Exercice 1. Orientabilité

- 1. Montrer qu'une variété parallélisable (i.e. dont le fibré tangent est trivial) est orientable
- 2. Montrer que le produit de deux variétés orientables est orientable.
- 3. Montrer que le fibré tangent d'une variété est une variété orientable.

Exercice 2. Orientabilité des hypersurfaces

- 1. Soit $S \subset \mathbb{R}^n$ une hypersurface. Montrer que S est orientable si et seulement si il existe une application lisse $N: S \to \mathbb{R}^n$ telle que $T_x N \oplus \mathbb{R} N(x) = \mathbb{R}^n$ pour tout $x \in S$.
- 2. Soit $U \subset \mathbb{R}^n$ un ouvert, et $f: U \to \mathbb{R}$ une submersion. Montrer que $f^{-1}(\{0\})$ est orientable.

Exercice 3. Espaces projectifs

- 1. Soit $n \in \mathbb{N}$, et soit $f : \mathbb{S}^n \to \mathbb{S}^n$ l'antipodie (i.e. f(x) = -x). Cette application préserve-t-elle l'orientation?
- 2. Parmi les espaces projectifs réels \mathbb{RP}^n , lesquels sont orientables?

Exercice 4. Multiplication d'un champ de vecteurs par une fonction Si V est un champ de vecteurs sur une variété M, l'orbite d'un point $x \in M$ est $\mathcal{O}_V(x) = \{\varphi_t(x)\}$ où φ_t est le flot local de V.

- 1. Soit $V \in \mathfrak{X}(M)$, et soit $f \in C^{\infty}(M)$ une fonction strictement positive. Comparer les orbites de V et celles de fV.
- 2. Soit M une variété de dimension 2, et soient X,Y deux champs de vecteurs qui sont linéairement indépendants en tout point. On veut montrer qu'il existe deux fonctions strictement positives $f,g \in C^{\infty}(M)$ telles que [fX,gY]=0. On note φ le flot de X et ψ le flot de Y.
 - (a) Fixons $p_0 \in M$. Montrer qu'il existe un voisinage $U \subset M$ de p_0 et une application lisse $x: U \to \mathbb{R}$ telle que $\psi_{x(p)}(p) \in \mathcal{O}_X(p_0)$ pour tout $p \in U$.
 - (b) De même, on trouve un ouvert V et une application lisse $y \in V \to \mathbb{R}$ telle que $\varphi_{y(p)}(p) \in \mathcal{O}_Y(p_0)$ pour tout $p \in V$. Montrer que l'application $p \mapsto (x(p), y(p))$ définit un système de coordonnées sur un voisinage de p.
 - (c) Décrire les orbites de X et Y dans ce système de coordonnées, et conclure.
 - (d) Quelle EDP vient-on de résoudre?