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SOLUTIONS OF THE EXAM – March 23, 2018

Exercise 1. Consider a compact cylinder M = [−1, 1] × R/Z equipped with the flat Rie-
mannian metric g = dx ⊗ dx + dθ ⊗ dθ (here, x is the variable on [0, 1], whereas θ is the
variable on R/Z). Is the X-ray transform

I0 : C∞(M)→ C∞(∂+SM), I0(f) =

∫ τg(x,v)

0

f(expx(tv)) dt

injective?

Hint. Solve first the analogous exercise for M = [−1, 1] with the Euclidean Riemannian metric g = dx⊗dx.

Solution. The X-ray transform I0 is not injective. Indeed, let h ∈ C∞([−1, 1]) be any
odd function, for instance h(x) = sin(x). We see it as a function f ∈ C∞(M), by setting
f(x, θ) := h(x). For each q = (x, θ) ∈ ∂M and v = (v1, v2) ∈ ∂+SxM , the corresponding
geodesic is the straight line expq(tv) = (x+ tv1, θ+ tv2), which is defined for t ∈ [0, 2/|v1|].
Since h is odd, the X-ray transform I0(f) vanishes, for

I0(f)(q, v) =

∫ 2/|v1|

0

h(x+ tv1) dt = |v1|−1
∫ 1

−1
h(y) dy = 0.
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Exercise 2. For i = 0, 1, let (Mi, gi) be a closed Riemannian surface with associated geo-
desic vector field Xi, geodesic flow φti, and Liouville 1-form αi on SMi. Assume that there
exists a diffeomorphism ψ : SM0 → SM1 such that

ψ ◦ φt0 = φt1 ◦ ψ, ∀t ∈ R.

(i) For each s ∈ [0, 1], set βs := sψ∗α1 + (1− s)α0, β̇s := d
ds
βs, and compute

(ψ∗α1)(X0), X0 y d(ψ∗α1), X0 y β̇s ∧ dβs, β̇s ∧ dβs,
d

ds

∫
SM0

βs ∧ dβs.

(ii) Do we necessarily have Vol(M0, g0) = Vol(M1, g1)?

Solution. (i) By differentiating the members of the identity ψ ◦ φt0 = φt1 ◦ ψ with respect
to t, we find dψ(x, v)X0(x, v) = X1(ψ(x, v)). Therefore

ψ∗α1(X0) = ψ∗(α1(X1)) ≡ 1,

X0 y d(ψ∗α1) = X0 yψ
∗dα1 = ψ∗(X1 y dα1) ≡ 0.

This implies, for each s ∈ [0, 1],

βs(X0) ≡ 1, X0 y dβs ≡ 0.

Therefore β̇s(X0) = 0, and

X0 y β̇s ∧ dβs = 0.

Since β̇s∧dβs is a 3-form on the 3-dimensional manifold SM0, and since the geodesic vector
field X0 is nowhere vanishing, we infer that

β̇s ∧ dβs = 0.

Finally,

d

ds

∫
M1

βs ∧ dβs =

∫
SM1

β̇s ∧ dβs +

∫
M1

βs ∧ dβ̇s

=

∫
SM1

βs ∧ dβ̇s

=

∫
SM1

(
− d(βs ∧ β̇s) + dβs ∧ β̇s

)
= −

∫
SM1

d(βs ∧ β̇s)

= 0.

2



(ii) Yes. Indeed,

Vol(M0, g0) =
1

2π

∫
SM0

α0 ∧ (dα0)
d−1 =

1

2π

∫
SM0

β0 ∧ (dβ0)
d−1

=
1

2π

∫
SM0

β1 ∧ (dβ1)
d−1 =

1

2π

∫
SM0

ψ∗(α1 ∧ (dα1)
d−1)

=
1

2π

∫
SM1

α1 ∧ (dα1)
d−1 = Vol(M1, g1).

3



Exercise 3. Let (B2, g) be an oriented simple Riemannian ball, with associated geodesic
vector field X on SB2, vertical vector field V on SB2, and X-ray transform I. Consider
the vector field X⊥ := [X, V ], and a smooth function f ∈ C∞(M) such that I(X⊥f) = 0
and f |∂M ≡ c ∈ R. Determine the function f .

Solution. We recall that X⊥ acts on functions f ∈ C∞(M) as

X⊥f(x, v) = XV f(x, v)− V Xf(x, v) = −V Xf(x, v) = −V (df)(x, v) = −df(x)Jv,

where J is the complex structure of (B2, g), i.e. Jv is the tangent vector obtained by
rotating v positively by an angle π/2. This shows that X⊥f is a 1-tensor, and therefore
I1(X⊥f) = I(X⊥f) = 0. By the s-injectivity of the X-ray transform I1, if I1(X⊥f) = 0 then
there exists h ∈ C∞(M) such that h|∂M ≡ 0 and dh(x)v = X⊥f(x, v) = −df(x)Jv for all
(x, v) ∈ SB2. Therefore, f+ih : B2 → C is a J-holomorphic function, and ∆gf = ∆gh ≡ 0.
Notice that the constant function f ′ ≡ c satisfies ∆gf

′ = 0 and f ′|∂B2 = f |∂B2 . Since
harmonic functions are completely determined by their boundary values, we conclude that
f = f ′ ≡ c.
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Exercise 4. Let (B2, g) be an oriented simple Riemannian ball, with associated geodesic
vector field X on SB2, and vertical vector field V on SB2. Consider a smooth function
u ∈ C∞(SM) such that u|∂SM ≡ 0, and set f := Xu. We write the fiberwise Fourier
decompositions of u and f as

u =
∑
k∈Z

uk, f =
∑
k∈Z

fk,

where uk, fk ∈ ker(−iV − k). Assume that fk ≡ 0 for all k < 0. Compute uk, for all k ≤ 0.

Hint. Set w := u − iHu = u0 + 2
∑

k<0 uk, where H is the Hilbert transform. Compute I(Xweven) and
I(Xwodd), where I is the X-ray transform. Compute the expression of Xw by means of Pestov-Uhlmann’s
relation. Compute f−iHf . Then compute Xweven and Xwodd. Use the s-injectivity of the X-ray transform
on 0-tensors and your result of Exercise 3.

Solution. Since u|∂SM = 0, we have that weven|∂SM = wodd|∂SM = 0 as well, and therefore

I(Xweven) = I(Xwodd) = 0.(1)

By Pestov-Uhlmann’s relation HXu−XHu = X⊥u0 + (X⊥u)0, we have

Xw = Xu− iHXu+ iX⊥u0 + i(X⊥u)0 = f − iHf + iX⊥u0 + i(X⊥u)0.

Since fk ≡ 0 for all k < 0, we have f − iHf = f0, and therefore

Xw = f0 + iX⊥u0 + i(X⊥u)0.

Since the vector fields X and X⊥ transform even function to odd functions and viceversa,
the previous equation can be decomposed in even and odd part, and gives

Xweven = iX⊥u0, Xwodd = f0 + i(X⊥u)0.

Equation (1) thus implies I1(X⊥u0) = 0 and I0(f0+i(X⊥u)0) = 0. The equality I1(X⊥u0) =
0, together with u0|∂M ≡ 0 and the result of Exercise (3), implies that u0 ≡ 0. Therefore,
Xweven = 0, and since weven|∂SM ≡ 0 we have weven ≡ 0. The equality I0(f0+i(X⊥u)0) = 0,
together with the injectivity of I0, implies that Xwodd = f0 + i(X⊥u)0 ≡ 0, and since
wodd|∂SM ≡ 0 we have wodd ≡ 0. Summing up, we proved that w ≡ 0, which means that
uk = 0 for all k ≤ 0.
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