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MORSE-GROMOLL-MEYER LEMMA

Let U be an open neighborhood of the origin in a (finite or infinite dimensional) separable
Hilbert space E. We consider a C3 function F : U → R that satisfies the Palais-Smale
condition and has a critical point at the origin. We denote by A the self-adjoint bounded
linear operator on E associated to the Hessian d2F (0), i.e.

d2F (0)[v, w] = 〈Av,w〉, ∀v, w ∈ E.
Notice that A is precisely d(∇F )(0) : E→ E.

We assume that A is a Fredholm operator, which means that E0 := kerA is finite
dimensional. We denote by E1 the orthogonal complement of E0. Notice that

〈Av,w〉 = 〈v, Aw︸︷︷︸
=0

〉 = 0, ∀w ∈ E0, v ∈ E1,

and therefore Av ∈ E1 as well. This shows that the restriction A1 := A|E1 is a self-adjoint
injective bounded linear operator on E1. Since coker(A1) = ker(A1) = {0}, the operator
A1 is actually bijective and, by the open mapping theorem, it is an isomorphism (i.e. its
inverse is also a bounded operator).

Theorem 0.1 (Morse-Gromoll-Meyer Lemma). There exist open neighborhoods of the ori-
gin V0 ⊂ E0 and V1 ⊂ E1, a map Φ : V0 × V1 → U that is a homeomorphism onto a
neighborhood of the origin and that fixes the origin, and a C2 function F0 : V0 → R with
a totally degenerate critical point at the origin, such that

F ◦ Φ(v0, v1) = F0(v0) + 1
2
〈A1v1, v1〉, ∀(v0, v1) ∈ V0 × V1.

Proof. Let us write points in U as (w0, w1), where w0 ∈ U ∩ E0 and w1 ∈ U ∩ E1. Notice
that

d2F (0) =

(
∂2w0w0

F (0, 0) ∂2w0w1
F (0, 0)

∂2w1w0
F (0, 0) ∂2w1w1

F (0, 0)

)
=

(
0 0
0 A1

)
.

In particular ∂2w1w1
F (0, 0) = A1 is an isomorphism on the Hilbert space E1. Therefore, by

the implicit function theorem, there exist open neighborhoods of the origin U0 ⊂ U ∩ E0

and U1 ⊂ U ∩ E1, and a C2 map ψ : U0 → U1 such that ψ(0) = 0 and

∂w1F (w0, ψ(w0)) = 0, ∀w0 ∈ U0.

By differentiating this relation at the origin, we obtain

0 = ∂2w0w1
F (0, ψ(0)) + ∂2w1w1

F (0, ψ(0)) ◦ dψ(0) = A1 ◦ dψ(0).

Since A1 is an isomorphism, we infer that

dψ(0) = 0.
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We define a map Ψ : U0 × U1 → U by

Ψ(w0, w1) = (w0, ψ(w0) + w1), ∀(w0, w1) ∈ U0 × U1.

This map is a C2 diffeomorphism onto a neighborhood of the origin, with inverse

Ψ−1(z0, z1) = (z0,−ψ(z0) + z1).

We will employ Ψ as a local chart around the origin. The function F̃ := F ◦ Ψ is C2 and
satisfies

∂w1F̃ (w0, 0) = 0, ∀w0 ∈ U0.

Since ∂w1w1F̃ (0, 0) = A1 is an isomorphism, up to shrinking the neighborhoods U0 and U1

around the origin, the operator ∂w1w1F̃ (w0, w1) is an isomorphism for all (w0, w1) ∈ U0×U1.
Namely, for each w0 ∈ U0, the function w1 7→ F̃ (w0, w1) has a non-degenerate critical point
at the origin. Moreover, since dψ(0) = 0, the function w0 7→ F̃0(w0) := F̃ (w0, 0) has a
totally degenerate critical point at the origin, that is

d2F̃0(0) = d2F̃ (0, 0)|E0 = 0.

From now on we will simply write F for F̃ , F0 for F̃0, and U for the preimage Ψ−1(U).
Now, let us denote F1(w1) := 1

2
〈A1w1, w1〉. This is a quadratic function with linear

gradient ∇F1(w1) = A1w1. We denote by λt the partial flow of the vector field

V (w1) := − ∇F1(w1)

‖∇F1(w1)‖
= − Aw1

‖Aw1‖
.

Notice that this vector field is well defined and smooth outside the origin. Moreover, it
has norm ‖V ‖ ≡ 1. Therefore, the trajectories of its flow λt move with speed 1. Since a
trajectory is well defined until it hits the origin, we conclude that λt(w1) is well defined
provided w1 6= 0 and |t| < ‖w1‖.

We set δ := 1
2
‖A−11 ‖−1. By the C2-continuity of F , up to shrinking the neighborhoods

U0 and U1 around the origin we have

‖∂w1w1F (w0, w1)− ∂w1w1F (0, 0)‖ = ‖∂w1w1F (w0, w1)− A1‖ ≤ δ.

If we further shrink U0 and U1, for all (w0, w1) ∈ U0 × U1 and t ∈
(
− ‖w1‖, ‖w1‖

)
we

actually have

d

dt
F (w0, λt(w1)) = −∂w1F (w0, λt(w1))

A1λt(w1)

‖A1λt(w1)‖

= −
∫ 1

0

1

‖A1λt(w1)‖
〈∂w1w1F (w0, s λt(w1))λt(w1), A1λt(w1)〉 ds

≤ − 1

‖A1λt(w1)‖
〈A1λt(w1), A1λt(w1)〉+ δ‖λt(w1)‖

= −‖A1λt(w1)‖+ δ‖λt(w1)‖
≤ −‖A−11 ‖−1 · ‖λt(w1)‖+ δ‖λt(w1)‖
= −δ‖λt(w1)‖.

(0.1)
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Since the last quantity is always negative (remember that λt(w1) lies outside the origin),
we have shown that F is a negative Lyapunov function for the flow λt, that is, it strictly
decreases along its orbits.

Now, let us fix a quantity ε ∈ (0, 3
4
δ). Let us quantify how much the function F1 decreases

along its reparametrized anti-gradient flow λt in time t1 = ±1
2
‖w1‖:

|F1(λt1(w1))− F1(w1)| =
∫ |t1|
0

‖A1λs(w1)‖ ds

≥ 2δ

∫ |t1|
0

‖λs(w1)‖ ds

≥ 2δ

∫ |t1|
0

(
‖w1‖ − s

)
ds

≥ 2δ

(
‖w1‖ · |t1| −

t21
2

)
= 2δ

(
1

2
− 1

8

)
‖w1‖2

> ε‖w1‖2.

Up to shrinking one last time the neighborhoods U0 and U1 around the origin, we have

|F (w0, w1)− F (w0, 0)− F1(w1)|

=

∣∣∣∣∫ 1

0

∂w1F (w0, sw1)w1 ds− F1(w1)

∣∣∣∣
=

∣∣∣∣∫ 1

0

∫ 1

0

s
(
〈∂w1w1F (w0, rsw1)w1, w1〉 − 〈Aw1, w1〉

)
dr ds

∣∣∣∣
≤ ε‖w1‖2.

If we put together the last two groups of estimates, for t1 = 1
2
‖w1‖ we get

F1(λt1(w1)) ≤ F (w0, w1)− F (w0, 0) ≤ F1(λ−t1(w1)).

This shows that there exists a unique intermediate value θ(w0, w1) ∈ (−1
2
‖w1‖, 12‖w1‖) such

that, for all (w0, w1) ∈ U0 × U1 outside the origin, we have the equality

F (w0, w1) = F (w0, 0) + F1(λθ(w0,w1)(w1)).

Analogously, there exists a value φ(v0, v1) ∈ (−‖v1‖, ‖v1‖) such that

F (v0, λφ(v0,v1)(v1)) = F (v0, 0) + F1(v1).

and, by (0.1), this value is also unique. Since

d

dt

(
F (w0, w1)− F (w0, 0)− F1(λt(w1))

)
= − d

dt
F1(λt(w1)) > 0,
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we can apply the implicit function theorem and conclude that θ is a C2 function outside
the origin. Analogously, φ is a C2 function outside the origin. Moreover, θ and φ can be
continuously (but not necessarily differentiably) extended to the origin by setting

θ(0, 0) = φ(0, 0) = 0.

We define the map Θ : U0 × U1 → E by

Θ(w0, w1) = (w0, λθ(w0,w1)(w1)).

This map is a homeomorphism, and its inverse Φ : Θ(U0 × U1)→ U0 × U1, which is given
by

Φ(v0, v1) = (v0, λφ(v0,v1)(v1)),

is our desired chart. �


