Exercice 1. Fibré tautologique

On rappelle que \mathbb{RP}^n est l'ensemble des droites vectorielles de \mathbb{R}^{n+1} . On note $P: \mathbb{S}^n \to \mathbb{RP}^n$ la projection canonique.

- 1. On note $E = \{(D, v) \in \mathbb{RP}^n \times \mathbb{R}^{n+1} | v \in D\}$, et $\pi : E \to \mathbb{RP}^n$ la projection sur le premier facteur. Montrer que (E, π) est un fibré en droites sur \mathbb{RP}^n .
- 2. Montrer que ce fibré n'est pas trivial (indication : on pourra regarder le tiré en arrière P^*E).

Exercice 2. Coordonnées polaires et crochet de Lie

- 1. Définir sur $\mathbb{R}^2 \setminus \{0\}$ les champs de vecteurs X_r et X_θ formant en tout point une base orthonormée directe, telle que X_r soit radial sortant. Calculer leurs flots locaux.
- 2. Calculer $[X_r, X_\theta]$.
- 3. Si (x, y) et (r, θ) sont respectivement les coordonnées cartésiennes et polaires d'un point de $\mathbb{R}^2 \setminus \{0\}$, calculer l'expression de $\frac{\partial}{\partial r}$ et $\frac{\partial}{\partial \theta}$ en fonction de $\frac{\partial}{\partial x}$ et $\frac{\partial}{\partial y}$, et calculer leur crochet de Lie.
- 4. Quel est le rapport entre $X_r, X_\theta, \frac{\partial}{\partial r}$ et $\frac{\partial}{\partial \theta}$?

Exercice 3. Action transitive des difféomorphismes

Soit M une variété différentiable.

- 1. À l'aide de champs de vecteurs, montrer que l'action de Diff(M) sur M est transitive.
- 2. Montrer que cette action est n-transitive pour tout $n \in \mathbb{N}$.

Exercice 4. Dérivée de Lie

- 1. Si $F: M \to N$ est un difféomorphisme et $\tau \in \Gamma(T^{(p,q)}N)$ est un champ de tenseurs de type (p,q), définir le tiré en arrière $F^*\tau \in \Gamma(T^{(p,q)}M)$.
- 2. Soit M une variété différentiable. Soient $V \in \mathcal{X}(M)$ un champ de vecteurs complet et $\tau \in \Gamma(T^{(p,q)}M)$. Rappeler la définition de $\mathcal{L}_V(\tau)$, et montrer $\mathcal{L}_V(W) = 0$ si et seulement si $\varphi_t^*\tau = \tau$ pour tout $t \in \mathbb{R}$.
- 3. Comment exprimer la condition « il existe $\sigma \in C^{\infty}(M)$ telle que $\mathcal{L}_V(\tau) = e^{\sigma}\tau$ » à partir du flot φ_t ?