Exercice 1. Espaces projectifs

- 1. Soit $n \in \mathbb{N}$, et soit $f : \mathbb{S}^n \to \mathbb{S}^n$ l'antipodie (i.e. f(x) = -x). Cette application préserve-t-elle l'orientation?
- 2. Parmi les espaces projectifs réels \mathbb{RP}^n , lesquels sont orientables?

Exercice 2. Variétés orientables

Soit M une variété compacte orientable. Montrer qu'une forme volume est toujours fermée, mais n'est jamais exacte (indication : on utilisera le Théorème de Stokes).

Exercice 3. Avec ou sans calculs?

1. Soit ω la n-1 forme différentielle sur \mathbb{R}^n donnée par

$$\omega = \sum_{i=1}^{n} (-1)^{i-1} x_i dx_1 \wedge \dots \widehat{dx_i} \dots \wedge dx_n.$$

Calculer $d\omega$.

2. Soit $A: \mathbb{R}^n \to \mathbb{R}^n$ une application linéaire. Que vaut $A^*\omega$?

Exercice 4. Gradient, divergence et rotationnel

On munit \mathbb{R}^n du produit scalaire usuel $\langle \cdot | \cdot \rangle$. Soit $U \subset \mathbb{R}^n$ un ouvert, et soit \overrightarrow{X} un champ de vecteurs sur U.

1. Montrer qu'il existe une unique fonction lisse $\mathrm{Div}(\overrightarrow{X}):U\to\mathbb{R}$ telle que :

$$\mathcal{L}_X(dx_1 \wedge \cdots \wedge dx_n) = \text{Div}(\overrightarrow{X})dx_1 \wedge \cdots \wedge dx_n.$$

Donner une expression de $\text{Div}(\overrightarrow{X})$.

- 2. Montrer qu'il existe une unique 1-forme $\overrightarrow{X}^{\perp}$ vérifiant $\overrightarrow{X}_{x}^{\perp}(v) = \langle \overrightarrow{X}(x) | \overrightarrow{v} \rangle$ pour tout $(x, \overrightarrow{v}) \in U \times \mathbb{R}^{n}$.
- 3. Soit $f: U \to \mathbb{R}$ une fonction lisse. Montrer qu'il existe un unique champ de vecteurs $\overrightarrow{\nabla} f$ tel que $(\overrightarrow{\nabla} f)^{\perp} = df$.

Donner une expression de $\overrightarrow{\nabla} f$.

On suppose désormais n=3.

4. Montrer qu'il existe un unique champ de vecteurs $\overrightarrow{\mathrm{rot}}(\overrightarrow{X})$ vérifiant :

$$\overrightarrow{\operatorname{rot}}(\overrightarrow{X}) \, \lrcorner \, (dx_1 \wedge dx_2 \wedge dx_3) = d\overrightarrow{X}^{\bot}.$$

Donner une expression de $\overrightarrow{\operatorname{rot}}(\overrightarrow{X})$.

- 5. Soit $f: U \to \mathbb{R}$ une fonction lisse. Déterminer $\overrightarrow{\mathrm{rot}}(\overrightarrow{\nabla} f)$.
- 6. Déterminer $\operatorname{Div}(\overrightarrow{\operatorname{rot}}(\overrightarrow{X}))$ (on pourra soit faire un calcul, soit utiliser la formule de Cartan $\mathcal{L}_V(\omega) = V \, d\omega + d(V \, \omega)$).