SANTALÓ'S FORMULA

MARCO MAZZUCCHELLI

0.1. Contact geometry of the unit tangent bundle. Let M be a smooth manifold. The cotangent bundle $T^{*} M$ admits a canonical exact symplectic form $d \lambda$, which is an exact 2-form on $T^{*} M$ defined by $\lambda_{(x, p)}:=p \circ d \pi(x, p)$. Here $\pi: T M \rightarrow M$, $\pi(x, v)=x$ is the base projection of the tangent bundle. Let us express λ in suitable local coordinates. On tangent and cotangent bundles, the charts that one employs are usually induced by charts on the base manifold. If x^{1}, \ldots, x^{n} are local coordinates on M, the corresponding local coordinates $x^{1}, \ldots, x^{n}, v^{1}, \ldots, v^{n}$ on $T M$ identify the point $(x, v) \in T M$, where $x \in M$ has coordinates $\left(x^{1}, \ldots, x^{n}\right)$, and $v=$ $v^{1} \frac{\partial}{\partial x^{1}}+\ldots+v^{n} \frac{\partial}{\partial x^{n}} \in T_{x} M$. Analogously, the local coordinates $x^{1}, \ldots, x^{n}, p_{1}, \ldots, p_{n}$ on $T^{*} M$ identify the point $(x, p) \in T M$, where $x \in M$ is as before, and $p=$ $p_{1} d x^{1}+\ldots+p_{n} d x^{n} \in T_{x}^{*} M$. Notice that, in these local coordinates,

$$
\mathrm{d} \pi(x, v) \frac{\partial}{\partial x^{i}}=\frac{\partial}{\partial x^{i}}, \quad \mathrm{~d} \pi(x, v) \frac{\partial}{\partial v^{i}}=0 .
$$

Therefore, λ and $d \lambda$ can be expressed in local coordinates as

$$
\lambda=p_{1} d x^{1}+\ldots+p_{n} d x^{n}, \quad d \lambda=d p_{1} \wedge d x^{1}+\ldots+p_{n} \wedge d x^{n}
$$

The symplectic form $d \lambda$ is non-degenerate, meaning that $d \lambda(w, \cdot) \neq 0$ whenever $w \neq 0$ (more generally, a symplectic form on a manifold is a closed, non-degenerate, 2-form). Its primitive λ is called the Liouville form of $T^{*} M$. The maximal exterior product $(d \lambda)^{n}=d \lambda \wedge \ldots \wedge d \lambda$ is a volume form on $T^{*} M$, as can be easily seen from its expression in local coordinates

$$
(d \lambda)^{n}=n!\left(d p_{1} \wedge d x^{1}+\ldots+d p_{n} \wedge d x^{n}\right)
$$

The tangent bundle $T M$ does not admit a canonical symplectic structure. However, a Riemannian metric g on M provides a bundle isomorphism

$$
b: T M \rightarrow T^{*} M, \quad(x, v) \mapsto\left(x, v^{b}\right)
$$

where $v^{b}:=g_{x}(v, \cdot)$. By means of this isomorphism, we can pull-back λ to a 1-form Λ on $T M$, which we will still call the Liouville form. Clearly, Λ depends on the Riemannian metric g, for it is given by

$$
\Lambda_{(x, v)}(w)=g_{x}(v, d \pi(x, v) w), \quad \forall w \in T_{(x, v)} T M
$$

In local coordinates, if we write

$$
g=\sum_{i, j=1}^{n} g_{i j} d x^{i} \otimes d x^{j}
$$

[^0]we can write Λ and the symplectic form $d \Lambda$ as
\[

$$
\begin{equation*}
\Lambda=\sum_{i, j=1}^{n} g_{i j} v^{i} d x^{j}, \quad d \Lambda=\sum_{i, j=1}^{n}\left(g_{i j} d v^{i} \wedge d x^{j}+v^{i} d g_{i j} \wedge d x^{j}\right) \tag{0.1}
\end{equation*}
$$

\]

We now introduce the unit tangent bundle

$$
S M:=\left\{(x, v) \in T M \mid g_{x}(v, v)=1\right\},
$$

which is a smooth hypersurface of the tangent bundle $T M$. The symplectic structure of $T M$ induces a co-called contact structure on $S M$. In order to explain this, consider the radial deformation $\rho_{t}: T M \rightarrow T M, \rho_{t}(x, v)=\left(x, e^{t} v\right)$, which is generated by the vector field $R:=\left.\frac{d}{d t}\right|_{t=0} \rho_{t}$. In local coordinates, R is given by

$$
\begin{equation*}
R=v^{1} \frac{\partial}{\partial v^{1}}+\ldots+v^{n} \frac{\partial}{\partial v^{n}} \tag{0.2}
\end{equation*}
$$

Proposition 0.1. We have that $\left.\Lambda \wedge(\mathrm{d} \Lambda)^{n-1}=\frac{1}{n} R\right\lrcorner(d \Lambda)^{n}$. In particular, the restriction of the Liouville form Λ to $S M$ is a contact form, meaning that $\Lambda \wedge(d \Lambda)^{n-1}$ restricts to a volume form on $S M$.

Proof. Equations (0.1) and (0.2) readily imply that $R\lrcorner d \Lambda=\Lambda$, and Cartan's formula allows to compute the Lie derivative $\mathcal{L}_{R} d \Lambda$ as

$$
\left.\left.\left.\mathcal{L}_{R} d \Lambda=d(R\lrcorner d \Lambda\right)+R\right\lrcorner d d \Lambda=d(R\lrcorner d \Lambda\right)=d \Lambda
$$

In symplectic geometry, a vector field R satisfying this latter property is called a Liouville vector field. Clearly, R is transverse to the unit tangent bundle $S M$. Therefore, the $(n-1)$-form $R\lrcorner(d \Lambda)^{n}$ restricts to a volume form on $S M$. Since

$$
\left.\left.\Lambda \wedge(\mathrm{d} \Lambda)^{n-1}=(R\lrcorner d \Lambda\right) \wedge(\mathrm{~d} \Lambda)^{n-1}=\frac{1}{n} R\right\lrcorner(d \Lambda)^{n}
$$

we conclude that $\Lambda \wedge(d \Lambda)^{n-1}$ restricts to a volume form on $S M$.
From now on, we will consider the Liouville form Λ and its exterior derivative $d \Lambda$ as differential forms on $S M$, without denoting the restriction. Since Λ is nowhere vanishing, its kernel is a vector subbundle $\operatorname{ker}(\Lambda) \subset T S M$ of rank $2(n-1)$. In contact geometry, $\operatorname{ker}(\Lambda)$ is called a contact distribution. The fact that $\Lambda \wedge(d \Lambda)^{n-1}$ is a volume form is equivalent to the requirement that $d \Lambda$ be non-degenerate on $\operatorname{ker}(\Lambda)$, namely, $d \Lambda(w, \cdot) \neq 0$ for all $w \in \operatorname{ker}(\Lambda)$. We are now ready to define the geodesic vector field X on $S M$.

Proposition 0.2. There exists a unique vector field X on $S M$, called the geodesic vector field, satisfying $\Lambda(X) \equiv 1$ and $X\lrcorner d \Lambda \equiv 0$.

Proof. Since Λ is nowhere vanishing, we can find a vector field Y on $S M$ such that $\Lambda(Y)$ is a nowhere vanishing function. Therefore we have a splitting $T S M=$ $\operatorname{span}\{Y\} \oplus \operatorname{ker}(\Lambda)$, and we can write any vector field X on $S M$ as $X=f Y+Z$, where $f: S M \rightarrow \mathbb{R}$ is a smooth function and Z takes values in $\operatorname{ker}(\Lambda)$. The condition $\Lambda(X) \equiv 1$ is equivalent to $f=\Lambda(Y)^{-1}$, whereas $\left.X\right\lrcorner d \Lambda \equiv 0$ is equivalent to $Z \equiv 0$.

The flow ϕ_{t} of X, which is defined by the O.D.E. $\frac{d}{d t} \phi_{t}=X \circ \phi_{t}$, is called the geodesic flow. The following statement shows that ϕ_{t} is an example of a so-called strict contactomorphism.

Proposition 0.3. For each $t \in \mathbb{R}$ and $(x, v) \in S M$ so that $\phi_{t}(x, v)$ is well defined, we have $\left(\phi_{t}^{*} \Lambda\right)_{(x, v)}=\Lambda_{(x, v)}$.

Proof. On the domain of ϕ_{t}, we have

$$
\left.\frac{d}{d t} \phi_{t}^{*} \Lambda=\phi_{t}^{*} \mathcal{L}_{X} \Lambda=\phi_{t}^{*}(X\lrcorner d \Lambda+d(\Lambda(X))\right)=0
$$

Let us now justify the terminology for the geodesic flow.
Proposition 0.4. The flow lines of the geodesic flow are of the form $\phi_{t}(\gamma(0), \dot{\gamma}(0))=$ $(\gamma(t), \dot{\gamma}(t))$, where $\gamma:[0, t] \rightarrow M$ is a unit-speed geodesic of (M, g).

Proof. We fix $(x, v) \in S M$, and consider the geodesic $\gamma(t):=\exp _{x}(t v)$. All we have to show is that $\dot{\Gamma}(0)=X(\Gamma(0))$, where Γ denotes the lifted geodesic $\Gamma(t):=(\gamma(t), \dot{\gamma}(t))=\left(\exp _{x}(t v), d \exp _{x}(t v) v\right)$. One simple way to verify this is by employing the geodesic normal coordinates x^{1}, \ldots, x^{n} centered at x. Namely, we fix a g-orthonormal basis e_{1}, \ldots, e_{n} of the tangent space $T_{x} M$, and we write $\left(x^{1}, \ldots, x^{n}\right)$ for the coordinates of the point $\exp _{x}\left(x^{1} e_{1}+\ldots+x^{n} e_{n}\right) \in M$. If we write our Riemannian metric in these local coordinates as $g=\sum_{i, j} g_{i j} d x^{i} \otimes d x^{j}$, its coefficients at x satisfy $g_{i j}(x)=\delta_{i j}$ and $d g_{i j}(x)=0$. Indeed,

$$
g_{i j}(x)=g_{x}\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right)=g_{x}\left(d \exp _{x}(0) e_{i}, d \exp _{x}(0) e_{j}\right)=g_{x}\left(e_{i}, e_{j}\right)=0
$$

and, by Gauss Lemma, we have

$$
d g_{i j}(x) e_{i}=\left.\frac{d}{d t}\right|_{t=0} g\left(d \exp \left(t e_{i}\right) e_{i}, d \exp \left(t e_{i}\right) e_{j}\right)=\left.\frac{d}{d t}\right|_{t=0} g\left(e_{i}, e_{j}\right)=0
$$

Therefore, in these coordinates, Equation (0.1) gives

$$
\Lambda_{(x, v)}=\sum_{i=1}^{n} v^{i} d x^{i}, \quad d \Lambda_{(x, v)}=\sum_{i=1}^{n} d v^{i} \wedge d x^{i}
$$

and therefore $X(\Gamma(0))=X(x, v)=v^{1} \frac{\partial}{\partial x^{1}}+\ldots+v^{n} \frac{\partial}{\partial x^{n}}$. For $t \in \mathbb{R}$ sufficiently close to $0, \Gamma(t)$ is given in local coordinates by $\left(t v^{1}, \ldots, t v^{n}, v^{1}, \ldots, v^{n}\right)$, and its derivative $\dot{\Gamma}(t)$ is thus given in local coordinates by $\left(v^{1}, \ldots, v^{n}, 0, \ldots, 0\right)$. This shows that $\dot{\Gamma}(0)=$ $v^{1} \frac{\partial}{\partial x^{1}}+\ldots+v^{n} \frac{\partial}{\partial x^{n}}$.
0.2. Santaló's formula. Consider the Liouville form Λ on $S M$, which we introduced in Section 0.1. We denote by m_{g} the measure on $S M$ obtained by integrating the contact volume form $\frac{1}{(n-1)!} \Lambda \wedge(d \Lambda)^{n-1}$, i.e.

$$
\begin{array}{r}
\int_{S M} F(x, v) d m_{g}(x, v)=\frac{1}{(n-1)!} \int_{S M} F \Lambda \wedge(d \Lambda)^{n-1}, \\
\forall F \in C^{0}(S M)
\end{array}
$$

We will refer to this measure as to the Liouville measure on $S M$.
We fix an arbitrary orientation on M, and denote by vol_{g} the Riemannian volume form compatible with this orientation. We recall that vol_{g} is the unique n-form such that $\operatorname{vol}_{g}\left(e_{1}, \ldots, e_{n}\right)=1$ for each oriented orthonormal basis e_{1}, \ldots, e_{n} of a tangent space $T_{x} M$. In oriented local coordinates x^{1}, \ldots, x^{n} around $x \in M$, if we write $g=\sum_{i, j} g_{i j} d x^{i} \otimes d x^{j}, \operatorname{vol}_{g}$ is given by

$$
\operatorname{vol}_{g}=\operatorname{det}\left(g_{i j}\right)^{1 / 2} d x^{1} \wedge \ldots \wedge d x^{n}
$$

The evaluation g_{x} of the Riemannian metric at some $x \in M$ gives an inner product on $T_{x} M$. We now treat the tangent space $T_{x} M$ as a manifold itself, and see g_{x} as a flat Riemannian metric on it. If $x^{1}, \ldots, x^{n}, v^{1}, \ldots, v^{n}$ are the induced local coordinates on $T M$, the Riemannian volume form $\operatorname{vol}_{g_{x}}$ can be written in local coordinates as

$$
\operatorname{vol}_{g_{x}}=\operatorname{det}\left(g_{i j}(x)\right)^{1 / 2} d v^{1} \wedge \ldots \wedge d v^{n}
$$

Let R be the radial vector field to $S M$ introduced in Equation (0.2).
Lemma 0.5. The vector field R is a unit normal to $S_{x} M \subset T_{x} M$ with respect to the Riemannian metric g_{x}, i.e. $\|R(x, v)\|_{g_{x}}=1$ and $g_{x}(R(x, v), w)=0$ for each $x \in M$ and $x \in T_{v}\left(S_{x} M\right)$.

Proof. The fact that R has unit norm along $S M$ follows from

$$
\|R(x, v)\|_{g_{x}}=\|v\|_{g}, \quad \forall(x, v) \in T M
$$

We fix $x \in M$, and notice that $T_{v}\left(S_{x} M\right)=\operatorname{ker}(r)$, where $r: S_{x} M \rightarrow \mathbb{R}$ is the squared norm $r(v)=\|v\|_{g_{x}}^{2}$. Since

$$
d r(v) w=\left.\frac{d}{d t}\right|_{t=0}\|R(x, v)+t w\|_{g_{x}}^{2}=2 g_{x}(R(x, v), w)
$$

we conclude that R is orthogonal to $S_{x} M$.
We now denote by $\iota_{x}: S_{x} M \hookrightarrow T_{x} M$ the inclusion, and we introduced the Riemannian metric $h_{x}:=\iota_{x}^{*} g_{x}$ on $S_{x} M$. Notice that, with the suitable orientation on $S_{x} M$, the Riemannian volume form associated to h_{x} is given by

$$
\left.\operatorname{vol}_{h_{x}}:=R\right\lrcorner \operatorname{vol}_{g_{x}} .
$$

The Riemannian measure m_{g} can be suitably disintegrated as follows.
Lemma 0.6. For each $F \in C^{0}(S M)$, we have

$$
\int_{S M} F(x, v) d m_{g}=\int_{M}\left(\int_{S_{x} M} F(x, \cdot) \operatorname{vol}_{g_{x}}\right) \operatorname{vol}_{g}
$$

Proof. We saw in Proposition 0.1 that $\left.\Lambda \wedge(\mathrm{d} \Lambda)^{n-1}=\frac{1}{n} R\right\lrcorner(d \Lambda)^{n}$. By the local coordinate expression (0.1), we readily compute

$$
\begin{aligned}
\frac{1}{n}(d \Lambda)^{n} & =\frac{n!}{n} \operatorname{det}\left(g_{i j}\right) d v^{1} \wedge \ldots \wedge d v^{n} \wedge d x^{1} \wedge \ldots \wedge d x^{n} \\
& =(n-1)!\underbrace{\operatorname{det}\left(g_{i j}\right)^{1 / 2} d v^{1} \wedge \ldots \wedge d v^{n}}_{(*)} \wedge \underbrace{\operatorname{det}\left(g_{i j}\right)^{1 / 2} d x^{1} \wedge \ldots \wedge d x^{n}}_{(* *)}
\end{aligned}
$$

Notice that $(*)$ and $(* *)$ are the local coordinates expressions for the Riemannian volume forms vol_{g} and $\operatorname{vol}_{h_{x}}$ respectively. Therefore, we obtain the desired desintegration

$$
\int_{S M} F(x, v) d m_{g}=\frac{1}{(n-1)!} \int_{S M} F \Lambda \wedge(d \Lambda)^{n-1}=\int_{M}\left(\int_{S_{x} M} F(x, \cdot) \operatorname{vol}_{g_{x}}\right) \operatorname{vol}_{g}
$$

We now consider the geodesic vector field X on $S M$, which was introduced with Proposition 0.2. if $\iota: \partial M \rightarrow M$ is the inclusion, we denote by $h:=\iota^{*} g$ the induced Riemannian metric on the boundary ∂M.

Lemma 0.7. We have the disintegration

$$
\begin{array}{r}
\frac{1}{(n-1)!} \int_{\partial S M} F(d \Lambda)^{n-1}=\int_{\partial M}\left(\int_{S_{x} M} F(x, \cdot) g(\nu(x), \cdot) \operatorname{vol}_{h_{x}}\right) \operatorname{vol}_{h} \\
\forall F \in C^{0}(\partial S M)
\end{array}
$$

Proof. Since $\Lambda(X) \equiv 1, X\lrcorner d \Lambda=0$ and $\left.\Lambda \wedge(\mathrm{d} \Lambda)^{n-1}=\frac{1}{n} R\right\lrcorner(d \Lambda)^{n}$, we have

$$
\begin{equation*}
\left.\left.\left.(d \Lambda)^{n-1}=X\right\lrcorner \Lambda \wedge(d \Lambda)^{n-1}=\frac{1}{n} X\right\lrcorner(R\lrcorner(d \Lambda)^{n}\right) \tag{0.3}
\end{equation*}
$$

We now fix $(x, v) \in \partial S M$, and proceed as in the proof of Proposition 0.4. We consider geodesic normal coordinates x^{1}, \ldots, x^{n} centered at x, and the corresponding coordinates $x^{1}, \ldots, x^{n}, v^{1}, \ldots, v^{n}$ on $\partial S M$, so that

$$
\begin{aligned}
& X(x, v)=\sum_{i=1}^{n} v^{i} \frac{\partial}{\partial x^{i}} \\
& R(x, v)=\sum_{i=1}^{n} v^{i} \frac{\partial}{\partial v^{i}} \\
& \frac{1}{n}(d \Lambda)^{n}=(n-1)!d v^{1} \wedge \ldots \wedge d v^{n} \wedge d x^{1} \wedge \ldots \wedge d x^{n}
\end{aligned}
$$

In this coordinates, we can write (0.3) at (x, v) as

$$
\begin{aligned}
(d \Lambda)_{(x, v)}^{n-1} & =(n-1)!R(x, v)\lrcorner\left(d v^{1} \wedge \ldots \wedge d v^{n}\right) \\
& \wedge X(x, v)\lrcorner\left(d x^{1} \wedge \ldots \wedge d x^{n}\right) \\
& =(n-1)!\underbrace{R(x, v)\lrcorner\left(d v^{1} \wedge \ldots \wedge d v^{n}\right)}_{(*)}
\end{aligned} \underbrace{\left.\sum_{i=1}^{n} v^{i} \frac{\partial}{\partial x^{i}}\right\lrcorner\left(d x^{1} \wedge \ldots \wedge d x^{n}\right)}_{(* *)} .
$$

Here, $(*)$ is the local coordinates expression for $R\lrcorner \operatorname{vol}_{g_{x}}=\operatorname{vol}_{h_{x}}$, whereas $(* *)$ is the local coordinates expression for $\left.v\lrcorner \operatorname{vol}_{g}=g(\nu(x), v) \nu(x)\right\lrcorner \operatorname{vol}_{g}=g(\nu(x), v) \operatorname{vol}_{h}$. This implies the desired disintegration.

Proposition 0.7 implies that $\frac{1}{(n-1)!}(d \Lambda)^{n}$ restricts to a volume form on the nontangential boundary $\partial S M \backslash S \partial M$, which is positive on $\partial_{\mathrm{in}} S M$ and negative on $\partial_{\text {out }} S M$. We denote by $m_{g, \nu}$ the associated measure on $\partial_{\text {in }} S M$, i.e.

$$
\begin{aligned}
\int_{\partial_{\text {in }} S M} F(x, v) d m_{g, \nu}(x, v)=\frac{1}{(n-1)!} & \int_{\partial_{\text {in }} S M} F(d \Lambda)^{n-1} \\
& \forall F \in C^{0}\left(\partial_{\text {in }} S M\right) .
\end{aligned}
$$

We will briefly call $m_{g, \nu}$ the Liouville measure at the boundary. It is worthwhile to stress the following immediate corollary of Proposition 0.7.

Corollary 0.8. The Liouville measure at the boundary $m_{g, \nu}$ is completely determined by the values of the Riemannian metric g at the boundary of M. Namely, if g and g^{\prime} are two Riemannian metrics on M such that $g_{x}=g_{x}^{\prime}$ for all $x \in \partial M$, then $m_{g, \nu}=m_{g^{\prime}, \nu}$.

We are finally ready to prove the following important theorem due to Santaló, which gives a further disintegration of the Liouville measure.

Theorem 0.9 (Santaló's formula). For each $F \in C^{0}(S M)$, we have

$$
\int_{S M} F(x, v) d m_{g}(x, v)=\int_{\partial_{\mathrm{in}} S M} I_{g} F(x, v) d m_{g, \nu}(x, v), \quad \forall F \in C^{0}(S M)
$$

where $I_{g}: C^{0}(S M) \rightarrow \mathbb{R}$ is the X-ray transform of (M, g), i.e.

$$
I_{g} F(x, v)=\int_{0}^{\tau_{g}(x, v)} F \circ \phi_{t}(x, v) d t
$$

Proof. Let us make a change of variables by means of the diffeomorphism

$$
\psi: U \rightarrow S M \backslash S \partial M, \quad \psi(x, v, t)=\phi_{t}(x, v)
$$

where $U=\left\{(x, v, t) \mid(x, v) \in \partial_{\text {in }} S M, t \in\left[0, \tau_{g}(x, v)\right]\right\} \subset \partial_{\text {in }} S M \times[0, \infty)$. The differential of ψ is given by

$$
d \psi(x, v, t)=d \phi_{t}(x, v) \circ \pi_{1}+X\left(\phi_{t}(x, v)\right) d t
$$

where $\pi_{1}: T_{(x, v)} S M \times T_{t} \mathbb{R} \rightarrow T_{(x, v)} \partial_{\mathrm{in}} S M$ is the projection onto the first factor. Since $X\lrcorner d \Lambda \equiv 0$, and since the geodesic flow ϕ_{t} preserves the Liouville form Λ (Proposition 0.3), we have

$$
\begin{aligned}
\psi^{*}\left(\Lambda \wedge(d \Lambda)^{n-1}\right) & =\left(\pi_{1}^{*} \phi_{t}^{*} \Lambda+\Lambda(X) d t\right) \wedge \pi_{1}^{*} \phi_{t}^{*}(d \Lambda)^{n-1} \\
& =d t \wedge \pi_{1}^{*}(d \Lambda)^{n-1}
\end{aligned}
$$

This provides the desired disintegration

$$
\begin{aligned}
\int_{S M} F(x, v) d m_{g} & =\frac{1}{(n-1)!} \int_{\partial_{\mathrm{in}} S M}\left(\int_{0}^{\tau_{g}(x, v)} F \circ \phi_{t}(x, v) d t\right)(d \Lambda)^{n-1} \\
& =\int_{\partial_{\mathrm{in}} S M} I_{g} F(x, v) d m_{g, \nu}(x, v)
\end{aligned}
$$

Marco Mazzucchelli
CNRS, École Normale Supérieure de Lyon, UMPA
46 allée d'Italie, 69364 Lyon Cedex 07, France
E-mail address: marco.mazzucchelli@ens-lyon.fr

[^0]: Date: February 10, 2017.

