Rigidity phenomena in Riemannian geometry. Marco Mazzucchelli

SOLUTIONS OF THE EXAM - March 23, 2018

Exercise 1. Consider a compact cylinder $M=[-1,1] \times \mathbb{R} / \mathbb{Z}$ equipped with the flat Riemannian metric $g=d x \otimes d x+d \theta \otimes d \theta$ (here, x is the variable on [0, 1$]$, whereas θ is the variable on \mathbb{R} / \mathbb{Z}). Is the X-ray transform

$$
I_{0}: C^{\infty}(M) \rightarrow C^{\infty}\left(\partial_{+} S M\right), \quad I_{0}(f)=\int_{0}^{\tau_{g}(x, v)} f\left(\exp _{x}(t v)\right) d t
$$

injective?
Hint. Solve first the analogous exercise for $M=[-1,1]$ with the Euclidean Riemannian metric $g=d x \otimes d x$.
Solution. The X-ray transform I_{0} is not injective. Indeed, let $h \in C^{\infty}([-1,1])$ be any odd function, for instance $h(x)=\sin (x)$. We see it as a function $f \in C^{\infty}(M)$, by setting $f(x, \theta):=h(x)$. For each $q=(x, \theta) \in \partial M$ and $v=\left(v_{1}, v_{2}\right) \in \partial_{+} S_{x} M$, the corresponding geodesic is the straight line $\exp _{q}(t v)=\left(x+t v_{1}, \theta+t v_{2}\right)$, which is defined for $t \in\left[0,2 /\left|v_{1}\right|\right]$. Since h is odd, the X-ray transform $I_{0}(f)$ vanishes, for

$$
I_{0}(f)(q, v)=\int_{0}^{2 /\left|v_{1}\right|} h\left(x+t v_{1}\right) d t=\left|v_{1}\right|^{-1} \int_{-1}^{1} h(y) d y=0 .
$$

Exercise 2. For $i=0,1$, let $\left(M_{i}, g_{i}\right)$ be a closed Riemannian surface with associated geodesic vector field X_{i}, geodesic flow ϕ_{i}^{t}, and Liouville 1-form α_{i} on $S M_{i}$. Assume that there exists a diffeomorphism $\psi: S M_{0} \rightarrow S M_{1}$ such that

$$
\psi \circ \phi_{0}^{t}=\phi_{1}^{t} \circ \psi, \quad \forall t \in \mathbb{R}
$$

(i) For each $s \in[0,1]$, set $\beta_{s}:=s \psi^{*} \alpha_{1}+(1-s) \alpha_{0}, \dot{\beta}_{s}:=\frac{d}{d s} \beta_{s}$, and compute

$$
\left.\left.\left(\psi^{*} \alpha_{1}\right)\left(X_{0}\right), \quad X_{0}\right\lrcorner d\left(\psi^{*} \alpha_{1}\right), \quad X_{0}\right\lrcorner \dot{\beta}_{s} \wedge d \beta_{s}, \quad \dot{\beta}_{s} \wedge d \beta_{s}, \quad \frac{d}{d s} \int_{S M_{0}} \beta_{s} \wedge d \beta_{s}
$$

(ii) Do we necessarily have $\operatorname{Vol}\left(M_{0}, g_{0}\right)=\operatorname{Vol}\left(M_{1}, g_{1}\right)$?

Solution. (i) By differentiating the members of the identity $\psi \circ \phi_{0}^{t}=\phi_{1}^{t} \circ \psi$ with respect to t, we find $d \psi(x, v) X_{0}(x, v)=X_{1}(\psi(x, v))$. Therefore

$$
\begin{gathered}
\psi^{*} \alpha_{1}\left(X_{0}\right)=\psi^{*}\left(\alpha_{1}\left(X_{1}\right)\right) \equiv 1, \\
\left.\left.\left.X_{0}\right\lrcorner d\left(\psi^{*} \alpha_{1}\right)=X_{0}\right\lrcorner \psi^{*} d \alpha_{1}=\psi^{*}\left(X_{1}\right\lrcorner d \alpha_{1}\right) \equiv 0 .
\end{gathered}
$$

This implies, for each $s \in[0,1]$,

$$
\left.\beta_{s}\left(X_{0}\right) \equiv 1, \quad X_{0}\right\lrcorner d \beta_{s} \equiv 0
$$

Therefore $\dot{\beta}_{s}\left(X_{0}\right)=0$, and

$$
\left.X_{0}\right\lrcorner \dot{\beta}_{s} \wedge d \beta_{s}=0
$$

Since $\dot{\beta}_{s} \wedge d \beta_{s}$ is a 3 -form on the 3 -dimensional manifold $S M_{0}$, and since the geodesic vector field X_{0} is nowhere vanishing, we infer that

$$
\dot{\beta}_{s} \wedge d \beta_{s}=0
$$

Finally,

$$
\begin{aligned}
\frac{d}{d s} \int_{M_{1}} \beta_{s} \wedge d \beta_{s} & =\int_{S M_{1}} \dot{\beta}_{s} \wedge d \beta_{s}+\int_{M_{1}} \beta_{s} \wedge d \dot{\beta}_{s} \\
& =\int_{S M_{1}} \beta_{s} \wedge d \dot{\beta}_{s} \\
& =\int_{S M_{1}}\left(-d\left(\beta_{s} \wedge \dot{\beta}_{s}\right)+d \beta_{s} \wedge \dot{\beta}_{s}\right) \\
& =-\int_{S M_{1}} d\left(\beta_{s} \wedge \dot{\beta}_{s}\right) \\
& =0 .
\end{aligned}
$$

(ii) Yes. Indeed,

$$
\begin{aligned}
\operatorname{Vol}\left(M_{0}, g_{0}\right) & =\frac{1}{2 \pi} \int_{S M_{0}} \alpha_{0} \wedge\left(d \alpha_{0}\right)^{d-1}=\frac{1}{2 \pi} \int_{S M_{0}} \beta_{0} \wedge\left(d \beta_{0}\right)^{d-1} \\
& =\frac{1}{2 \pi} \int_{S M_{0}} \beta_{1} \wedge\left(d \beta_{1}\right)^{d-1}=\frac{1}{2 \pi} \int_{S M_{0}} \psi^{*}\left(\alpha_{1} \wedge\left(d \alpha_{1}\right)^{d-1}\right) \\
& =\frac{1}{2 \pi} \int_{S M_{1}} \alpha_{1} \wedge\left(d \alpha_{1}\right)^{d-1}=\operatorname{Vol}\left(M_{1}, g_{1}\right)
\end{aligned}
$$

Exercise 3. Let $\left(B^{2}, g\right)$ be an oriented simple Riemannian ball, with associated geodesic vector field X on $S B^{2}$, vertical vector field V on $S B^{2}$, and X-ray transform I. Consider the vector field $X_{\perp}:=[X, V]$, and a smooth function $f \in C^{\infty}(M)$ such that $I\left(X_{\perp} f\right)=0$ and $\left.f\right|_{\partial M} \equiv c \in \mathbb{R}$. Determine the function f.

Solution. We recall that X_{\perp} acts on functions $f \in C^{\infty}(M)$ as

$$
X_{\perp} f(x, v)=X V f(x, v)-V X f(x, v)=-V X f(x, v)=-V(d f)(x, v)=-d f(x) J v
$$

where J is the complex structure of $\left(B^{2}, g\right)$, i.e. $J v$ is the tangent vector obtained by rotating v positively by an angle $\pi / 2$. This shows that $X_{\perp} f$ is a 1-tensor, and therefore $I_{1}\left(X_{\perp} f\right)=I\left(X_{\perp} f\right)=0$. By the s-injectivity of the X-ray transform I_{1}, if $I_{1}\left(X_{\perp} f\right)=0$ then there exists $h \in C^{\infty}(M)$ such that $\left.h\right|_{\partial M} \equiv 0$ and $d h(x) v=X_{\perp} f(x, v)=-d f(x) J v$ for all $(x, v) \in S B^{2}$. Therefore, $f+i h: B^{2} \rightarrow \mathbb{C}$ is a J-holomorphic function, and $\Delta_{g} f=\Delta_{g} h \equiv 0$. Notice that the constant function $f^{\prime} \equiv c$ satisfies $\Delta_{g} f^{\prime}=0$ and $\left.f^{\prime}\right|_{\partial B^{2}}=\left.f\right|_{\partial B^{2}}$. Since harmonic functions are completely determined by their boundary values, we conclude that $f=f^{\prime} \equiv c$.

Exercise 4. Let $\left(B^{2}, g\right)$ be an oriented simple Riemannian ball, with associated geodesic vector field X on $S B^{2}$, and vertical vector field V on $S B^{2}$. Consider a smooth function $u \in C^{\infty}(S M)$ such that $\left.u\right|_{\partial S M} \equiv 0$, and set $f:=X u$. We write the fiberwise Fourier decompositions of u and f as

$$
u=\sum_{k \in \mathbb{Z}} u_{k}, \quad f=\sum_{k \in \mathbb{Z}} f_{k},
$$

where $u_{k}, f_{k} \in \operatorname{ker}(-i V-k)$. Assume that $f_{k} \equiv 0$ for all $k<0$. Compute u_{k}, for all $k \leq 0$.
Hint. Set $w:=u-i H u=u_{0}+2 \sum_{k<0} u_{k}$, where H is the Hilbert transform. Compute $I\left(X w_{\text {even }}\right)$ and $I\left(X w_{\text {odd }}\right)$, where I is the X-ray transform. Compute the expression of $X w$ by means of Pestov-Uhlmann's relation. Compute $f-i H f$. Then compute $X w_{\text {even }}$ and $X w_{\text {odd }}$. Use the s-injectivity of the X-ray transform on 0 -tensors and your result of Exercise 3

Solution. Since $\left.u\right|_{\partial S M}=0$, we have that $\left.w_{\text {even }}\right|_{\partial S M}=\left.w_{\text {odd }}\right|_{\partial S M}=0$ as well, and therefore

$$
\begin{equation*}
I\left(X w_{\text {even }}\right)=I\left(X w_{\text {odd }}\right)=0 . \tag{1}
\end{equation*}
$$

By Pestov-Uhlmann's relation $H X u-X H u=X_{\perp} u_{0}+\left(X_{\perp} u\right)_{0}$, we have

$$
X w=X u-i H X u+i X_{\perp} u_{0}+i\left(X_{\perp} u\right)_{0}=f-i H f+i X_{\perp} u_{0}+i\left(X_{\perp} u\right)_{0} .
$$

Since $f_{k} \equiv 0$ for all $k<0$, we have $f-i H f=f_{0}$, and therefore

$$
X w=f_{0}+i X_{\perp} u_{0}+i\left(X_{\perp} u\right)_{0} .
$$

Since the vector fields X and X_{\perp} transform even function to odd functions and viceversa, the previous equation can be decomposed in even and odd part, and gives

$$
X w_{\text {even }}=i X_{\perp} u_{0}, \quad X w_{\text {odd }}=f_{0}+i\left(X_{\perp} u\right)_{0}
$$

Equation (1) thus implies $I_{1}\left(X_{\perp} u_{0}\right)=0$ and $I_{0}\left(f_{0}+i\left(X_{\perp} u\right)_{0}\right)=0$. The equality $I_{1}\left(X_{\perp} u_{0}\right)=$ 0 , together with $\left.u_{0}\right|_{\partial M} \equiv 0$ and the result of Exercise (3), implies that $u_{0} \equiv 0$. Therefore, $X w_{\text {even }}=0$, and since $\left.w_{\text {even }}\right|_{\partial S M} \equiv 0$ we have $w_{\text {even }} \equiv 0$. The equality $I_{0}\left(f_{0}+i\left(X_{\perp} u\right)_{0}\right)=0$, together with the injectivity of I_{0}, implies that $X w_{\text {odd }}=f_{0}+i\left(X_{\perp} u\right)_{0} \equiv 0$, and since $\left.w_{\text {odd }}\right|_{\partial S M} \equiv 0$ we have $w_{\text {odd }} \equiv 0$. Summing up, we proved that $w \equiv 0$, which means that $u_{k}=0$ for all $k \leq 0$.

