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0.1. Contact geometry of the unit tangent bundle. Let M be a smooth manifold.
The cotangent bundle T ∗M admits a canonical exact symplectic form dλ, which
is an exact 2-form on T ∗M defined by λ(x,p) := p ◦ dπ(x, p). Here π : TM → M ,
π(x, v) = x is the base projection of the tangent bundle. Let us express λ in
suitable local coordinates. On tangent and cotangent bundles, the charts that one
employs are usually induced by charts on the base manifold. If x1, ..., xn are local
coordinates on M , the corresponding local coordinates x1, ..., xn, v1, ..., vn on TM
identify the point (x, v) ∈ TM , where x ∈M has coordinates (x1, ..., xn), and v =
v1 ∂

∂x1 + ...+ vn ∂
∂xn ∈ TxM . Analogously, the local coordinates x1, ..., xn, p1, ..., pn

on T ∗M identify the point (x, p) ∈ TM , where x ∈ M is as before, and p =
p1 dx

1 + ...+ pn dx
n ∈ T ∗xM . Notice that, in these local coordinates,

dπ(x, v) ∂
∂xi = ∂

∂xi , dπ(x, v) ∂
∂vi = 0.

Therefore, λ and dλ can be expressed in local coordinates as

λ = p1 dx
1 + ...+ pn dx

n, dλ = dp1 ∧ dx1 + ...+ pn ∧ dxn.

The symplectic form dλ is non-degenerate, meaning that dλ(w, ·) 6= 0 whenever
w 6= 0 (more generally, a symplectic form on a manifold is a closed, non-degenerate,
2-form). Its primitive λ is called the Liouville form of T ∗M . The maximal exterior
product (dλ)n = dλ∧ ...∧ dλ is a volume form on T ∗M , as can be easily seen from
its expression in local coordinates

(dλ)n = n!
(
dp1 ∧ dx1 + ...+ dpn ∧ dxn

)
.

The tangent bundle TM does not admit a canonical symplectic structure. How-
ever, a Riemannian metric g on M provides a bundle isomorphism

[ : TM → T ∗M, (x, v) 7→ (x, v[),

where v[ := gx(v, ·). By means of this isomorphism, we can pull-back λ to a 1-form
Λ on TM , which we will still call the Liouville form. Clearly, Λ depends on the
Riemannian metric g, for it is given by

Λ(x,v)(w) = gx(v, dπ(x, v)w), ∀w ∈ T(x,v)TM.

In local coordinates, if we write

g =

n∑
i,j=1

gij dx
i ⊗ dxj ,
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we can write Λ and the symplectic form dΛ as

Λ =

n∑
i,j=1

gij v
idxj , dΛ =

n∑
i,j=1

(
gij dv

i ∧ dxj + vi dgij ∧ dxj
)
. (0.1)

We now introduce the unit tangent bundle

SM :=
{

(x, v) ∈ TM
∣∣ gx(v, v) = 1

}
,

which is a smooth hypersurface of the tangent bundle TM . The symplectic struc-
ture of TM induces a co-called contact structure on SM . In order to explain
this, consider the radial deformation ρt : TM → TM , ρt(x, v) = (x, etv), which is
generated by the vector field R := d

dt

∣∣
t=0

ρt. In local coordinates, R is given by

R = v1 ∂
∂v1 + ...+ vn ∂

∂vn . (0.2)

Proposition 0.1. We have that Λ ∧ (dΛ)n−1 = 1
nR y (dΛ)n. In particular, the re-

striction of the Liouville form Λ to SM is a contact form, meaning that Λ∧(dΛ)n−1

restricts to a volume form on SM .

Proof. Equations (0.1) and (0.2) readily imply that R y dΛ = Λ, and Cartan’s
formula allows to compute the Lie derivative LRdΛ as

LRdΛ = d(R y dΛ) +R y ddΛ = d(R y dΛ) = dΛ.

In symplectic geometry, a vector field R satisfying this latter property is called
a Liouville vector field. Clearly, R is transverse to the unit tangent bundle SM .
Therefore, the (n− 1)-form R y (dΛ)n restricts to a volume form on SM . Since

Λ ∧ (dΛ)n−1 = (R y dΛ) ∧ (dΛ)n−1 = 1
nR y (dΛ)n,

we conclude that Λ ∧ (dΛ)n−1 restricts to a volume form on SM . �

From now on, we will consider the Liouville form Λ and its exterior derivative dΛ
as differential forms on SM , without denoting the restriction. Since Λ is nowhere
vanishing, its kernel is a vector subbundle ker(Λ) ⊂ TSM of rank 2(n − 1). In
contact geometry, ker(Λ) is called a contact distribution. The fact that Λ∧(dΛ)n−1

is a volume form is equivalent to the requirement that dΛ be non-degenerate on
ker(Λ), namely, dΛ(w, ·) 6= 0 for all w ∈ ker(Λ). We are now ready to define the
geodesic vector field X on SM .

Proposition 0.2. There exists a unique vector field X on SM , called the geodesic
vector field, satisfying Λ(X) ≡ 1 and X y dΛ ≡ 0.

Proof. Since Λ is nowhere vanishing, we can find a vector field Y on SM such
that Λ(Y ) is a nowhere vanishing function. Therefore we have a splitting TSM =
span{Y } ⊕ ker(Λ), and we can write any vector field X on SM as X = fY + Z,
where f : SM → R is a smooth function and Z takes values in ker(Λ). The
condition Λ(X) ≡ 1 is equivalent to f = Λ(Y )−1, whereas X y dΛ ≡ 0 is equivalent
to Z ≡ 0. �

The flow φt of X, which is defined by the O.D.E. d
dtφt = X ◦ φt, is called the

geodesic flow. The following statement shows that φt is an example of a so-called
strict contactomorphism.
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Proposition 0.3. For each t ∈ R and (x, v) ∈ SM so that φt(x, v) is well defined,
we have (φ∗tΛ)(x,v) = Λ(x,v).

Proof. On the domain of φt, we have

d
dtφ
∗
tΛ = φ∗tLXΛ = φ∗t (X y dΛ + d(Λ(X))) = 0. �

Let us now justify the terminology for the geodesic flow.

Proposition 0.4. The flow lines of the geodesic flow are of the form φt(γ(0), γ̇(0)) =
(γ(t), γ̇(t)), where γ : [0, t]→M is a unit-speed geodesic of (M, g).

Proof. We fix (x, v) ∈ SM , and consider the geodesic γ(t) := expx(tv). All

we have to show is that Γ̇(0) = X(Γ(0)), where Γ denotes the lifted geodesic
Γ(t) := (γ(t), γ̇(t)) = (expx(tv), d expx(tv)v). One simple way to verify this is by
employing the geodesic normal coordinates x1, ..., xn centered at x. Namely, we fix
a g-orthonormal basis e1, ..., en of the tangent space TxM , and we write (x1, ..., xn)
for the coordinates of the point expx(x1e1 + ...+ xnen) ∈ M . If we write our Rie-
mannian metric in these local coordinates as g =

∑
i,j gij dx

i ⊗ dxj , its coefficients

at x satisfy gij(x) = δij and dgij(x) = 0. Indeed,

gij(x) = gx( ∂
∂xi ,

∂
∂xj ) = gx(d expx(0)ei, d expx(0)ej) = gx(ei, ej) = 0,

and, by Gauss Lemma, we have

dgij(x)ei = d
dt

∣∣
t=0

g(d exp(tei)ei, d exp(tei)ej) = d
dt

∣∣
t=0

g(ei, ej) = 0.

Therefore, in these coordinates, Equation (0.1) gives

Λ(x,v) =

n∑
i=1

vidxi, dΛ(x,v) =

n∑
i=1

dvi ∧ dxi,

and therefore X(Γ(0)) = X(x, v) = v1 ∂
∂x1 + ...+ vn ∂

∂xn . For t ∈ R sufficiently close

to 0, Γ(t) is given in local coordinates by (tv1, ..., tvn, v1, ..., vn), and its derivative

Γ̇(t) is thus given in local coordinates by (v1, ..., vn, 0, ..., 0). This shows that Γ̇(0) =
v1 ∂

∂x1 + ...+ vn ∂
∂xn . �

0.2. Santaló’s formula. Consider the Liouville form Λ on SM , which we introduced
in Section 0.1. We denote by mg the measure on SM obtained by integrating the
contact volume form 1

(n−1)!Λ ∧ (dΛ)n−1, i.e.∫
SM

F (x, v) dmg(x, v) =
1

(n− 1)!

∫
SM

F Λ ∧ (dΛ)n−1,

∀F ∈ C0(SM).

We will refer to this measure as to the Liouville measure on SM .
We fix an arbitrary orientation on M , and denote by volg the Riemannian volume

form compatible with this orientation. We recall that volg is the unique n-form such
that volg(e1, ..., en) = 1 for each oriented orthonormal basis e1, ..., en of a tangent
space TxM . In oriented local coordinates x1, ..., xn around x ∈ M , if we write
g =

∑
i,j gijdx

i ⊗ dxj , volg is given by

volg = det(gij)
1/2dx1 ∧ ... ∧ dxn.
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The evaluation gx of the Riemannian metric at some x ∈M gives an inner product
on TxM . We now treat the tangent space TxM as a manifold itself, and see gx as a
flat Riemannian metric on it. If x1, ..., xn, v1, ..., vn are the induced local coordinates
on TM , the Riemannian volume form volgx can be written in local coordinates as

volgx = det(gij(x))1/2dv1 ∧ ... ∧ dvn.

Let R be the radial vector field to SM introduced in Equation (0.2).

Lemma 0.5. The vector field R is a unit normal to SxM ⊂ TxM with respect to
the Riemannian metric gx, i.e. ‖R(x, v)‖gx = 1 and gx(R(x, v), w) = 0 for each
x ∈M and x ∈ Tv(SxM).

Proof. The fact that R has unit norm along SM follows from

‖R(x, v)‖gx = ‖v‖g, ∀(x, v) ∈ TM.

We fix x ∈ M , and notice that Tv(SxM) = ker(r), where r : SxM → R is the
squared norm r(v) = ‖v‖2gx . Since

dr(v)w = d
dt

∣∣
t=0
‖R(x, v) + tw‖2gx = 2gx(R(x, v), w),

we conclude that R is orthogonal to SxM . �

We now denote by ιx : SxM ↪→ TxM the inclusion, and we introduced the
Riemannian metric hx := ι∗xgx on SxM . Notice that, with the suitable orientation
on SxM , the Riemannian volume form associated to hx is given by

volhx := R y volgx .

The Riemannian measure mg can be suitably disintegrated as follows.

Lemma 0.6. For each F ∈ C0(SM), we have∫
SM

F (x, v) dmg =

∫
M

(∫
SxM

F (x, ·) volgx

)
volg

Proof. We saw in Proposition 0.1 that Λ ∧ (dΛ)n−1 = 1
nR y (dΛ)n. By the local

coordinate expression (0.1), we readily compute

1

n
(dΛ)n =

n!

n
det(gij) dv

1 ∧ ... ∧ dvn ∧ dx1 ∧ ... ∧ dxn

= (n− 1)! det(gij)
1/2 dv1 ∧ ... ∧ dvn︸ ︷︷ ︸

(∗)

∧det(gij)
1/2 dx1 ∧ ... ∧ dxn︸ ︷︷ ︸

(∗∗)

.

Notice that (∗) and (∗∗) are the local coordinates expressions for the Riemann-
ian volume forms volg and volhx

respectively. Therefore, we obtain the desired
desintegration∫
SM

F (x, v) dmg =
1

(n− 1)!

∫
SM

F Λ ∧ (dΛ)n−1 =

∫
M

(∫
SxM

F (x, ·) volgx

)
volg.

�

We now consider the geodesic vector field X on SM , which was introduced with
Proposition 0.2. if ι : ∂M →M is the inclusion, we denote by h := ι∗g the induced
Riemannian metric on the boundary ∂M .
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Lemma 0.7. We have the disintegration

1

(n− 1)!

∫
∂SM

F (dΛ)n−1 =

∫
∂M

(∫
SxM

F (x, ·) g(ν(x), ·) volhx

)
volh,

∀F ∈ C0(∂SM).

Proof. Since Λ(X) ≡ 1, X y dΛ = 0 and Λ ∧ (dΛ)n−1 = 1
nR y (dΛ)n, we have

(dΛ)n−1 = X yΛ ∧ (dΛ)n−1 = 1
nX y (R y (dΛ)n). (0.3)

We now fix (x, v) ∈ ∂SM , and proceed as in the proof of Proposition 0.4. We
consider geodesic normal coordinates x1, ..., xn centered at x, and the corresponding
coordinates x1, ..., xn, v1, ..., vn on ∂SM , so that

X(x, v) =

n∑
i=1

vi ∂
∂xi ,

R(x, v) =

n∑
i=1

vi ∂
∂vi ,

1
n (dΛ)n = (n− 1)! dv1 ∧ ... ∧ dvn ∧ dx1 ∧ ... ∧ dxn.

In this coordinates, we can write (0.3) at (x, v) as

(dΛ)n−1
(x,v) = (n− 1)!R(x, v) y

(
dv1 ∧ ... ∧ dvn

)
∧X(x, v) y

(
dx1 ∧ ... ∧ dxn

)
= (n− 1)!R(x, v) y

(
dv1 ∧ ... ∧ dvn

)︸ ︷︷ ︸
(∗)

∧
n∑
i=1

vi ∂
∂xi y

(
dx1 ∧ ... ∧ dxn

)
︸ ︷︷ ︸

(∗∗)

.

Here, (∗) is the local coordinates expression for R y volgx = volhx
, whereas (∗∗) is

the local coordinates expression for v y volg = g(ν(x), v)ν(x) y volg = g(ν(x), v)volh.
This implies the desired disintegration. �

Proposition 0.7 implies that 1
(n−1)! (dΛ)n restricts to a volume form on the non-

tangential boundary ∂SM \ S∂M , which is positive on ∂inSM and negative on
∂outSM . We denote by mg,ν the associated measure on ∂inSM , i.e.∫

∂inSM

F (x, v) dmg,ν(x, v) =
1

(n− 1)!

∫
∂inSM

F (dΛ)n−1,

∀F ∈ C0(∂inSM).

We will briefly call mg,ν the Liouville measure at the boundary. It is worthwhile
to stress the following immediate corollary of Proposition 0.7.

Corollary 0.8. The Liouville measure at the boundary mg,ν is completely deter-
mined by the values of the Riemannian metric g at the boundary of M . Namely, if
g and g′ are two Riemannian metrics on M such that gx = g′x for all x ∈ ∂M , then
mg,ν = mg′,ν .

We are finally ready to prove the following important theorem due to Santaló,
which gives a further disintegration of the Liouville measure.
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Theorem 0.9 (Santaló’s formula). For each F ∈ C0(SM), we have∫
SM

F (x, v) dmg(x, v) =

∫
∂inSM

IgF (x, v) dmg,ν(x, v), ∀F ∈ C0(SM),

where Ig : C0(SM)→ R is the X-ray transform of (M, g), i.e.

IgF (x, v) =

∫ τg(x,v)

0

F ◦ φt(x, v) dt.

Proof. Let us make a change of variables by means of the diffeomorphism

ψ : U → SM \ S∂M, ψ(x, v, t) = φt(x, v),

where U =
{

(x, v, t)
∣∣ (x, v) ∈ ∂inSM, t ∈ [0, τg(x, v)]

}
⊂ ∂inSM × [0,∞). The

differential of ψ is given by

dψ(x, v, t) = dφt(x, v) ◦ π1 +X(φt(x, v))dt,

where π1 : T(x,v)SM × TtR → T(x,v)∂inSM is the projection onto the first factor.
Since X y dΛ ≡ 0, and since the geodesic flow φt preserves the Liouville form Λ
(Proposition 0.3), we have

ψ∗(Λ ∧ (dΛ)n−1) = (π∗1φ
∗
tΛ + Λ(X) dt) ∧ π∗1φ∗t (dΛ)n−1

= dt ∧ π∗1(dΛ)n−1.

This provides the desired disintegration∫
SM

F (x, v) dmg =
1

(n− 1)!

∫
∂inSM

(∫ τg(x,v)

0

F ◦ φt(x, v) dt

)
(dΛ)n−1,

=

∫
∂inSM

IgF (x, v) dmg,ν(x, v). �
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