Variational methods for the study of periodic orbits • Marco Mazzucchelli

EXAMPLE OF MORSE-THEORETIC STUDY OF A FUNCTION

Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function given by

$$
F(x, y)=\left(y-2 x^{2}\right)\left(y-x^{2}\right)\left(y+x^{2}\right)\left(y+2 x^{2}\right) .
$$

The derivatives of F are

$$
\begin{aligned}
& \partial_{x} F(x, y)=32 x^{7}-20 x^{3} y^{2}=32 x^{3}\left(x^{4}-\frac{5}{8} y^{2}\right) \\
& \partial_{y} F(x, y)=-10 x^{4} y+4 y^{3}=-10 y\left(x^{4}-\frac{2}{5} y^{2}\right)
\end{aligned}
$$

From this we readily see that the origin is the only critical point of F, and its critical value is 0 .

We claim that F satisfies the Palais-Smale condition. This can be seen as follows. We need to fix a large constant $r>0$ and a small one $\epsilon>0$: as we will see, it will be enough to choose them so that the four quantities labeled by $(*)$ here below be positive. We have two cases two consider:

- Assume that $|y| \geq r$. If $\left|x^{4}-\frac{2}{5} y^{2}\right|>\epsilon$, then

$$
|\nabla F(x, y)| \geq\left|\partial_{y} F(x, y)\right|>10 r \epsilon
$$

Otherwise, $\left|x^{4}-\frac{2}{5} y^{2}\right| \leq \epsilon$, and therefore $|x| \geq\left(\frac{2}{5} y^{2}-\epsilon\right)^{1 / 4} \geq\left(\frac{2}{5} r^{2}-\epsilon\right)^{1 / 4}$ and

$$
\left|x^{4}-\frac{5}{8} y^{2}\right| \geq \frac{9}{40} y^{2}-\left|x^{4}-\frac{2}{5} y^{2}\right| \geq \frac{9}{40} r^{2}-\epsilon,
$$

which in turn implies

$$
|\nabla F(x, y)| \geq\left|\partial_{x} F(x, y)\right| \geq 32 \underbrace{\left(\frac{2}{5} r^{2}-\epsilon\right)^{3 / 4}}_{(*)} \underbrace{\left(\frac{9}{40} r^{2}-\epsilon\right)}_{(*)} .
$$

- Now, assume that $|x| \geq r$. If $\left|x^{4}-\frac{5}{8} y^{2}\right|>\epsilon$, then

$$
|\nabla F(x, y)| \geq\left|\partial_{x} F(x, y)\right|>32 r^{3} \epsilon
$$

Otherwise, $\left|x^{4}-\frac{5}{8} y^{2}\right| \leq \epsilon$, and therefore $|y| \geq\left[\frac{8}{5}\left(x^{4}-\epsilon\right)\right]^{1 / 2} \geq\left[\frac{8}{5}\left(r^{4}-\epsilon\right)\right]^{1 / 2}$ and

$$
\left|x^{4}-\frac{2}{5} y^{2}\right|=\left|\frac{9}{40} y^{2}+x^{4}-\frac{5}{8} y^{2}\right| \geq \frac{9}{40} y^{2}-\left|x^{4}-\frac{5}{8} y^{2}\right| \geq \frac{9}{40} \cdot \frac{8}{5}\left(r^{4}-\epsilon\right)-\epsilon,
$$

which in turn implies

$$
|\nabla F(x, y)| \geq\left|\partial_{y} F(x, y)\right| \geq 10[\frac{8}{5} \underbrace{\left(r^{4}-\epsilon\right)}_{(*)}]^{1 / 2} \underbrace{\left.\frac{9}{40} \cdot \frac{8}{5}\left(r^{4}-\epsilon\right)-\epsilon\right]}_{(*)} .
$$

Summing up, we have showed that outside of any compact neighborhood $K \subset \mathbb{R}^{2}$ of the origin, the norm $|\nabla F|$ is bounded from below by a constant depending only on K. This implies that F satisfies the Palais-Smale condition.

The Hessian of F at his critical point vanishes, i.e.

$$
\mathrm{d}^{2} F(0,0)=\left(\begin{array}{ll}
\partial_{x x}^{2} F(0,0) & \partial_{x y}^{2} F(0,0) \\
\partial_{y x}^{2} F(0,0) & \partial_{y y}^{2} F(0,0)
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

Therefore the Morse index $\operatorname{ind}(F,(0,0))$ vanishes, whereas the nullity nul $(F,(0,0))$ is equal to 2 . The origin is a totally degenerate isolated critical point of F.

We can easily draw the open sublevel set $\{F<0\}$. By doing this, we see that it consists of four contractible connected components. The union $\{F<0\} \cup\{(0,0)\}$ is path-connected and actually contractible. We consider the local homology of F at $(0,0)$

$$
L_{*}(F,(0,0)):=H_{d}(\{F<0\} \cup\{(0,0)\},\{F<0\})
$$

Let us look at the long exact sequence of the pair $\{F<0\} \subset\{F<0\} \cup\{(0,0)\}$

$$
\ldots \longrightarrow H_{d}(\{F<0\} \cup\{(0,0)\}) \longrightarrow L_{d}(F,(0,0)) \xrightarrow{\partial_{*}} H_{d-1}(\{F<0\}) \longrightarrow H_{d-1}(\{F<0\} \cup\{(0,0)\}) \longrightarrow \ldots
$$

The group $H_{d}(\{F<0\})$ is non-trivial only in degree $d=0$, where it is isomorphic to \mathbb{Z}^{4} (here we are considering homology groups with coefficients in \mathbb{Z}). Analogously, the group $H_{d}(\{F<0\} \cup\{(0,0)\})$ is non-trivial only in degree $d=0$, where it is isomorphic to \mathbb{Z}. Thus, the only non-trivial portion of the above long exact sequence is the following

$$
0 \longrightarrow L_{1}(F,(0,0)) \xrightarrow{\partial_{*}} \mathbb{Z}^{4} \xrightarrow{\iota_{*}} \mathbb{Z} \longrightarrow L_{0}(F,(0,0)) \longrightarrow 0,
$$

and the homomorphism $\iota_{*}: H_{0}(\{F<0\}) \rightarrow H_{0}(\{F<0\} \cup\{(0,0)\})$ is clearly surjective. This implies that

$$
L_{d}(F,(0,0))= \begin{cases}0 & \text { if } d \neq 1 \\ \mathbb{Z}^{3} & \text { if } d=1\end{cases}
$$

