TD10: CURVATURES, PART II

M1 - DIFFERENTIAL GEOMETRY, 2019-2020

CHIH-KANG HUANG

Solutions of exercise 1.

(1) Since $dV = \det(g_{ij})^{1/2} dx^1 \wedge \cdots \wedge dx^n$ and

$$\det(g_{ij})(x) = 1 - \frac{1}{3} \operatorname{tr} \left(\left(\sum_{kl} R_{iklj}(0) x^k x^l \right)_{ij} \right) + O(\|x\|^3)$$

$$= 1 - \frac{1}{3} \sum_{i,k,l} R_{ikli}(0) x^k x^l + O(\|x\|^3)$$

$$= 1 - \frac{1}{3} \sum_{k,l} \operatorname{Ric}_{kl}(0) x^k x^l + O(\|x\|^3).$$

$$= 1 - \frac{1}{3} \operatorname{Ric}_p(X, X) + O(\|x\|^3),$$

where $X = \sum x^i \frac{\partial}{\partial x_i}$. Thus we have $dV = \left(1 - \frac{1}{6} \operatorname{Ric}_p(X, X) + O(\|x\|^3)\right) dx^1 \wedge \cdots \wedge dx^n$. **Remark:** $\operatorname{Ric}_p(X, X)$ controls " $dV - dV_{eucl}$ " to the first order in the direction X (in normal coordinates).

(2) Using the exponential chart at p, we can write

$$Vol(B_{M}(p,r)) = \int_{B_{M}(p,r)} dV$$

$$= \int_{B_{\mathbf{R}^{n}}(0,r)} \sqrt{\det g_{ij}} dx^{1} \wedge \cdots \wedge dx^{n}$$

$$= \int_{B_{\mathbf{R}^{n}}(0,r)} \left(1 - \frac{1}{6} Ric_{p}(x,x) + O(\|x\|^{3})\right) dx^{1} \wedge \cdots \wedge dx^{n}$$

$$= Vol(B_{\mathbf{R}^{n}}(0,r)) - \frac{1}{6} \int_{B_{\mathbf{R}^{n}}(0,r)} Ric_{p}(x,x) dx + \int_{B_{\mathbf{R}^{n}}(0,r)} O(\|x\|^{3}) dx.$$

Wo have

$$\int_{B_{\mathbf{R}^n}(0,r)} \|x\|^3 dx = \int_0^r \rho^{n+2} d\rho \operatorname{Vol}(\mathbf{S}^{n-1}) = O(r^{n+3}) = \operatorname{Vol}(B_{\mathbf{R}^n}(0,r))O(r^3) \text{ and}$$

$$\int_{B_{\mathbf{R}^n}(0,r)} \operatorname{Ric}_p(x,x) dx = \sum_{k,l} \operatorname{Ric}_{kl}(0) \int_{B_{\mathbf{R}^n}(0,r)} x^k x^l dx.$$

If $k \neq l$, by symmetry of the domain, we get $\int_{B_{\mathbf{R}^n}(0,r)} x^k x^l dx = 0$.

If k=l, we have $\int_{B_{\mathbf{R}^n}(0,r)} x^k x^k dx = \int_{B_{\mathbf{R}^n}(0,r)} (x^k)^2 dx$ which is independent of k by symmetry. Moreover, we have

$$\frac{1}{n} \int_{B_{\mathbf{R}^n}(0,r)} (x^k)^2 dx = \int_{B_{\mathbf{R}^n}(0,r)} ||x||^2 dx = \operatorname{Vol}(\mathbf{S}^{n-1}) \int_0^r \rho^{n+1} d\rho$$
$$= \operatorname{Vol}(B_{\mathbf{R}^n}(0,r)) \frac{r^2}{n+2}$$

Hence we get

$$Vol(B_M(0,r)) = Vol(B_{\mathbf{R}^n}(0,r)) \left(1 - \frac{1}{6} \left(\sum_{k,l} Ric_{kl}(0) \delta_{kl} \right) \frac{r^n}{n+2} + O(r^3) \right)$$
$$= Vol(B_{\mathbf{R}^n}(0,r)) \left(1 - \frac{1}{6} S_p \frac{r^n}{n+2} + O(r^3) \right)$$

where S_p is the scalar curvature of M at p.

Solutions of exercise 2.

(1) Set $f' = \frac{\partial f}{\partial r}$ and $f'' = \frac{\partial^2 f}{\partial r^2}$. By using the formula seen in the course:

$$R(X,Y,Z,W) = K_g \left(g(Y,Z)g(X,W) - g(X,Z)g(Y,W) \right)$$

with $X = Z = e_r$ and $Y = W = e_\theta$, we have

$$-K_{g} = R(X, Y, X, Y)$$

$$= g(\nabla_{X}\nabla_{Y}X, Y) - g(\nabla_{Y}\nabla_{X}X, Y) - g(\nabla_{[X,Y]}X, Y),$$

$$= g(\nabla_{X}(\frac{f'}{f}Y), Y) - 0 - g\left(\nabla_{-\frac{f'}{f}Y}X, Y\right)$$

$$= \frac{ff'' - (f')^{2}}{f^{2}} + \frac{f'}{f}g(\nabla_{X}Y, Y) + \frac{f'}{f}g(\nabla_{Y}X, Y)$$

$$= \frac{ff'' - (f')^{2}}{f^{2}} + \frac{(f')^{2}}{f^{2}} = \frac{f''}{f},$$

which gives $K_g = -\frac{f''}{f}$.

(2) Since C(p,r) is the image of the circle of radius r on the tangent space T_pM by the exponential map at p, in polar coordinates, thanks to the expansion of G around p, we have

$$g_{ij}(x) = \delta_{ij} - \frac{1}{3} \sum_{1 \le k, l \le 2} R_{iklj}(0) x^k x^l + o(||x||^2), \, \forall x \in C_{\mathbf{R}^2}(0, r).$$

In particular, taking i = j = 2, we obtain that

$$\frac{f^2}{r^2} = 1 - \frac{r^2}{3}K_p + o(r^2).$$

Therefore, by computation, we get that

$$L(C(p,r)) = \int_0^{2\pi} f(r,\theta) d\theta = 2\pi r - \frac{\pi}{3} K_p r^3 + o(r^3).$$

Solutions of exercise 3.

(1) Let $X, Y \in \Gamma(TZ)$ defined on a neighbourhood of $x \in Z$. We can extend X and Y locally into vector fields on a neighbourhood of x. We have $df(Y) \equiv 0$ since TZ = Ker(df). We can then write

$$0 = d(df(Y))(X) = (\nabla_X df)(Y) + df(\nabla_X Y)$$
$$= \nabla^2 f(X, Y) + df((\nabla_X Y)^{\perp})$$
$$= \nabla^2 f(X, Y) + df \circ II(X, Y),$$

which gives the result.

(2) For any $x \in Z$ and $X, Y \in T_xZ$, we have

$$II_x(X,Y) \in (T_xZ)^{\perp}$$
.

Since $(T_xZ)^{\perp} = \operatorname{Span}(\operatorname{grad}_x f)$, we get $\operatorname{II}_x(X,Y) = \alpha \operatorname{grad}_x f$ for some $\alpha \in \mathbf{R}$. Moreover, we have

$$\alpha \|\nabla_x f\|^2 = \alpha \|\operatorname{grad}_x f\|^2 = g_x \left(\operatorname{grad}_x f, \operatorname{II}_x(X, Y)\right)$$
$$:= d_x f(\operatorname{II}_x(X, Y)) = -\nabla_x^2 f(X, Y).$$

Therefore, we obtain

$$II_x = -\frac{\nabla_x^2 f_{|T_x Z}}{\|\nabla_x f\|^2} \nabla_x f.$$