Exercice 1. Immersions, plongements et restrictions

- 1. Montrer que la restriction d'une immersion à une sous-variété est une immersion.
- 2. Est-ce vrai pour les submersions?
- 3. Soit $f:M\to N$ une immersion injective, où M et N sont des variétés. Montrer que si M est compacte, alors f est un plongement. Donner un contre-exemple lorsque M n'est pas compacte.

Exercice 2. Plongement de \mathbb{RP}^2 dans \mathbb{R}^4

Soit $v: \mathbb{S}^2 \to \mathbb{R}^6$ définie par $v(x, y, z) = (x^2, y^2, z^2, \sqrt{2}xy, \sqrt{2}yz, \sqrt{2}xz)$.

- 1. Montrer que v est une immersion. On pourra vérifier que c'est en fait une immersion sur $\mathbb{R}^3 \setminus \{0\}$. Est-elle injective?
- 2. Montrer que v induit un plongement $V: \mathbb{RP}^2 \to \mathbb{R}^6$.
- 3. Montrer que l'image de ce plongement est incluse dans $H \cap \mathbb{S}^5$, où H est un hyperplan affine.
- 4. En déduire l'existence d'un plongement de \mathbb{RP}^2 dans \mathbb{R}^4 .

Remarque : On verra plus tard qu'il n'existe pas de plongement de \mathbb{RP}^2 dans \mathbb{R}^3 , pour des raisons d'orientabilité.

Exercice 3. Application de Gauss

Soit $H \subset \mathbb{R}^n$ une hypersurface compacte. Pour $x \in H$, on note $\psi(x)$ l'orthogonal de T_xH . Ceci définit une application $\psi: H \to \mathbb{RP}^n$. Montrer que ψ est lisse et surjective.

Exercice 4. Isomorphisme entre $PSL_2(\mathbb{R})$ et $SO^{\circ}(1,2)$

- 1. Montrer que $SL_2(\mathbb{R})$ (resp. SO(1,2)) est une sous-variété de $M_2(\mathbb{R})$ (resp. $M_3(\mathbb{R})$). Quelles sont leurs dimensions?
- 2. On note $SO^{\circ}(1,2)$ la composante connexe de I_3 dans SO(1,2). Montrer que c'est un sous-groupe ouvert de SO(1,2).
- 3. Montrer que l'espace tangent à $SL_2(\mathbb{R})$ en I_2 est $\mathfrak{sl}_2(\mathbb{R}) = \{h \in M_2(\mathbb{R}) | Tr(h) = 0\}$.
- 4. On note $\alpha : \mathrm{SL}(2,\mathbb{R}) \to \mathrm{GL}(\mathfrak{sl}_2(\mathbb{R}))$ l'application définie par $\alpha(A) = (h \mapsto AhA^{-1})$. Montrer que cette application est bien définie, et que c'est un morphisme de groupes.
- 5. Montrer que ker $\alpha = \{\pm I_2\}$.
- 6. Montrer que $h \mapsto \det(h)$ est une forme quadratique sur $\mathfrak{sl}_2(\mathbb{R})$. Calculer sa signature. On note $O(\det)$ son groupe orthogonal.
- 7. Montrer que $\alpha(SL_2(\mathbb{R}))$ est un sous-groupe ouvert de $O(\det)$.
- 8. Montrer que $PSL_2(\mathbb{R}) = SL_2(\mathbb{R})/\{\pm I_2\}$ est isomorphe à $SO^{\circ}(1,2)$.
- 9. Munir $PSL_2(\mathbb{R})$ d'une structure de variété différentiable (pour laquelle la projection $SL_2(\mathbb{R}) \to PSL_2(\mathbb{R})$ est lisse), puis montrer que cet isomorphisme est aussi un difféomorphisme.