 dimW and there exist
infinitely many positive integers m such that the induced map in homology
(6.6) (ψm)∗ : C∗(S1 · γ)→ C∗(S1 · γm)
is an isomorphism. On the other hand, a theorem of Bangert-Klingenberg [8, Corollary 1] states
that there exists m0 ∈ N above which for all m ≥ m0, there exists em > m2E(γ) such that the
composition

(6.7) C∗(S1 · γ) (ψm)∗−−−−→ C∗(S1 · γm) inc∗−−→ H∗
({
E < em

}
,
{
E < m2E(γ)

})
is zero.

3. Proof of the Bangert theorem

A closed geodesic γ is a mountain pass if, for all neighborhoods U ⊂ ΛM of S1 · γ, U ∩
E−1([0, E(γ)) is not connected. For the proof of Theorem 6.7, we need the following statement,
which tells us that isolated closed geodesics cannot remain mountain pass critical points of the
energy functional when sufficiently iterated. A geometric proof is given by Bangert [9].

Theorem 6.8 ([9, Theorem 2]). Let γ be an isolated closed geodesic on M , where dimM = 2.
Then there exists an integer mγ ∈ N such that the following holds: For all integer m ∈ N with
m ≥ mγ , there is a neighborhood U of S1 · γ in ΛM such that U ∩ E−1([0, E(γm))) is connected.

According to Gromoll-Meyer [47], given an isolated closed geodesic γ, there exists a connected
neighborhood U ⊂ ΛM of the critical circle S1 · γ such that

C∗(S1 · γ) ' H∗
(
U,U ∩ E−1([0, E(γ))

))
.

If γ and all its iterates are homologically invisible, Theorem 6.8 is thus true for mγ = 1.

Proof of Theorem 6.7. We begin by taking care of a technical problem: we will need to
have that ∂C− and ∂C+ do not contain any closed geodesic. By assumption, if ∂C− contains a
closed geodesic, then ∂C− is not connected and the complement of C− has a bounded connected
component. We then find a simple closed curve which is contractible in M , but non-contractible
in M \ C. We can apply the negative gradient flow in a finite dimensional approximation (see
Section 2.2) to obtain a closed geodesic which is contractible in M . Then we can apply the
argument presented in Section 4 (which works independently of Bangert’s theorem) to conclude
that there already have to exist infinitely many homologically visible closed geodesics. We now
assume that both ∂C− and ∂C+ do not contain any closed geodesic.

Assume there are only finitely many prime closed geodesics γ1, . . . , γk which have homologically
visible iterates and which intersect W := M \ (C− ∪C+). We will now derive a contradiction from
this assumption. We will define a suitable finite-dimensional approximation Ω = Ω(O, κ, j). Now
as the statement of Theorem 6.8 remains true in a finite-dimensional approximation, we get that
there exists m0 ∈ N such that for all integers m ≥ m0 and for all i ∈ {1, . . . , k} the following holds:
i) There exists a neighborhood U of S1 · γmi in Ω such that U ∩ E−1([0, E(γmi ))) is connected.

Set A := max{E(γm0
i ) | i ∈ {1, . . . , k}}, and notice that A is larger than the energy of a closed

geodesic of mountain pass type. We fix an identification of π1(M) with Z and denote by [γ] ∈ Z
the class of a loop γ ∈ ΛM . We define the following sets of curves:

P±n := {γ ∈ Ω | γ(S1) ⊂ C±, [γ] = n}.
In the following for each U, V ⊂M , we will denote

dist(U, V ) := inf
x∈U, y∈V

d(x, y).

Choose δ > 0. Then there exists an n ∈ N such that for any curve γ ∈ P±n such that dist(γ(S1),W )
is less than δ it holds that E(γ) ≥ A. We can now say how exactly the finite-dimensional approx-
imation has to be chosen:

• Choose a κ > 0 large enough such that there exists a homotopy h : [0, 1] → E−1([0, κ))
in Ω from h0 ∈ P−n to h1 ∈ P+

n with
dist

(
ht(S1),W

)
< δ, ∀t ∈ [0, 1].

• Set O := {p ∈M | dist(p,W ) < R}, where R > 2κ 1
2 + δ such that O contains γ1, . . . , γk.
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• Choose j such that the (−∇E)-flow of the finite-dimensional approximation respects C±,
as described above.

A technical issue is given by the fact that the gradient flow of −∇E may not be defined for all
times as the sublevel sets of E|Ω are not compact. Ultimately we are only going to be interested
in curves intersecting the compact set W , i.e. the subset

K := {γ ∈ Ω | γ(S1) ∩W 6= ∅}

of Ω. We introduce a smooth function g : Ω→ [0, 1] with the property that{
g(γ) = 1 if dist(γ(S1),W ) ≤ 1

2κ
1
2 ,

g(γ) = 0 if dist(γ(S1),W ) > 3
2κ

1
2 .

Then the flow φt of −g∇E is defined for all times t ≥ 0 and coincides with the negative gradient
flow for curves in K. Two crucial observations about the set K are the following: firstly, for all
κ̄ < κ the set K ∩ E−1([0, κ̄]) is compact. Secondly, if φt(γ) ∈ K for some γ ∈ Ω and some time
t ≥ 0, we already have γ ∈ K as the flow φt respects the convex sets C±. From this it follows:
ii) Let 0 < κ0 < κ0 + ε < κ. Let V denote a neighborhood of the closed geodesics in K of energy

κ0. Suppose there is no closed geodesic in K ∩ E−1((κ0, κ0 + ε]). Then there exists a time
τ > 0, such that

φτ
(
E−1 ([0, κ0 + ε])

)
∩K ⊂ E−1([0, κ0)) ∪ V.

This is just the deformation lemma; for a proof see for instance [71, Lemma 3.4]. We are now
set to complete the proof of the theorem. Define the set of homotopies

Π :=
{
β : [0, 1]→ Ω continuous |β0 ∈ P−n , β1 ∈ P+

n

}
.

Note that Π is not empty, as h ∈ Π. Furthermore, φt ◦β ∈ Π for all β ∈ Π and all t ≥ 0 as the flow
respects the convex sets C± and therefore φt(β0) ∈ P−n and φt(β1) ∈ P+

n for all t ≥ 0. Define now

κ0 := inf
β∈Π

max
t∈[0,1]
βt∈K

E(βt) .

By definition of κ, one has κ0 < κ. For every β ∈ Π for time t0 := min{t ∈ [0, 1] |βt /∈ P−n }
it holds that βt0 ∈ K and E(βt0) ≥ A (as E and β are continuous and there exists a sequence
(tk)↗ t0 such that βtk ∈ P−n and dist(βtk ,W ) < δ). Consequently, we get κ0 ≥ A. Since κ0 < κ,
for ε > 0 small enough, the subset K ∩E−1([0, κ0 +ε]) is compact and there are only finitely many
S1-orbits of closed geodesics inside (we assumed every orbit to be isolated). Let {S1 · dj}1≤j≤l
denote the critical circles of energy κ0 in K. By definition of A and by using i) when dj is a power
of some γi (otherwise this is true according to the remark just before the beginning of the proof),
there exist disjoint neighborhoods Uj of the S1 · dj ’s such that Uj ∩ E−1([0, κ0)) is connected for
all j. Since ∂C± do not contain any closed geodesic, we know that the dj ’s are not contained in
∂K and we can assume that Uj ⊂ K. Now because there are only finitely many closed geodesics
in K ∩ E−1([0, κ0 + ε]) for ε > 0 small enough, one can take ε > 0 such that there is no closed
geodesic in K ∩E−1((κ0, κ0 + ε]). By the definition of κ0 there exists a homotopy β ∈ Π satisfying
E(βt) ≤ κ0 + ε for all t ∈ [0, 1] such that βt ∈ K. Choose neighborhoods Vj of S1 · dj such that
Vj ⊂ int(Uj) and use property ii) on the neighborhood V :=

⋃l
k=1 Vj of closed geodesics of energy

κ0 in K to obtain a τ > 0 with the property that for the homotopy φτ ◦β we have that (φτ ◦β)t ∈ K
implies E((φτ ◦β)t) < κ0 or (φτ ◦β)t ∈ V . Now (φτ ◦β)−1(V ) =

⋃m
r=1(tr, t′r) and by our choice of

the Vj we have (φτ ◦β)([tr, t′r]) ⊂ Uj and for the endpoints (φτ ◦β)tr , (φτ ◦β)t′r ∈ Uj ∩E
−1([0, κ0))

for some j ∈ {1, . . . , l} (which is why we applied ii) only to V and not to
⋃l
j=1 Uj directly).

Now, by using i) if dj a power of some γi (otherwise it is true by the remark just before the
beginning of the proof), we know that Uj ∩ E−1([0, κ0)) is connected and consequently we can
replace (φτ ◦ β)|[tr,t′r] by a path in E−1([0, κ0)) with the same endpoints. After m steps we obtain
a homotopy β̂ : [0, 1] → Ω such that E(β̂t) < κ0 when β̂t ∈ K. Since (φτ ◦ β)0, (φτ ◦ β)1 /∈ K it
follows that (φτ ◦ β)0, (φτ ◦ β)1 /∈

⋃l
j=1 Uj and therefore β̂0 ∈ P−n , β̂1 ∈ P+

n , hence β̂ ∈ Π. This
contradicts the minimality of κ0. �
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Lifts of c

R2

γ̃1 γ̃3

(0,−y0)

Figure 5. The family of loops (γ̃n)

4. Contractible and intersecting closed geodesics

Here M still denotes a complete Riemannian cylinder. We assume that there exists a con-
tractible closed geodesic c ∈ ΛM . Let us consider the unbounded components of M \ c(S1). Since
c(S1) is bounded, there are at most two distinct unbounded components. If there are two distinct
unbounded components C− and C+, one can assume that C− is a neighborhood of −∞ and C+ is a
neighborhood of +∞. By C± we will mean any of these two neighborhoods. Then ∂C± is a broken
geodesic with angles strictly less than π inside C± since c is a closed geodesic (see Figure 6 for an
instance of ∂C+). Hence C± is locally convex. Moreover if the boundary were totally geodesic,
then ∂C± would be parametrised by c which is impossible for c is contractible. We can thus apply
Theorem 6.7 in this case.

We now assume thatM \c(S1) has only one unbounded component C. Let us identifyM with
S1×R in the remaining of this proof in order to fix notation. Let π : R2 → S1×R be the universal
cover of S1 × R. By compactness of c(S1), there exists A > 0 such that c(S1) ⊂ S1 × (−A,A).
Let y0 > A, since S1 × (−∞,−A) and S1 × (A,+∞) belong to the same component of M \ c(S1),
there exists a smooth path α : [0, 1]→M \ c(S1) such that α(0) = (0,−y0) and α(1) = (0, y0). Let
β0 be the smooth lift of α in R2 such that β0(0) = (0,−y0) and β0(1) = (n0, y0) for some n0 ∈ Z
that we can take equal to n0 = 0 by chaining α with t 7→ (tn0 mod 1, y0). Let δn,± : [0, 1] → R2

be the path t 7→ (nt,±y0) and βn : [0, 1]→ R2 be the family of lifts βn := (n, 0) + β0, n ∈ N. We
define the family of loops γ̃n ∈ ΛR2 by

γ̃n := β0 · δn,+ · β−1
n · δ−1

n,−.

They project to γn := π ◦ γ̃n in M \ c(S1). Let q0 ∈ R2 be a lift of some point of c(S1) and
define qn := q0 + (n, 0). Then the first homology group H1(R2 \ {qn}n∈Z) is the free abelian group
with generators (gn)n∈Z, and by construction the class of γ̃n is g1 + g2 + · · · + gn. The covering
transformations of R2 \{qn}n∈Z → S1×R\π(q0), which form a group isomorphic to Z, acts on the
first homology group by k · gi = gi+k. Therefore, for natural integers n 6= m and integers k, l ∈ Z∗,
the fact that

k(g1+a + g2+a + · · ·+ gn+a) 6= l(g1+b = g2+b + · · ·+ gm+b), ∀a, b ∈ Z,

implies that the iterated loops γkn and γlm are not freely homotopic in M \ π(q0) and hence in the
unbounded component C of M \ c(S1). For γ ∈ ΛC, let us denote by [γ] the free homotopy class
of γ. For m ≥ 2, let us consider the infimum

em := inf
γ∈ΛC

[γ]=[γm]

E(γ).
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∂C+

α

R

c

Figure 6. Construction of the locally convex neighborhood C+ (α could also
have self-intersections)

Let K ⊂ M be a compact set that contains c(S1) such that M \K has two distinct unbounded
component. Since any γ ∈ ΛC that is freely homotopic to γm must intersect K, one can restrict
the domain of the infimum to those γ which image is inside the compact set L ⊂ M of points
that are at distance at most √em of K (which is compact by completeness of the metric on M).
Indeed, if γ were a loop of length ≥ 2√em then E(γ) ≥ 4em by Cauchy-Schwarz inequality. By
compactness of L, we can use a finite-dimensional approximation to get a closed geodesic cm on
C ∪ c(S1) with E(cm) = em that is a limit of broken geodesics on C freely homotopic to γm. By
uniqueness of the Cauchy problem, if cm intersect c(S1), the closed geodesic must be a power of c
(up to a translation of the parametrisation). This is impossible since the powers of c are not in the
closure of {γ ∈ ΛC | [γ] = [γm]} for m ≥ 2 (such γ’s must intersect every line joining both ends
±∞ of M). Therefore, the above infimum is reached by the closed geodesic cm ∈ ΛC. We thus
get a family of closed geodesics (cm) such that [ckm] 6= [cln] for all k, l ∈ Z∗ and m 6= n. Therefore
the closed geodesics (cm) are geometrically distinct. They all intersect the compact set K. As a
local minimum, every cm is homologically visible.

Now that Theorem 6.1 is proved under hypothesis 1, in order to prove it when there is one
self-intersecting closed geodesic c or two intersecting ones c1 and c2, one can assume that these
geodesics are not contractible. Therefore, in both respective cases, M \ c(S1) or M \ (c1(S1) ∪
c2(S1)) has exactly two unbounded connected components C− and C+, which are locally convex by
construction. The intersection hypothesis then implies that none of the boundaries ∂C± is totally
geodesic. Hence the conclusion follows by applying Theorem 6.7.

5. Closed geodesic of non-zero average index

We assume that there exists a closed geodesic c ∈ ΛM of average index ind(c) > 0. If c
is contractible or self-intersecting, we already know that there are infinitely many homologically
visible closed geodesics. Let us assume that c is an embedded curve generating π1(M) ' Z. By a
slight abuse of notation, we identify the loop c : S1 →M with its lift R→M .

Lemma 6.9. There exist a non-zero Jacobi field J : R → c∗TM of c and δ > 0 such that
J(s) 6= 0 for all s ∈ (0, δ) and J(0) = J(δ) = 0.

Proof. Since ind(c) > 0, Bott’s iteration inequality (6.2) and the concavity bound (6.3) imply
that there exists k ∈ N∗ such that

indΩ(ck) ≥ 1.
Let us fix such a k ≥ 1. The conclusion is now a direct application of the Morse index theorem
(6.4) to the geodesic path ck. �

In order to fix notation, let us identify the image of the loop c to S1 × {0}, with c(s) = (s, 0)
for s ∈ S1, so that M \ c(S1) is the disjoint union of the neighborhood S1 × (−∞, 0) of −∞ and
the neighborhood S1× (0,+∞) of +∞ (we only need this identification to be a homeomorphism).
Let J : R → c∗TM and δ > 0 be the Jacobi field and the positive number given by Lemma 6.9.
Let ε > 0 and I := (−ε, δ + ε). Since there exists a smooth family (βs)s∈(−1,1) of geodesic paths
I →M such that J |I = ∂βs

∂s |s=0, it implies that there exists a geodesic path α : [0, 1]→ S1×[0,+∞)
intersecting c (transversally) only at its endpoints.
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By construction, the unbounded component C+ of S1 × (0,+∞) \ α([0, 1]) has a boundary
which is a broken geodesic with angles strictly less than π. By symmetry, we get two disjoint
neighborhoods of +∞ and −∞ respectively which are locally convex and whose boundaries are
not totally geodesic, we can thus apply Theorem 6.7.

6. Two homologically visible closed geodesics

Here M denotes a complete Riemannian cylinder. We fix an identification of π1(M) with Z
and denote by [γ] ∈ Z the class of a loop γ ∈ ΛM . We assume that there exists two geometrically
distinct and homologically visible closed geodesics. We suppose by contradiction that for any
compact set K ⊂ M only a finite number of geometrically distinct homologically visible closed
geodesics intersect K. By the previous cases of Theorem 6.1, every prime closed geodesic of M
must be embedded, non-contractible, without intersections with another closed geodesic, and of
zero average index. Thus the images of closed geodesics ofM ' S1×R with a homologically visible
iterate are naturally ordered by their smallest intersection with ∗ × R where ∗ denotes any point
of S1. The order is independent of the choice of ∗ ∈ S1. We will say that two closed geodesics are
consecutive if they are so with respect to this order. Since only a finite number of geometrically
distinct homologically visible closed geodesic intersect a given compact set, one can talk about the
next and the previous one with respect to this order.

Lemma 6.10. There exists two closed embedded geodesics c1 and c2 of M with degree [c1] =
[c2] = 1 bounding a compact locally convex cylinder C ' S1 × [0, 1] such that

(1) c1 is a local minimum of E|ΛC ,
(2) c2 is not a local minimum of E|ΛC ,
(3) c1 and c2 are the only closed geodesics of M inside C that have homologically visible

iterates.
Proof. We first show that two consecutive closed geodesics among closed geodesics that

possess homologically visible iterates cannot be both local minima of E|ΛC′ if C ′ is the compact
cylinder that they bound. By contradiction, let us assume so and let us call γ0 and γ1 these two
geodesics. Up to a change of parametrization, one can assume that [γ0] = [γ1] and thus that these
two geodesics are homotopic in ΛC ′. Let

Π := {h : [0, 1]→ ΛC ′ continuous | h(0) = γ0 and h(1) = γ1}
denote the set of homotopy of loops in C ′ starting at γ0 and ending at γ1. We consider the following
min-max:

τ = inf
h∈Π

maxE ◦ h.

By compactness of C ′, E|ΛC′ satisfies Palais-Smale (alternatively, one can work in the compact
finite-dimensional manifold of k-broken-geodesics of energy ≤ c + ε for a large k ∈ N and ε > 0).
Let e := max(E(γ0), E(γ1)). Since the critical orbits S1 · γ0 and S1 · γ1 are isolated local minima
of E|ΛC′ that satisfies Palais-Smale, τ > e. By local convexity of C ′, the (−∇E)-flow preserves
ΛC ′. By the minimax principle, τ is thus a critical value of E|ΛC′ and there exists a homologically
visible closed geodesic γ ∈ ΛC ′ of energy τ . Hence γ0 and γ1 are not consecutive, a contradiction.

By a similar argument, we show that one out of two consecutive closed geodesics among those
that possess homologically visible iterates is a local minimum of E|ΛC′ . Indeed, otherwise one has
that

inf
γ∈ΛC′
[γ]=1

E(γ) < min(E(γ0), E(γ1)),

and this infimum is reached for some closed geodesic in C ′ by compactness and local convexity of
C ′ (and this is not a point since E(γ) ≥ (2r)2 for all γ ∈ ΛC ′ of degree [γ] = 1 where r > 0 denotes
the injectivity radius of the compact Riemannian manifold with boundary C ′). This new closed
geodesic is a local minimum of E by definition and thus homologically visible.

The requirements of the lemma are thus fulfilled by taking any two consecutive closed geodesics
among those with homologically visible iterates. �

Proof of Theorem 6.1. Let c1 and c2 be closed geodesics ofM satisfying Lemma 6.10. We
will reach a contradiction by finding a homologically visible geodesic which is not c1 or c2 and
arbitrarily close to C.
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Figure 7. Construction of cylinder Z

Let x ∈ Int(C) be outside the image of the isolated set of closed geodesics and let γ1 ∈ ΛC
be the loop of degree [γ1] = 1 based at x of minimal length. It exists by local convexity and
compactness of C. The loop γ1 is not a periodic geodesic (this is a geodesic as a path [0, 1] → C
but not as a loop S1 → C) since there is no local minimum of E|ΛC but c1. This loop lies
inside Int(C) so that either the connected component of C \ γ1(S1) containing c1 or the connected
component containing c2 is locally convex – depending on the angle of γ1 at γ1(0) = γ1(1) = x. If
the connected component containing c2 were locally convex, then the infimum of E among loops
of degree one lying inside the locally convex compact cylinder bounded by γ1 and c2 would give
a closed geodesic loop 6= c1 which would be a local minimum. Thus the connected component of
C \ γ1(S1) containing c1 is a locally convex compact cylinder. Hence the unbounded component
of M \ γ1(S1) containing c1 is a locally convex neighborhood of −∞ which is not totally geodesic
since γ1 is not a closed geodesic.

Let c3 be the homologically visible closed geodesic succeeding c2 if it exists. Let C ′ be either
the compact cylinder that c2 and c3 bound or the infinite cylinder ' S1 × [0,+∞) with boundary
c2 and ending at +∞, depending on the existence of c3 (so that C ∩ C ′ = c2(S1) in both cases).
Let y ∈ Int(C ′) be outside the image of any closed geodesic and let γ2 ∈ ΛC ′ be a loop of degree
[γ2] = 1 based at y of minimal length. Since C ′ is complete and locally convex, γ2 exists. It cannot
be a closed geodesic for c3 succeeds c2. One of the two unbounded components of M \ γ2(S1) is
thus locally convex, depending on the angle of γ2 at γ2(0) = γ2(1) = y. If the neighborhood of
+∞ was the locally convex one, by Theorem 6.7 applied to the locally convex neighborhood of −∞
defined above with γ1 and this neighborhood of +∞, there would be infinitely many homologically
visible and geometrically distinct closed geodesics intersecting some compact set of M . Thus
the neighborhood of −∞ is the locally convex unbounded component of M \ γ2(S1). Restricting
this neighborhood to the compact cylinder C ∪ C ′, one gets a compact locally convex cylinder
Z intersecting only two geodesics c1 and c2 that possess homologically visible iterates, moreover
c1(S1) ⊂ ∂Z and c2(S1) ⊂ Int(Z).

Let k ∈ N∗ be such that C∗(S1 · ck2) 6= 0. Let Λh ⊂ ΛZ be the connected component of loops
γ ∈ ΛZ of degree [γ] = h. For all m ∈ N∗, let ψm : Λk → Λkm be the iteration map ψm(γ) := γm.
According to the Bangert-Klingenberg theorem (6.7), there exists m0 ∈ N above which for all
m ≥ m0 there exists em > m2E(ck2) such that the composition

C∗(S1 · ck2) (ψm)∗−−−−→ C∗(S1 · ckm2 ) inc∗−−→ H∗
({
E|Λkm < em

}
,
{
E|Λkm < m2E(ck2)

})
is zero. According to the Gromoll-Meyer theorem (6.6), since ind(ck2) = k ind(c2) = 0, there exist
infinitely many m such that

(ψm)∗ : C∗(S1 · ck2)→ C∗(S1 · ckm2 )

is an isomorphism. Let m ≥ m0 be such an integer, then the inclusion induces a zero map

C∗(S1 · ckm2 ) inc∗−−→ H∗
({
E|Λkm < em

}
,
{
E|Λkm < m2E(ck2)

})
,
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which contradicts the fact that ckm2 is the homologically visible critical point of E|Λkm of maximal
value. Critical points of E|Λkm are closed geodesics of Z of degree km. Thus S1 · ckm1 and S1 · ckm2
are the only homologically visible critical circle of E|Λkm (and E(ckm2 ) > E(ckm1 ) since c1 is the
only local minimum in C). Since Z is locally convex, the (−∇E)-flow preserves ΛZ. Moreover Z
is compact and has only isolated closed geodesics, we can thus apply Morse theoretical arguments
since E|Λkm has isolated critical circles and satisfies Palais-Smale or, alternatively, one can restrict
E to the finite-dimensional subspace of j-broken-geodesics of Λkm of energy less than em + ε for
some large j ∈ N and some ε > 0. Thus, if S1 ·ckm2 were the only homologically visible critical circle
of energy ≥ m2E(ck2), Morse deformation lemma would imply inc∗ to be an isomorphism. �

7. The case of the Möbius band

Assuming Theorem 6.1 concerning complete cylinders, we deduce Corollary 6.3.
Let (M, g) be a complete Möbius band and let us denote by π : M̃ →M its connected double

cover. Hence, (M̃, g̃) with g̃ := π∗g is a complete cylinder. Let us denote by E : ΛM → R and
Ẽ : ΛM̃ → R the respective energy functionals of M and M̃ . Any closed geodesic of M is covered
by one or two closed geodesics of M̃ . The proof would be obvious if the homological visibility of
one of the iterates of the geodesic on M were equivalent to the homological visibility of one of the
iterates of the covering geodesics. However, it is not clear whether it is the case or not when only
one closed geodesic covers the closed geodesic on M . We will see that Smith inequality (5.4) will
give us the equivalence over the field R = F2.

In the statement of both next lemmas, we use the above notationM , M̃ , E, Ẽ where π : M̃ →
M denote any Riemannian cover of some Riemannian manifold M .

Lemma 6.11. Let c̃ ∈ ΛM̃ be a closed geodesic and let c := π◦c̃. Then the map π] : ΛM̃ → ΛM ,
γ̃ 7→ π ◦ γ̃, induces an isomorphism

C∗(S1 · c̃) '−→ C∗(S1 · c).

Moreover ind(c̃) = ind(c).

Proof. Since π is a covering map, the map π] is a diffeomorphism in a small neighborhood
Ũ of S1 · c̃ by the uniqueness of the lift to Ũ of a loop belonging to the neighborhood U := π](Ũ)
of S1 · c. Since Ẽ = E ◦ π], the Morse indices ind(c) and ind(c̃) are equal. The conclusion now
follows from the local property (6.5) of the local homologies of S1 · c̃ and S1 · c. �

Let us recall the Smith inequality which was already used in Part 1. Given a group G acting
on a space X, let XG ⊂ X be the set of fixed points of G. According to the Smith inequality,

(6.8) dimH∗
(
X;Fp

)
≥ dimH∗

(
XZ/pZ;Fp

)
,

where X is locally compact space or pair such that H∗(X;Fp) is finitely generated, a space on
which acts the group Z/pZ with p prime. Here dimH∗ means the total dimension

∑
k dimHk.

The following lemma is a counterpart of a result of Çineli-Ginzburg relating the local homologies
of a Hamiltonian orbit and its p-iterate [29].

Lemma 6.12. For all isolated closed geodesic c ∈ ΛM and all prime number p,

dimC∗(S1 · cp;Fp) ≥ dimC∗(S1 · c;Fp).

Let us notice that this last inequality is an equality when p is large enough according to
Gromoll-Meyer theory [47, Theorem 3] (the coefficients field Fp can be replaced by any ring R in
this case).

Proof. Since the local homology of S1 ·c only depends on a small neighborhood of S1 ·c (local
property (6.5)), one can assume that M is a closed manifold. Let X ⊂ ΛM be the topological pair

X :=
(
{E < E(cp)} ∪ S1 · cp, {E < E(cp)}

)
.

This pair retracts on a locally compact pair by using a finite-dimensional approximation. According
to the Gromoll-Meyer theory, the homology group H∗(X;Fp) = C∗(S1 · c) is finitely generated (see
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Section 2). By seeing Z/pZ as the subgroup of p-th roots of unity, Z/pZ ⊂ S1 acts on ΛM . This
action preserves the sublevel sets of E so it preserves X and γ 7→ γp induces a homeomorphism(

{E < E(c)} ∪ S1 · c, {E < E(c)}
) '−→ XZ/pZ.

This is now a direct consequence of the Smith inequality (6.8). �

Proof of Corollary 6.3. Let π : M̃ → M be the connected double cover of the complete
Möbius band M . Let us identify H1(M ;Z) and H1(M̃ ;Z) with Z, so that the induced morphism
π∗ : H1(M̃ ;Z)→ H1(M ;Z) is the multiplication by 2. Given a closed geodesic γ ∈ ΛM , we denote
by [γ] ∈ Z its homology class. By the lifting property of covers, there exists γ̃ ∈ ΛM̃ such that
γ = π ◦ γ̃ if and only if [γ] is even (we recall that π1(M) ' H1(M ;Z) for M and for M̃ as well).

If hypothesis 1, 2 or 3 is satisfied on M , then it is also satisfied on M̃ by considering covering
closed geodesics. If hypothesis 4 is satisfied on M , let c ∈ ΛM be a closed geodesic with ind(c) >
0. Now [c2] = 2[c] is even so there exists a closed geodesic γ̃ ∈ ΛM̃ such that c2 = π ◦ γ̃.
According to Lemma 6.11, ind(γ̃) = ind(c2) = 2 ind(c) > 0 so hypothesis 4 is also satisfied on M̃ .
Finally if hypothesis 5 is satisfied on M and c1, c2 ∈ ΛM denote the two closed geodesics that are
homologically visible over F2, c21 and c22 are also homologically visible over F2 by Lemma 6.12 and
one can apply Lemma 6.11 as before to get that hypothesis 5 is satisfied on M̃ over F2.

According to Theorem 6.1, in any of the above cases M̃ contains infinitely many closed geodesics
intersecting some common compact set K̃ that are homologically visible over F2. By Lemma 6.11,
the projection of these closed geodesics gives infinitely many closed geodesics intersecting the
compact set π(K̃) that are homologically visible over F2. �

8. The case of the plane

Let M ' R2 be a complete Riemannian plane with isolated closed geodesics. Using what we
have seen in the previous sections, we now give the proof of Theorem 6.5.

Proof of Theorem 6.5. When hypothesis 1, 2 or 3 is assumed, the conclusion follows from
the same argument as in the case of the cylinder: by construction of an open neighborhood C 6= M
of infinity. More precisely, this neighborhood C is the unbounded component of M \ c(S1) or
M \ (c1(S1) ∪ c2(S1)) if c is self-intersecting or c1 and c2 are intersecting closed geodesics. In
the case when there exists a closed geodesic c of non-zero average index, C is constructed by
“integrating a Jacobi field” along c as was done in Section 5.

Now, let us assume that all the closed geodesics of M are without self-intersection, with
zero average index and do not intersect any other closed geodesic. Moreover, let us assume that
only finitely many (geometrically distinct) closed geodesics intersect any given compact set among
homologically visible closed geodesics. Let us show by contradiction that it cannot occur whenever
M possesses at least one homologically visible closed geodesic. Let c be a simple closed geodesic
that has a homologically visible iterate and such that there is not any homologically visible closed
geodesic inside the disk D bounded by c. Let G =

⋃
γ γ(S1) ⊂ M be the union of the images of

the closed geodesics γ of M . Let U be the connected component of M \ (D ∪ G) that contains
c(S1) in its boundary. Since U contains loops that are not contractible in R2 \D (by taking loops
close to the boundary c(S1)), U is not simply connected. Let y ∈ U and let γ ∈ ΛU be a loop
minimizing the length among the loop of U based at y that are freely homotopic to c (it exists
since U is complete). Since ∂U is a disjoint union of closed geodesics, γ lies in the interior of U and
is a geodesic path. Depending on the angle that γ makes at y, either the unbounded component
of M \ γ(S1) is locally convex and not totally geodesic or the bounded component containing c is
locally convex. In the first case, one can apply Bangert’s theorem to get a contradiction.

Let us now apply argument similar to [8, Theorem 3] in order to conclude. We can thus assume
that c lies in the interior of a compact and locally convex subset K ⊂M and that some powers of
c are the only homologically visible closed geodesics of K. Since ind(c) = 0, the local homology
groups Cd(S1 · cm) are trivial in degrees d ≥ 4 for all m ∈ N. Let d ∈ {0, 1, 2, 3} be the maximal
degree such that Cd(S1 · cm) 6= 0 for some m ∈ N∗. Let k ∈ N∗ be such that Cd(S1 · ck) 6= 0.
According to Gromoll-Meyer theory, there exist infinitely many m ∈ N∗ such that the map induced
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by the iteration map
(ψm)∗ : C∗(S1 · ck)→ C∗(S1 · ckm)

is an isomorphism. As above, according to the Bangert-Klingenberg theorem (6.7), there exists
m0 ∈ N∗ such that, for all such m ∈ N∗ greater than m0, the inclusion of sublevel sets of E|ΛK
induces the zero map

C∗(S1 · ckm) inc∗−−→ H∗
({
E|ΛK < em

}
,
{
E|ΛK < m2E(ck)

})
,

for some em > m2E(ck). Thus, for such an m, the long exact sequence of the triple({
E|ΛK < em

}
,
{
E|ΛK < m2E(ck)

}
∪ S1 · ckm,

{
E|ΛK < m2E(ck)

})
implies that

Hd+1
({
E|ΛK < em

}
,
{
E|ΛK < m2E(ck)

}
∪ S1 · ckm

)
6= 0.

Therefore, by the Morse deformation lemma applied to the C2 function E|ΛK which satisfies the
Palais-Smale condition and whose anti-gradient flow preserves ΛK (by compactness and local
convexity of K), there must be a closed geodesic γ ∈ ΛK such that Cd+1(S1 · γ) 6= 0 (see for
instance [25, Theorems 4.2 and 4.3 p. 35-36] where one can replace isolated critical points by
isolated critical S1-orbits verbatim). By maximality of d, γ and c are geometrically distinct. But
c is the only homologically visible closed geodesic of K, a contradiction. �





CHAPTER 7

The growth rate of geodesic chords

1. Introduction

LetM be a forward complete Finsler manifold of infinite fundamental group (every manifoldM
will be assumed to be connected). In this chapter, we are interested in the growth rate of geodesics
joining two arbitrarily given points p, q ∈ M , and especially in asymptotic properties that only
involve the topology of M . For ` > 0, we denote by n(`; p, q) the number of geometrically distinct
geodesics between p and q of length ≤ `. It is well known that for π1(M) “large enough” this
number tends to infinity without any further assumption. A precise statement is the following:

Proposition 7.1. Let M be a manifold such that π1(M) has a polynomial growth of degree
d > 1. For each forward complete Finsler metric on M , there exist continuous functions a : M →
(0,+∞) and b : M → R such that

n(`; p, q) ≥ a(q)`d−1 + b(q), ∀p, q ∈M.

For the reader’s convenience, we add the proof of this result, which is certainly well known to
the experts. We are interested in the remaining case in which the growth rate of π1(M) is linear.
In fact, we show the following general result:

Theorem 7.2. Let M be a manifold of infinite fundamental group π1(M) and not homotopy-
equivalent to S1. Then, given any forward complete Finsler metric on M ,

n(`; p, q)→ +∞ as `→ +∞, ∀p, q ∈M.

Of course, the assertion of Theorem 7.2 does not hold for the flat cylinders S1×Rn, which are
homotopy-equivalent to S1. We can be more specific when H1(M ;Z) has non-zero rank:

Theorem 7.3. Let M be a closed manifold not homotopy-equivalent to S1 (that is any closed
M of dimension ≥ 2) and with first Betti number β1(M ;Z) ≥ 1. Then, given any Finsler metric
on M , there exist a > 0 and b ∈ R such that

n(`; p, q) ≥ a log `+ b, ∀` > 0,∀p, q ∈M.

Theorem 7.4. LetM be a manifold not homotopy-equivalent to S1 and with first Betti number
β1(M ;Z) ≥ 1. Then, given any forward complete Finsler metric on M , there exists a continuous
function b : M → R such that

n(`; p, q) ≥ log(log `)
2 log 2 + b(q), ∀` > 0,∀p, q ∈M.

When the universal cover of M is not contractible (that is M is not an Eilenberg-MacLane
space), Theorems 7.2, 7.3 and 7.4 are deduced from a min-max argument inspired by Bangert-
Hingston [11]. When M has a contractible universal cover, the estimate is even stronger, since the
growth is at least linear:

Lemma 7.5. Let M be a manifold not homotopy-equivalent to S1 and with a contractible
universal cover. Then, π1(M) has at least a quadratic growth rate.

We notice that any closed manifold of dimension ≥ 2 with a contractible universal cover
satisfies the above condition.

In Section 2, we fix the notation and the conventions on the objects that we will use throughout
the chapter, and we briefly recall the variational theory of geodesics for a Finsler manifold. In
Section 3, we give a proof of Proposition 7.1 and Lemma 7.5. In Section 4, we prove Theorems 7.2,
7.3 and 7.4.
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2. Preliminaries

2.1. Definitions and conventions on path spaces. LetM be a connected manifold (every
manifold will be assumed to be connected). We fix, once for all, an auxiliary complete Riemannian
metric g0 on M . By H1-path, we mean an absolutely continuous function γ : [0, 1]→M such that
the integral

∫ 1
0 g0(γ′, γ′)dt is finite. For p, q ∈ M let Ωp,q be the set of H1-paths γ : [0, 1] → M

with end-points γ(0) = p and γ(1) = q and Ωp := Ωp,p. For γ, δ ∈ Ωp,q, we write γ ≈ δ if γ and
δ belong to the same path-connected component of Ωp,q. For γ ∈ Ωp,q and δ ∈ Ωq,r, we denote
by γ · δ ∈ Ωp,r the chained path t 7→ γ(2t) for t ∈ [0, 1/2] and t 7→ δ(2t − 1) for t ∈ [1/2, 1]. We
denote a · b · c = (a · b) · c so that a · b · c ≈ a · (b · c). For γ ∈ Ωp,q, let γ−1 ∈ Ωq,p be the reversed
path t 7→ γ(1− t), so that γ · γ−1 ≈ p̄ where p̄ ∈ Ωp denotes the constant path. If γ ∈ Ωq for some
q ∈ M , [γ]π1 ∈ π1(M, q) denotes its class in the fundamental group, or simply [γ] if there is no
ambiguity on notation.

Let p, q, p′, q′ ∈ M , α ∈ Ωp,p′ and β ∈ Ωq,q′ , then f : Ωp,q → Ωp′,q′ and g : Ωp′,q′ → Ωp,q
defined by f(γ) = α−1 · γ · β and g(γ) = α · γ · β−1 are homotopy inverses, thus Ωp,q and Ωp′,q′
are homotopy-equivalent spaces. For all h ∈ π1(M, q) let Ωhq be the path-connected component
such that for all γ ∈ Ωhq , [γ] = h. We fix an arbitrary α ∈ Ωp,q once for all and we define
Ωhp,q := {γ ∈ Ωp,q | [α−1 · γ] = h}.

2.2. Background on Finsler geodesics. Let us recall some basic notion from Finsler geo-
metry. For a general reference, see [12].

Let M be a manifold, TM be its tangent bundle and π : TM →M be the base projection. A
continuous function F : TM → [0,+∞) is a Finsler metric if

• it is smooth on TM \ 0, where 0 ⊂ TM denotes the 0-section,
• it is fiberwise positively homogeneous of degree 1, i.e. F (λv) = λF (v) for v ∈ TM and
λ > 0,

• its square F 2 is fiberwise strongly convex, that is the fundamental tensor

gu(v, w) := 1
2
∂2

∂t∂s
F 2(u+ tv + sw)

∣∣∣∣
t=s=0

, ∀v, w ∈ Tπ(u)M,

is positive definite for every u ∈ TM \ 0.
A Finsler metric F on M induces a length on Ωp,q, given by

length(γ) :=
∫ 1

0
F (γ′(t))dt, ∀γ ∈ Ωp,q.

and a (not necessarily symmetric) distance d on M , given by:
d(p, q) := inf

γ∈Ωp,q
length(γ), ∀p, q ∈M.

Since F (−v) = F (v) does not necessarily hold, d is not necessarily symmetric. A sequence (xi) in
M is called a forward Cauchy sequence if, for all ε > 0, there exists a positive integer N such that
N ≤ i < j implies d(xi, xj) < ε. The Finsler manifold (M,F ) is said to be forward complete if
every forward Cauchy sequence converges in M .

Similarly to the Riemannian case, where F is simply the associated Riemannian norm, geodesics
are the curves whose small portions are length minimizing. Moreover, they satisfy a differential
equation inducing an exponential map between a neighborhood of p ∈ M and a neighborhood of
TpM . If F is forward complete, the Hopf-Rinow Theorem from Riemannian geometry remains true
in the Finsler setting: the exponential map is onto and, for all p, q ∈M , there exists a geodesic in
Ωp,q minimizing the length.

Throughout this part, all the geodesics γ will be considered parametrized with constant speed
equal to F (γ′) and we will often identify geodesics and reparametrized geodesics when writing “δ ·γ
is a geodesic”. For p, q ∈ M , geodesics in Ωp,q are then exactly the critical points of the energy
functional:

E(γ) :=
∫ 1

0
F 2(γ′(t))dt, ∀γ ∈ Ωp,q.

If the Finsler metric is forward complete, then E : Ωp,q → [0,+∞) satisfies the Palais-Smale
condition (see for example [24, Section 3]). Given γ ∈ Ωp,q critical, we denote by ind(γ) its index,
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which is the non-negative integer computed in the same way as in the Riemannian case using
Jacobi fields (6.4). The index of a geodesic chord shares properties similar to the Riemannian case.
In particular, for two geodesic chords γ ∈ Ωp,q and δ ∈ Ωq,r:
(i) if ind(γ) = 0, then for s ∈ (0, 1), γ|[0,s] reparametrized by constant speed on [0, 1] is a local

minimum of E : Ωp,γ(s) → R,
(ii) If γ · δ is a geodesic, then ind(γ · δ) ≥ ind(γ) + ind(δ).

However, E is only of class C1,1 in general and it can be very technical to make this functional fit
into the Morse apparatus. To overcome this issue, we can retract {E < λ} to a finite dimensional
subspace B of broken geodesics joining p and q. We briefly recall the construction of B ⊂ {E < λ}
and its retraction (rs) (a comprehensive reference for the Riemannian case is [61, Part III, §16]).
Let k ≥ 1 be large so that for all γ ∈ {E < λ} there exists a unique minimizing geodesic joining
γ(s) and γ(t) for |s− t| ≤ 1/k. Let

B :=
{
γ ∈ {E < λ} | γ|[i/k,(i+1)/k] is a geodesic, 0 ≤ i ≤ k − 1

}
be the subspace of k-broken geodesics ⊂ {E < λ}. It is a finite dimensional manifold since it is
diffeomorphic to an open subset of the (k−1)-fold productM×· · ·×M via γ 7→ (γ(1/k), . . . , γ((1−
k)/k)). The retraction homotopy rs : {E < λ} → {E < λ}, with r0 = id and im(r1) = B, is defined
as follows. For each γ ∈ {E < λ}, rs(γ) coincides with γ everywhere except on intervals of the
form [i/k, (i + s)/k], 0 ≤ i ≤ k − 1, and the restrictions of rs(γ) to such intervals are minimizing
geodesics. This retraction has the following properties:
(a) ∀s ∈ [0, 1], E ◦ rs ≤ E,
(b) if γ ∈ {E < λ} is a geodesic, rs(γ) ≡ γ,
(c) critical points of E|B are exactly the critical points of E|{E<λ}, E|B is smooth in their neigh-

borhood and their Morse index is equal to their index defined with Jacobi fields.

3. growth rate of geodesic chords and growth rate of π1(M)

Throughout this section, M is a forward complete Finsler manifold.

3.1. Growth rate of geodesic chords and growth of the fundamental group. We
suppose that π1(M, q) is a finitely generated group and denote by e ∈ π1(M, q) its neutral element.
Let S ⊂ π1(M, q) be a finite set of generators. We recall that the word length of g ∈ π1(M, q)
associated with S is

|g| := min
{
m ∈ N | ∃g1, . . . , gm ∈ S ∪ S−1 ∪ {e}, g = g1 · · · gm

}
∈ N

and we denote the associated ball of radius r ∈ N by Br := {g ∈ π1 | |g| ≤ r}. We will say that
π1(M, q) has at least a polynomial growth rate of degree d > 0 if there exists some a > 0 such that
#Br ≥ ard. This notion is indeed independent of the choice of S.

For h ∈ π1(M, q), we fix an arbitrary γh ∈ Ωhp,q minimizing the length, it gives us a family
of homotopically (but not geometrically) distinct geodesics (γh)h∈π1 (where π1 = π1(M, q) by a
slight abuse of notation).

Proof of Proposition 7.1. We suppose π1(M, q) has at least a polynomial growth rate of
degree d > 0. We take a finite generating part S := {s1, . . . , sn}, which is symmetric: S = S−1 and
contains the neutral element, and define the balls Br ⊂ XS as above. Let c1, . . . , cn ∈ Ωq be such
that [ci] = si and ci is minimizing length in its homotopy class. We will first give a lower bound on
the counting number N(`; p, q) of geodesics between p and q not necessarily geometrically distinct.

Given r ∈ N, let g ∈ Br. There exist i1, . . . , ir ∈ {1, . . . , n} such that g = si1 · · · sir , so that
[α−1 · γg] = [ci1 · · · cir ] (recall that α ∈ Ωp,q). Since γg is minimizing length in its homotopy class,

length(γg) ≤ length(α · ci1 · · · cir ) ≤ length(α) + rmax(length(cj)).
Therefore, since (γg)g∈Br is a family of distinct geodesics, there exists a > 0 depending only on
the growth rate of π1(M, q) such that

N(`; p, q) ≥ a
(

`− length(α)
max(length(ci))

)d
, ∀` > 0.

We remark that there exists some positive number b(p) > 0 depending only on the Finsler
metric on M such that any k-iterate closed geodesic containing p has length ≥ b(p)k (one can take
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b(p) to be twice the injectivity radius at p). Since a geodesic in Ωp,q whose image appears multiple
times can be uniquely written d · ck with a primitive closed geodesic c ∈ Ωq and a specific choice
of geodesic chord d ∈ Ωp,q (look at the definition of a primitive geodesic chord in Section 4.1 for
the precise statement),

n(`; p, q) ≥ b

2`N(`; p, q) ≥ a′`d−1 + b′, ∀` > 0,

where a′ > 0 and b′ ∈ R depend only on the metric and the growth rate of π1(M) and can be
made continuous in p ∈M . �

3.2. Growth rate of the fundamental group of K(π1, 1) closed manifolds. LetM be a
K(π1, 1) manifold with an infinite fundamental group and a contractible universal cover. According
to Smith’s theorem (see for instance [54, Theorem 16.1, page 287]), π1(M) is torsion-free. We
suppose that every finitely generated subgroup of π1(M) grows strictly less than any quadratic
polynomial. Then according to a deep result of Gromov [48], π1(M) must be virtually isomorphic
to Z: that is π1(M) has a subgroup of finite index which is isomorphic to Z. Alternatively, the
reader can find an elementary proof of this statement in the finitely generated case in [82]. For a
precise proof of the case where π1(M) is a priori infinitely generated, see [58, Theorem 2] (with
notation of this theorem, since G is torsion-free, L is trivial and G is virtually N ' Z).

The following algebraic lemma is certainly well known, but we add its proof here for the
reader’s convenience, as we could not find it in the literature.

Lemma 7.6. Let G be a torsion-free group, if G is virtually isomorphic to Z ( i.e. there exists
a subgroup of finite index H < G which is isomorphic to Z) then G ' Z.

Proof. Since G is virtually isomorphic to a finitely generated group, G is a finitely generated
group. Let S = {s1, . . . , sn} be a set of generators of G and let H < G be a subgroup of finite index
isomorphic to Z. If C(s) := {g ∈ G | gs = sg} denotes the centralizer of s ∈ G, then C(s) ∩H is
not trivial. Indeed, C(s) is infinite (it contains 〈s〉 which is infinite by hypothesis for s 6= e and
C(e) = G) and there exists a finite sequence (gi) in G such that G =

⋃
i giH, thus there exists

some g = gi such that C(s)∩ gH is infinite. Let c, c′ ∈ C(s)∩ gH be distinct. There are h, h′ ∈ H
such that c = gh and c′ = gh′, then c−1c′ = h−1h′ 6= 1 is in C(s) ∩H.

Since a finite intersection of non-trivial subgroups of H ' Z has a finite index,
⋂
i C(si)∩H has

a finite index in H. Thus the centralizer Z =
⋂
i C(si) of G has a finite index in G. According to a

theorem of Schur, it implies that the commutator subgroupD := [G,G] is finite [66, Theorem 5.32].
Since G is torsion-free, D is trivial and G is abelian. An abelian torsion-free finitely generated
group is isomorphic to Zr and Z is the only one virtually isomorphic to Z. �

Proof of Lemma 7.5. Let M be a K(π1, 1) manifold. We assume that π1(M) grows less
than a quadratic polynomial, so that it is virtually isomorphic to Z. Since π1(M) is torsion-free,
Lemma 7.6 implies that π1(M) ' Z. Since M is a K(Z, 1) manifold, it is homotopy-equivalent to
S1. �

4. Growth rate when the universal cover is not contractible

Throughout this section,M is a forward complete Finsler manifold with an infinite fundamental
group and a non-contractible universal cover.

4.1. A sequence of min-max geodesics. Since the universal cover ofM is not contractible,
there is some n > 1 such that πn(M, q) 6= 0, we fix such an n > 1. For all h ∈ π1(M, q), we recall
that γh ∈ Ωhp,q denotes a minimizing geodesic. We take a non-zero class ν ∈ πn−1(Ωq, q̄) ' πn(M, q)
and, for all h ∈ π1(M, q), let νh := (γh)∗ν be the induced non-zero class of πn−1(Ωhp,q, γh).

To be more precise on the definition of νh, let x0 ∈ Sn−1 be the base point and d be the round
distance on Sn−1. Let f : (Sn−1, x0) → (Ωq, q̄) be a smooth function in the class ν such that
f(s) = q̄ for all s ∈ Sn−1 such that d(x0, s) < 1. For h ∈ π1(M, q), let fh : (Sn−1, x0)→ (Ωhp,q, γh)
be essentially defined by fh(s) := γh · f(s) for all s ∈ Sn−1. To be more specific, in order to have
fh(x0) = γh, let fh(s) := γh · f(s) for all s ∈ Sn−1 such that d(x0, s) ≥ 1 and

(7.1) ∀t ∈ [0, 1], fh(s)(t) :=
{
γh(t/λ(s)), if t ∈ [0, λ(s)],
q, otherwise,
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for all s ∈ Sn−1 such that d(x0, s) < 1, with λ(s) = 1− d(x0,s)
2 ∈ [1/2, 1]. Then we define νh as the

homotopy class of fh.
We suppose that E : Ωp,q → R has a discrete set of critical points (otherwise the conclusions

of Theorems 7.2, 7.3 and 7.4 are clearly true) and consider the min-max:

(7.2) τh = inf
f∈νh

max
s∈Sn−1

E(f(s)).

Then τh is a critical value of E and there exists a critical point δh ∈ Ωp,q of value τh which is
not a local minimum and satisfies ind(δh) ≤ n − 1. This is a classical result if E is C2 in the
neighborhood of its critical points and satisfies Palais-Smale (see for instance [25, Chapter II]).
Even though E is not C2 in any neighborhood of its critical points for a general Finsler metric,
we can apply a retraction (rs) of {E < λ} for some λ > τh to a finite dimensional subspace B of
broken geodesics, as explained above. We thus see that τh satisfies (7.2) restricted to the finite
dimensional subspace B, according to property (a) of (rs). Now property (c) allows us to find
δh ∈ Ωp,q among the critical points of E|B which is C2 in the neighborhood of its critical points.

The following estimate will be useful in Section 4.2:

Lemma 7.7. There exists a constant C > 0 such that, for all h ∈ π1(M, q),

length(γh)2 ≤ τh ≤ 2 length(γh)2 + C.

Proof. Given fh ∈ νh, for all s ∈ Sn−1, fh(s) ≈ γh and γh is minimizing length with a
constant velocity, thus E(γh) ≤ E(fh(s)) which gives length(γh)2 ≤ τh.

Let x0 ∈ Sn−1 be the base point and d be the round distance on Sn−1. Let f : (Sn−1, x0) →
(Ωq, q̄) be a smooth function in the class ν such that f(s) = q̄ for all s ∈ Sn−1 such that d(x0, s) < 1
and define fh ∈ νh by (7.1). Then, for all s ∈ Sn−1,

E(fh(s)) ≤ 2E(γh) + 2E(f(s)),

thus τh ≤ 2E(γh) + C with C := 2 maxE ◦ f independent of h. �

We recall that a geodesic loop c ∈ Ωq is primitive if there does not exist any geodesic loop
c0 ∈ Ωq and any positive integer k > 1 such that c = ck0 . We will say that a geodesic chord d ∈ Ωp,q
is primitive if there does not exist any geodesic loop c ∈ Ωq such that =(d) = =(c) or if it is a
primitive geodesic loop (which is only possible in the case p = q). For all geodesic chord β ∈ Ωp,q,
there exists a unique primitive geodesic chord d ∈ Ωp,q such that β = d · ck, where c ∈ Ωq is either
q̄ or the primitive geodesic loop containing d and k ∈ N. We will say that the geodesic chord
β ∈ Ωp,q carries the primitive chord d ∈ Ωp,q. Thus if the family (δh) carry m distinct primitive
chords d1, . . . , dm and p 6= q, then d1, . . . , dm are geometrically distinct geodesic chords joining p
and q. In the special case p = q, it is possible that dr = d−1

s for some r 6= s so that at least dm/2e
of them are geometrically distinct.

We now study the number of times chords carrying the same primitive chord d ∈ Ωp,q can
appear in the infinite family (δh)h∈π1 . Let d ∈ Ωp,q be a primitive geodesic chord. Let (δ′i)1≤i≤N :=
(δhi), N ≥ 2, be a sequence included in (δh), h ∈ π1, such that each δ′i carries d. Since N ≥ 2, the
primitive chord d is included in some primitive geodesic loop c ∈ Ωq and there exists a sequence
of non-negative integers (ki)1≤i≤N such that δ′i = d · cki . Since each δ′i belongs to a different
path-connected component Ωhip,q ⊂ Ωp,q, the ki’s are distinct.

Now we remark that ind(δ′i) ≥ 1 for i = 1 or i = 2: otherwise if one supposes k2 > k1
then δ′1 must be a local minimum of E, according to property (i) of Section 2.2. If one supposes
k2 > k1, then ind(d · ck2) ≥ 1 implies that ind(d · cn(k2+1)) ≥ n (property (ii) of Section 2.2) thus
ki < n(k2 + 1) for all i.

Proof of Theorem 7.2. The case of a contractible universal cover is a consequence of
Lemma 7.5.

In our present setting, the theorem follows from the fact that a same primitive chord joining
p and q can only be carried a finite number of time in the infinite family (δh)h∈π1 . Indeed, let
(δ′i)1≤i≤N be a sequence inside the family with N ≥ 2 possibly infinite, each δ′i carrying the same
primitive chord and let (ki) be the associated injective sequence in N. Since the ki’s are distinct,
N ≤ n(max(k1, k2) + 1). �
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4.2. Logarithmic growth when β1(M ;Z) ≥ 1. Let M be a forward complete Finsler man-
ifold with first Betti number β1(M ;Z) ≥ 1 and which is not K(π1, 1).

Let h ∈ π1(M, q) be such that its image under the Hurewicz map π1(M, q) → H1(M ;Z) is
of infinite order (in particular the order of h is also infinite). Here, for m ∈ Z, Ωmp,q := {γ ∈
Ωp,q | [α−1 · γ]π1 = hm}, where α ∈ Ωp,q is fixed once for all. Let γm := γhm be a global minimizer
of E on Ωmp,q and δm := δhm .

Lemma 7.8. If M is closed, there are a, a′ > 0 and b, b′ ∈ R such that
∀m ∈ N, am+ b ≤ length(δm) ≤ a′m+ b′.

The inequality length(δm) ≤ a′m+ b′ still holds when M is not closed.

Proof. According to Lemma 7.7, it suffices to prove these inequalities for length(γm) instead
of length(δm) = √τhm .

Let c := α−1 · γ1 ∈ Ωq, then [cm] = [α−1 · γ1]m = hm = [α−1 · γm] so α · cm ∈ Ωmp,q and, since
γm is minimizing the length, length(γm) ≤ length(cm) + length(α) = m length(c) + length(α).

For the lower bound, it comes from the fact that length(α−1 ·γm) ≥ m‖[h]‖s, where ‖[h]‖s > 0
is the stable norm of [h] ∈ H1(M,R). To show that directly, one can take a 1-form ω such that
〈ω, [h]〉 6= 0 (it exists since [h] 6= 0 on H1(M,R) by hypothesis) and remark that

m| 〈ω, [h]〉 | = | 〈ω, [hm]〉 | =
∣∣∣∣∫
α−1·γm

ω

∣∣∣∣ ≤ ( sup
x∈M
‖ωx‖

)
length(α−1 · γm).

Since M is closed, supx∈M ‖ωx‖ is finite. �

Thanks to the estimate on length(δm) given by Lemma 7.8, we can be more specific on the
number of times a same primitive chord can be carried in (δm):

Lemma 7.9. If M is closed, there exist some a, b > 0 such that if δm1 and δm2 carry the same
primitive chord d for some m1 < m2, then for all m > am2 + b the chord δm does not carry d.

Proof. Let (δ′i) = (d · cki)i be the sub-sequence (δmi) of (δm) carrying the primitive chord d
with (mi) being increasing and let κ := max(k1, k2) ≥ 1. We have seen that ind(d · cκ) ≥ 1, thus
ind(d · cn(κ+1)) ≥ n which implies that the finite sequence (ki) is bounded by n(κ+ 1). According
to Lemma 7.8, for i = 1 and i = 2, length(δ′i) = length(d) + ki length(c) ≤ a′mi + b′ ≤ a′m2 + b′

so κ ≤ a′m2+b′
length(c) .

Then the lower bound of Lemma 7.8 together with ki ≤ n(κ+ 1) implies that

mi ≤
n

a
κ length(c) + n length(c) + length(d)− b

a
.

Since κ is non-zero, length(c) + length(d) ≤ a′m2 + b′ and finally mi ≤ 2a
′

a nm2 + 2n b
′

a −
b
a . �

Proof of Theorem 7.3. Let AN be the number of distinct primitive chords carried in (δm)
for m ∈ {0, . . . , N}. According to Lemma 7.9, there exist a > 0 and b ∈ R such that AaN+b ≥
AN + 1. Let a′ > a, then for sufficiently large N , a′N > aN + b and Aa′N ≥ AN + 1. Thus, for all
k ≥ 1, A(a′)kN ≥ AN + k and there exists c0 > 0 such that

Am ≥
logm
log a′ − c0, ∀m ∈ N.

Paths in (δm) for m ∈ {0, . . . , N} have length ≤ cN + d for some c > 0 and d ∈ R according
to Lemma 7.8 (and they are longer than the primitive chords they carry) therefore,

2n(`; p, q) ≥ Ab(`−d)/cc ≥
log `
log a′ − c1, ∀` > 0,

for some constant c1 > 0 (in the case p = q, a primitive chord and its inverse are geometrically
identical, hence the factor of 2). �

We go back to the general case where M is not assumed to be closed.

Lemma 7.10. There exists a quadratic polynomial P ∈ R[X] such that if δm1 and δm2 carry
the same primitive chord d for some m1 < m2, then for all m > P (m2) the chord δm does not
carry d. Coefficients of P can be made continuous in the base point q ∈M .



4. GROWTH RATE WHEN THE UNIVERSAL COVER IS NOT CONTRACTIBLE 107

Proof. Let (δ′i) = (d · cki)i be the sub-sequence (δmi) of (δm) carrying the primitive chord d
with (mi) being increasing and let κ := max(k1, k2). Similarly to the proof of Lemma 7.9, the finite
sequence (ki) is bounded by n(κ + 1) with κ ≤ am2+b

length(c) , where a, b ∈ R are given by the upper-
bound of Lemma 7.8. We fix any linear projection H1(M,Z) → 〈h〉 ' Z, β 7→ [β]. By definition
of mi, [α−1 · d] + ki[c] = mi. Let u := [α−1 · d] ∈ Z and v := [c] ∈ Z. Since (k2 − k1)v = m2 −m1
and m1 < m2, one has |v| ≤ m2 and thus |u| ≤ m2 + k2m2. Finally,

mi ≤ |u|+ ki|v| ≤ m2 + κm2 + n(κ+ 1)m2

≤ m2 + am2 + b

r
+ n

(
am2 + b

r
+ 1
)
m2 =: P (m2),

where r := infγ∈Ωq, [γ]6=0 length(γ) > 0 depends continuously in q ∈M . �

Proof of Theorem 7.4. This is the same proof as for Theorem 7.3 but now, for sufficiently
large N , there exists some a > 1 such that AaN2 ≥ AN + 1 with the same notation. Thus
A(aN)2k ≥ AN + k and there exists c0 > 0 such that

∀m ∈ N, Am ≥
log(logm)

log 2 − c0.

Since the upper-bound given by Lemma 7.8 is still true, we can conclude similarly. �





APPENDIX A

Integration along the fiber

In this appendix, we recall some well known properties of the morphism of integration along
fiber (see [27, Section A.2] and references therein). Since we cannot find any reference concern-
ing the proof of the composition property, we give a proof of this key property used to prove
Proposition 2.5.

Let G be a group. Throughout this appendix, H∗(X) and H∗(X) will denote respectively the
singular homology and the singular cohomology of the topological space or pair X with coefficients
in G. If we want to put another group of coefficients G′, we will write down explicitly H∗(X;G′) or
H∗(X;G′) so that for instance H∗(X;Hd(Y )) = H∗(X;Hd(Y ;G)) where Y is a topological space
or pair.

Let us assume that π : X → B is a Serre fibration with fiber F which has the type of a
CW complex of dimension d (throughout this section, we will simply write that the fibers of π
have dimension d). In order to simplify the statements, we will always assume that π1(B) acts
trivially on H∗(F ). Then the Serre spectral sequence in homology (Erp,q) of π satisfies E2

p,q '
Hp(B;Hq(F )) = 0 for q > d. Hence, it gives natural morphisms E2

p,d → E∞p,d → Hp+d(X) for
all p. Let π∗ : H∗(B;Hq(F )) → H∗+d(X) denote the composition of the Serre isomorphism
H∗(B;Hd(F )) ' E2

∗,d with this map E2
∗,d → H∗+d(X). Dually, one can define a morphism π∗ :

H∗(X)→ H∗−d(B;Hd(F )). In de Rham cohomology, the map π∗ can be easily defined on compact
smooth fiber bundles as induced by the integration of differential forms along the fibers.

In the special case F ' Sn, the map π∗ corresponds to the Gysin morphism. This definition
extends directly to relative fibrations π : (X,X ′)→ (B,B′) and the induced maps commute with
the long exact sequences of pair and triple by naturality of the Serre spectral sequence. Given a
commuting square of (possibly relative) fibrations

X

pF

��

f̃
// Y

qF ′

��

B
f
// C

,

with fibers F and F ′ of the same dimension d, the naturality of the Serre spectral sequence induces
the commutative square

(A.1)
H∗+d(X) f̃∗ // H∗+d(Y )

H∗(B;Hd(F ))

p∗

OO

f∗ // H∗(B;Hd(F ′))

q∗

OO

,

where f∗ sends a class [σ ⊗ h], σ ∈ C∗(B;Z) and h ∈ Hd(F ), on [f∗σ ⊗ f̃∗h].
Finally, it satisfies the following composition property. Let π1 : Y → X and π2 : X → B be

(possibly relative) Serre fibrations of respective fibers F1 and F2 of dimension d1 and d2. Then
π := π2 ◦ π1 is a fibration whose fiber F is a fibration over F2 with fibers F1. According to
the Serre spectral sequence, it has dimension d1 + d2 and Hd1+d2(F ) is naturally isomorphic to
Hd2(F2;Hd1(F1)).
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Proposition A.1. The following diagram commutes

H∗+d2(X;Hd1(F1))
π∗1 // H∗+d1+d2(Y )

H∗(B;Hd2(F2;Hd1(F1)))

π∗2

OO

' // H∗(B;Hd1+d2(F ))

π∗

OO

where the bottom isomorphism is induced by the isomorphism Hd2(F2;Hd1(F1)) ' Hd1+d2(F )
between the groups of coefficients.

In Chapter 2, the fibers F1, F2 and F are naturally oriented so that there are canonical
isomorphisms between their top degree homology groups and the coefficient group and one does
not have to bother with changes of coefficient group. However, if one wants to avoid the change
of coefficients in the naturality statement (A.1) when Hd(F ) ' G and Hd(F ′) ' G, the map
f̃∗ : Hd(F )→ Hd(F ′) must send preferred generator to preferred generator.

Proof of Proposition A.1. Without loss of generality, one can assume that B and X are
actual CW complexes and that π2 is a locally trivial cellular fibration [14]. We denote by E, E1
and E2 Serre spectral sequences of π, π1 and π2 respectively, E2 having Hd1(F1) coefficients. Let
Bp and Xp denote respectively the p-skeleton of B and the p-skeleton of X. Let Xp := π−1

2 (Bp),
Yp := π−1(Bp) and Y1;p := π−1

1 (Xp) denote the filtration of the spaces X and Y associated with
E2, E and E1 respectively. Therefore, for instance the first page of E2 is given by E1

2;p,q :=
Hp+q(Xp, Xp−1).

Since π2 is a cellular fibration with fibers of dimension d2, Xp = π−1
2 (Bp) is included in Xp+d2 .

Hence, Yp ⊂ Y1;p+d2 and this inclusion between filtrations induces a morphism of spectral sequences
(with a shift in degree) Erp,q → Er1;p+d2,q−d2

. Therefore, one gets the following commutative
diagram

H∗+d1+d2(Y ) H∗+d1+d2(Y )

E∞∗,d1+d2
//

OO

E∞1;∗+d2,d1

OO

H∗(B;Hd1+d2(F ))

π∗

<<

E2
∗,d1+d2'

oo //

OO

E2
1;∗+d2,d1

' //

OO

H∗+d2(X;Hd1(F1))

π∗1

bb

,

where both the left and the right “squares” are the ones defining morphisms π∗ and π∗1 . The bottom
row allows us to define a morphism f : H∗(B;Hd1+d2(F )) → H∗+d2(X;Hd1(F1)). According
to the last diagram, it is enough to prove that f = π∗2 under the identification Hd1+d2(F ) '
Hd2(F2;Hd1(F1)) to conclude.

We recall that the Serre isomorphism E2
∗,d1+d2

' H∗(B;Hd1+d2(F )) is induced by a chain
isomorphism between the chain complex E1

∗,d1+d2
= H∗+d1+d2(Y∗, Y∗−1) and the chain com-

plex of the cellular filtration (Bp) of B that is H∗(B∗, B∗−1;Hd1+d2(F )). We denote by Ψ :
H∗+d1+d2(Y∗, Y∗−1)→ H∗(B∗, B∗−1;Hd1+d2(F )) the chain isomorphism associated with π and by
Ψ1 and Ψ2 the chain isomorphisms associated with π1 and π2 respectively. Since these chain
isomorphisms are natural (this is included in the proof of the naturality of the Serre spectral
sequence), one gets the following commutative diagram of chain complexes:

H∗+d1+d2(Y∗, Y∗−1) //

Ψ'
��

H∗+d1+d2(Y1;∗+d2 , Y1;∗+d2−1)

Ψ1'
��

H∗(B∗, B∗−1;Z)⊗Hd1+d2(F )

id⊗u'
��

H∗+d2(X∗+d2 , X∗+d2−1;Z)⊗Hd1(F1)

H∗(B∗, B∗−1;Z)⊗Hd2(F2;Hd1(F1)) H∗+d2(X∗, X∗−1)⊗Hd1(F1)

OO

Ψ2

'oo

,
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where u denotes the natural isomorphismHd1+d2(F )→ Hd2(F2;Hd1(F1)). By passing to homology,
one gets the following commutative diagram:

E2
∗,d1+d2

//

Ψ∗'
��

E2
1;∗+d2,d1

(Ψ1)∗'
��

H∗(B;Hd1+d2(F ))

(id⊗u)∗'
��

f
// H∗+d2(X;Hd1(F1))

H∗(B;Hd2(F2;Hd1(F1))) E2
2;∗,d2

OO

//
(Ψ2)∗

'oo E∞2;∗,d2

gg ,

where only the commutativity of the triangle is not a direct consequence of the previous dia-
gram. The commutativity of the triangle is a consequence of the naturality of the morphism
induced by the inclusion of filtrations Xp ⊂ Xp+d2 between the associated spectral sequences.
Indeed, since (Xp+d2) is a cellular filtration, the associated spectral sequence whose first page
is (Hp+q(Xp+d2 , Xp+d2−1))p,q degenerates at the second page. The bottom part of the diagram
shows that f is indeed π∗2 under the identification induced by u. �
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