Variational methods for the study of periodic orbits - Marco Mazzucchelli

MORSE-GROMOLL-MEYER LEMMA

Let U be an open neighborhood of the origin in a (finite or infinite dimensional) separable
Hilbert space IE. We consider a C? function F' : U — R that satisfies the Palais-Smale
condition and has a critical point at the origin. We denote by A the self-adjoint bounded
linear operator on I associated to the Hessian d*F(0), i.e.

d*F(0)[v,w] = (Av,w), Vo, w € E.

Notice that A is precisely d(VF)(0) : E — E.
We assume that A is a Fredholm operator, which means that I, := ker A is finite
dimensional. We denote by IE; the orthogonal complement of y. Notice that

(Av,w)y = (v, Aw ) =0, Yw € By, v € Ey,
=0
and therefore Av € Iy as well. This shows that the restriction A; := A|g, is a self-adjoint
injective bounded linear operator on E;. Since coker(A4;) = ker(A;) = {0}, the operator
A, is actually bijective and, by the open mapping theorem, it is an isomorphism (i.e. its
inverse is also a bounded operator).

Theorem 0.1 (Morse-Gromoll-Meyer Lemma). There exist open neighborhoods of the ori-
gin Vo C Eyg and V} C Eq, a map ® : Vj x V; — U that is a homeomorphism onto a
neighborhood of the origin and that fixes the origin, and a C? function Fy : Vi — R with
a totally degenerate critical point at the origin, such that

F o ®(vg,v1) = Fo(vg) + %(Alvl,vl), V(vg,v1) € Vo x V4.

Proof. Let us write points in U as (wg, w;), where wg € U NEg and wy € U N E;. Notice

that ) )
2 2 F(0,0) A2, F(0,0) (0 0
dF(0) = ( o2 "F(0,0) 2. F0,00 )~ \o 4 )
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In particular 92 , F(0,0) = A; is an isomorphism on the Hilbert space ;. Therefore, by

wiwi

the implicit function theorem, there exist open neighborhoods of the origin Uy C U N I,
and U; C UNEy, and a C? map ¢ : Uy — U, such that ¢(0) = 0 and

8w1F(w0, w(wo)) = 0, VUJO € UQ.
By differentiating this relation at the origin, we obtain

0=202 ., F(0,(0) + 32 ., F(0,9(0)) ody(0) = A; o diy(0).

wow1 wiwi

Since A; is an isomorphism, we infer that
d(0) = 0.
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We define a map ¥ : Uy x Uy — U by
W (wo, wy) = (wo, ¥ (wo) + wy), V(wo, w1) € Uy x Uy
This map is a C? diffeomorphism onto a neighborhood of the origin, with inverse
U (20, 21) = (20, =¥ (20) + 21).-

We will employ ¥ as a local chart around the origin. The function F := F o ¥ is C? and
satisfies .
8w1F(wo, O) = 0, Vwo S UO.

Since Oyyu, F/(0,0) = A; is an isomorphism, up to shrinking the neighborhoods Uy and U,
around the origin, the operator Oy, ., F(wo, wy) is an isomorphism for all (wg, w;) € Uy x Uyj.
Namely, for each wy € Uy, the function w, — F (wp, wy) has a non-degenerate critical point
at the origin. Moreover, since di)(0) = 0, the function wy — Fy(wg) := F(wy,0) has a

totally degenerate critical point at the origin, that is
d?Fy(0) = d*F(0,0)|, = 0.

From now on we will simply write F' for F, F, for Fyy, and U for the preimage W1(U).
Now, let us denote Fij(wi) := 1(Ajwi,wi). This is a quadratic function with linear
gradient VF)(w;) = Ajw;. We denote by A; the partial flow of the vector field
V(wl) - VFl(wl) _ Aw1 '
IV Ey (wy)]] || Aw ]
Notice that this vector field is well defined and smooth outside the origin. Moreover, it
has norm ||V|| = 1. Therefore, the trajectories of its flow A\, move with speed 1. Since a
trajectory is well defined until it hits the origin, we conclude that \;(w;) is well defined
provided w; # 0 and || < |Jwy]].
We set 6 := 1||A7"||~. By the C?-continuity of F, up to shrinking the neighborhoods
Uy and U, around the origin we have

||8w1wlF<w07w1) - awlwlF(()?O)H = ||aw1w1F(w0=w1> - Al” < J.

If we further shrink Uy and Uy, for all (wo,w;) € Uy x Uy and t € ((— [wi, |lw1]]) we
actually have

iF(wo,)\t(Uh)) = —&UlF(wo,)\t(wl))%

dt
1 1
- _/0 m<3wlw1F(wo, s A(wi))Ag(wi), AiAi(wr)) ds

(01) _—1 wq 1A\ W (W1
<~y A0, A (w) + ()]

= —[AsAi(wi)[| + o[ A (wr)]
< AT e+ dlIA ()|
= —0[|Ac(w)].
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Since the last quantity is always negative (remember that A\;(w;) lies outside the origin),
we have shown that F'is a negative Lyapunov function for the flow \;, that is, it strictly

decreases along its orbits.
Now, let us fix a quantity € € (0, %(5 ). Let us quantify how much the function F; decreases

along its reparametrized anti-gradient flow ), in time ¢; = %3 ||w; [|:
[t1]
[F1 (A, (w1)) — Fi(wi)| = / [ A1 As(wr) ] ds
0

[t1]
225/ A (07)]] ds
0

25/0t1 (| — s) s

v

Up to shrinking one last time the neighborhoods Uy and U; around the origin, we have

|F(w0,w1) - F(wo, 0) - Fl(w1)|

/ Owy F' (wo, swy)wy ds — Fy(wy)

// w1w1 wOa 7nS/LUl)Ujly wl) - <Aw17 w1>> drds

< efwn |1*.

If we put together the last two groups of estimates, for ¢; = %leH we get
Fy(Ary (wn)) < Fwo, wi) — F(wo, 0) < Fi(Ag, (wr)).

This shows that there exists a unique intermediate value 6(wo, wy) € (—3||wi]], 5[Jw1]|) such
that, for all (wg, w;) € Uy x Uy outside the origin, we have the equality

F(wo,wi) = F(wo,0) 4+ F1(Xo(wo,w) (w1))-
Analogously, there exists a value ¢(vg,v1) € (—||vi||, [|[v1]]) such that
F(vo, Agwo,0) (V1)) = F(v0,0) + Fi(v1).
and, by , this value is also unique. Since

%(F(wo,wl) — F(U)0,0) — Fl()\t(wl))> = —%Fl()\t(wl)) > 07
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we can apply the implicit function theorem and conclude that 6 is a C? function outside
the origin. Analogously, ¢ is a C? function outside the origin. Moreover, § and ¢ can be
continuously (but not necessarily differentiably) extended to the origin by setting

6(0,0) = ¢(0,0) = 0.
We define the map © : Uy x U; — [ by
@('LU(), wl) == ('LUO, )\e(wo,wﬂ(wl))-
This map is a homeomorphism, and its inverse ® : O(Uy x U;) — Uy x Uy, which is given
by
® (v, v1) = (vo, >\¢(v0,v1)(U1))>
is our desired chart. |



