Variational methods for the study of periodic orbits • Marco Mazzucchelli

MORSE-GROMOLL-MEYER LEMMA

Let U be an open neighborhood of the origin in a (finite or infinite dimensional) separable Hilbert space \mathbb{E}. We consider a C^{3} function $F: U \rightarrow \mathbb{R}$ that satisfies the Palais-Smale condition and has a critical point at the origin. We denote by A the self-adjoint bounded linear operator on \mathbb{E} associated to the Hessian $\mathrm{d}^{2} F(0)$, i.e.

$$
\mathrm{d}^{2} F(0)[v, w]=\langle A v, w\rangle, \quad \forall v, w \in \mathbb{E}
$$

Notice that A is precisely $\mathrm{d}(\nabla F)(0): \mathbb{E} \rightarrow \mathbb{E}$.
We assume that A is a Fredholm operator, which means that $\mathbb{E}_{0}:=\operatorname{ker} A$ is finite dimensional. We denote by \mathbb{E}_{1} the orthogonal complement of \mathbb{E}_{0}. Notice that

$$
\langle A v, w\rangle=\langle v, \underbrace{A w}_{=0}\rangle=0, \quad \forall w \in \mathbb{E}_{0}, v \in \mathbb{E}_{1}
$$

and therefore $A v \in \mathbb{E}_{1}$ as well. This shows that the restriction $A_{1}:=\left.A\right|_{\mathbb{E}_{1}}$ is a self-adjoint injective bounded linear operator on \mathbb{E}_{1}. Since $\operatorname{coker}\left(A_{1}\right)=\operatorname{ker}\left(A_{1}\right)=\{0\}$, the operator A_{1} is actually bijective and, by the open mapping theorem, it is an isomorphism (i.e. its inverse is also a bounded operator).

Theorem 0.1 (Morse-Gromoll-Meyer Lemma). There exist open neighborhoods of the ori$\operatorname{gin} V_{0} \subset \mathbb{E}_{0}$ and $V_{1} \subset \mathbb{E}_{1}$, a map $\Phi: V_{0} \times V_{1} \rightarrow U$ that is a homeomorphism onto a neighborhood of the origin and that fixes the origin, and a C^{2} function $F_{0}: V_{0} \rightarrow \mathbb{R}$ with a totally degenerate critical point at the origin, such that

$$
F \circ \Phi\left(v_{0}, v_{1}\right)=F_{0}\left(v_{0}\right)+\frac{1}{2}\left\langle A_{1} v_{1}, v_{1}\right\rangle, \quad \forall\left(v_{0}, v_{1}\right) \in V_{0} \times V_{1} .
$$

Proof. Let us write points in U as $\left(w_{0}, w_{1}\right)$, where $w_{0} \in U \cap \mathbb{E}_{0}$ and $w_{1} \in U \cap \mathbb{E}_{1}$. Notice that

$$
\mathrm{d}^{2} F(0)=\left(\begin{array}{cc}
\partial_{w_{0} w_{0}}^{2} F(0,0) & \partial_{w_{0} w_{1}}^{2} F(0,0) \\
\partial_{w_{1} w_{0}}^{2} F(0,0) & \partial_{w_{1} w_{1}}^{2} F(0,0)
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
0 & A_{1}
\end{array}\right) .
$$

In particular $\partial_{w_{1} w_{1}}^{2} F(0,0)=A_{1}$ is an isomorphism on the Hilbert space \mathbb{E}_{1}. Therefore, by the implicit function theorem, there exist open neighborhoods of the origin $U_{0} \subset U \cap \mathbb{E}_{0}$ and $U_{1} \subset U \cap \mathbb{E}_{1}$, and a C^{2} map $\psi: U_{0} \rightarrow U_{1}$ such that $\psi(0)=0$ and

$$
\partial_{w_{1}} F\left(w_{0}, \psi\left(w_{0}\right)\right)=0, \quad \forall w_{0} \in U_{0}
$$

By differentiating this relation at the origin, we obtain

$$
0=\partial_{w_{0} w_{1}}^{2} F(0, \psi(0))+\partial_{w_{1} w_{1}}^{2} F(0, \psi(0)) \circ \mathrm{d} \psi(0)=A_{1} \circ \mathrm{~d} \psi(0) .
$$

Since A_{1} is an isomorphism, we infer that

$$
\mathrm{d} \psi(0)=0 .
$$

We define a map $\Psi: U_{0} \times U_{1} \rightarrow U$ by

$$
\Psi\left(w_{0}, w_{1}\right)=\left(w_{0}, \psi\left(w_{0}\right)+w_{1}\right), \quad \forall\left(w_{0}, w_{1}\right) \in U_{0} \times U_{1}
$$

This map is a C^{2} diffeomorphism onto a neighborhood of the origin, with inverse

$$
\Psi^{-1}\left(z_{0}, z_{1}\right)=\left(z_{0},-\psi\left(z_{0}\right)+z_{1}\right)
$$

We will employ Ψ as a local chart around the origin. The function $\tilde{F}:=F \circ \Psi$ is C^{2} and satisfies

$$
\partial_{w_{1}} \tilde{F}\left(w_{0}, 0\right)=0, \quad \forall w_{0} \in U_{0}
$$

Since $\partial_{w_{1} w_{1}} \tilde{F}(0,0)=A_{1}$ is an isomorphism, up to shrinking the neighborhoods U_{0} and U_{1} around the origin, the operator $\partial_{w_{1} w_{1}} \tilde{F}\left(w_{0}, w_{1}\right)$ is an isomorphism for all $\left(w_{0}, w_{1}\right) \in U_{0} \times U_{1}$. Namely, for each $w_{0} \in U_{0}$, the function $w_{1} \mapsto \tilde{F}\left(w_{0}, w_{1}\right)$ has a non-degenerate critical point at the origin. Moreover, since $\mathrm{d} \psi(0)=0$, the function $w_{0} \mapsto \tilde{F}_{0}\left(w_{0}\right):=\tilde{F}\left(w_{0}, 0\right)$ has a totally degenerate critical point at the origin, that is

$$
\mathrm{d}^{2} \tilde{F}_{0}(0)=\left.\mathrm{d}^{2} \tilde{F}(0,0)\right|_{\mathbb{E}_{0}}=0
$$

From now on we will simply write F for \tilde{F}, F_{0} for \tilde{F}_{0}, and U for the preimage $\Psi^{-1}(U)$.
Now, let us denote $F_{1}\left(w_{1}\right):=\frac{1}{2}\left\langle A_{1} w_{1}, w_{1}\right\rangle$. This is a quadratic function with linear gradient $\nabla F_{1}\left(w_{1}\right)=A_{1} w_{1}$. We denote by λ_{t} the partial flow of the vector field

$$
V\left(w_{1}\right):=-\frac{\nabla F_{1}\left(w_{1}\right)}{\left\|\nabla F_{1}\left(w_{1}\right)\right\|}=-\frac{A w_{1}}{\left\|A w_{1}\right\|} .
$$

Notice that this vector field is well defined and smooth outside the origin. Moreover, it has norm $\|V\| \equiv 1$. Therefore, the trajectories of its flow λ_{t} move with speed 1. Since a trajectory is well defined until it hits the origin, we conclude that $\lambda_{t}\left(w_{1}\right)$ is well defined provided $w_{1} \neq 0$ and $|t|<\left\|w_{1}\right\|$.

We set $\delta:=\frac{1}{2}\left\|A_{1}^{-1}\right\|^{-1}$. By the C^{2}-continuity of F, up to shrinking the neighborhoods U_{0} and U_{1} around the origin we have

$$
\left\|\partial_{w_{1} w_{1}} F\left(w_{0}, w_{1}\right)-\partial_{w_{1} w_{1}} F(0,0)\right\|=\left\|\partial_{w_{1} w_{1}} F\left(w_{0}, w_{1}\right)-A_{1}\right\| \leq \delta
$$

If we further shrink U_{0} and U_{1}, for all $\left(w_{0}, w_{1}\right) \in U_{0} \times U_{1}$ and $t \in\left(-\left\|w_{1}\right\|,\left\|w_{1}\right\|\right)$ we actually have

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t} F\left(w_{0}, \lambda_{t}\left(w_{1}\right)\right) & =-\partial_{w_{1}} F\left(w_{0}, \lambda_{t}\left(w_{1}\right)\right) \frac{A_{1} \lambda_{t}\left(w_{1}\right)}{\left\|A_{1} \lambda_{t}\left(w_{1}\right)\right\|} \\
& =-\int_{0}^{1} \frac{1}{\left\|A_{1} \lambda_{t}\left(w_{1}\right)\right\|}\left\langle\partial_{w_{1} w_{1}} F\left(w_{0}, s \lambda_{t}\left(w_{1}\right)\right) \lambda_{t}\left(w_{1}\right), A_{1} \lambda_{t}\left(w_{1}\right)\right\rangle \mathrm{d} s \\
& \leq-\frac{1}{\left\|A_{1} \lambda_{t}\left(w_{1}\right)\right\|}\left\langle A_{1} \lambda_{t}\left(w_{1}\right), A_{1} \lambda_{t}\left(w_{1}\right)\right\rangle+\delta\left\|\lambda_{t}\left(w_{1}\right)\right\| \tag{0.1}\\
& =-\left\|A_{1} \lambda_{t}\left(w_{1}\right)\right\|+\delta\left\|\lambda_{t}\left(w_{1}\right)\right\| \\
& \leq-\left\|A_{1}^{-1}\right\|^{-1} \cdot\left\|\lambda_{t}\left(w_{1}\right)\right\|+\delta\left\|\lambda_{t}\left(w_{1}\right)\right\| \\
& =-\delta\left\|\lambda_{t}\left(w_{1}\right)\right\| .
\end{align*}
$$

Since the last quantity is always negative (remember that $\lambda_{t}\left(w_{1}\right)$ lies outside the origin), we have shown that F is a negative Lyapunov function for the flow λ_{t}, that is, it strictly decreases along its orbits.

Now, let us fix a quantity $\epsilon \in\left(0, \frac{3}{4} \delta\right)$. Let us quantify how much the function F_{1} decreases along its reparametrized anti-gradient flow λ_{t} in time $t_{1}= \pm \frac{1}{2}\left\|w_{1}\right\|$:

$$
\begin{aligned}
\left|F_{1}\left(\lambda_{t_{1}}\left(w_{1}\right)\right)-F_{1}\left(w_{1}\right)\right| & =\int_{0}^{\left|t_{1}\right|}\left\|A_{1} \lambda_{s}\left(w_{1}\right)\right\| \mathrm{d} s \\
& \geq 2 \delta \int_{0}^{\left|t_{1}\right|}\left\|\lambda_{s}\left(w_{1}\right)\right\| \mathrm{d} s \\
& \geq 2 \delta \int_{0}^{\left|t_{1}\right|}\left(\left\|w_{1}\right\|-s\right) \mathrm{d} s \\
& \geq 2 \delta\left(\left\|w_{1}\right\| \cdot\left|t_{1}\right|-\frac{t_{1}^{2}}{2}\right) \\
& =2 \delta\left(\frac{1}{2}-\frac{1}{8}\right)\left\|w_{1}\right\|^{2} \\
& >\epsilon\left\|w_{1}\right\|^{2}
\end{aligned}
$$

Up to shrinking one last time the neighborhoods U_{0} and U_{1} around the origin, we have

$$
\begin{aligned}
& \left|F\left(w_{0}, w_{1}\right)-F\left(w_{0}, 0\right)-F_{1}\left(w_{1}\right)\right| \\
& \\
& \quad=\left|\int_{0}^{1} \partial_{w_{1}} F\left(w_{0}, s w_{1}\right) w_{1} \mathrm{~d} s-F_{1}\left(w_{1}\right)\right| \\
& \quad=\left|\int_{0}^{1} \int_{0}^{1} s\left(\left\langle\partial_{w_{1} w_{1}} F\left(w_{0}, r s w_{1}\right) w_{1}, w_{1}\right\rangle-\left\langle A w_{1}, w_{1}\right\rangle\right) \mathrm{d} r \mathrm{~d} s\right| \\
& \quad \leq \epsilon\left\|w_{1}\right\|^{2} .
\end{aligned}
$$

If we put together the last two groups of estimates, for $t_{1}=\frac{1}{2}\left\|w_{1}\right\|$ we get

$$
F_{1}\left(\lambda_{t_{1}}\left(w_{1}\right)\right) \leq F\left(w_{0}, w_{1}\right)-F\left(w_{0}, 0\right) \leq F_{1}\left(\lambda_{-t_{1}}\left(w_{1}\right)\right)
$$

This shows that there exists a unique intermediate value $\theta\left(w_{0}, w_{1}\right) \in\left(-\frac{1}{2}\left\|w_{1}\right\|, \frac{1}{2}\left\|w_{1}\right\|\right)$ such that, for all $\left(w_{0}, w_{1}\right) \in U_{0} \times U_{1}$ outside the origin, we have the equality

$$
F\left(w_{0}, w_{1}\right)=F\left(w_{0}, 0\right)+F_{1}\left(\lambda_{\theta\left(w_{0}, w_{1}\right)}\left(w_{1}\right)\right)
$$

Analogously, there exists a value $\phi\left(v_{0}, v_{1}\right) \in\left(-\left\|v_{1}\right\|,\left\|v_{1}\right\|\right)$ such that

$$
F\left(v_{0}, \lambda_{\phi\left(v_{0}, v_{1}\right)}\left(v_{1}\right)\right)=F\left(v_{0}, 0\right)+F_{1}\left(v_{1}\right) .
$$

and, by (0.1), this value is also unique. Since

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(F\left(w_{0}, w_{1}\right)-F\left(w_{0}, 0\right)-F_{1}\left(\lambda_{t}\left(w_{1}\right)\right)\right)=-\frac{\mathrm{d}}{\mathrm{~d} t} F_{1}\left(\lambda_{t}\left(w_{1}\right)\right)>0
$$

we can apply the implicit function theorem and conclude that θ is a C^{2} function outside the origin. Analogously, ϕ is a C^{2} function outside the origin. Moreover, θ and ϕ can be continuously (but not necessarily differentiably) extended to the origin by setting

$$
\theta(0,0)=\phi(0,0)=0
$$

We define the map $\Theta: U_{0} \times U_{1} \rightarrow \mathbb{E}$ by

$$
\Theta\left(w_{0}, w_{1}\right)=\left(w_{0}, \lambda_{\theta\left(w_{0}, w_{1}\right)}\left(w_{1}\right)\right)
$$

This map is a homeomorphism, and its inverse $\Phi: \Theta\left(U_{0} \times U_{1}\right) \rightarrow U_{0} \times U_{1}$, which is given by

$$
\Phi\left(v_{0}, v_{1}\right)=\left(v_{0}, \lambda_{\phi\left(v_{0}, v_{1}\right)}\left(v_{1}\right)\right)
$$

is our desired chart.

