TD10: CURVATURES, PART II

M1 - DIFFERENTIAL GEOMETRY, 2019-2020

CHIH-KANG HUANG

Solutions of exercise 1.

(1) Since $d V=\operatorname{det}\left(g_{i j}\right)^{1 / 2} d x^{1} \wedge \cdots \wedge d x^{n}$ and

$$
\begin{aligned}
\operatorname{det}\left(g_{i j}\right)(x) & =1-\frac{1}{3} \operatorname{tr}\left(\left(\sum_{k l} R_{i k l j}(0) x^{k} x^{l}\right)_{i j}\right)+O\left(\|x\|^{3}\right) \\
& =1-\frac{1}{3} \sum_{i, k, l} R_{i k l i}(0) x^{k} x^{l}+O\left(\|x\|^{3}\right) \\
& =1-\frac{1}{3} \sum_{k, l} \operatorname{Ric}_{k l}(0) x^{k} x^{l}+O\left(\|x\|^{3}\right) . \\
& =1-\frac{1}{3} \operatorname{Ric}_{p}(X, X)+O\left(\|x\|^{3}\right),
\end{aligned}
$$

where $X=\sum x^{i} \frac{\partial}{\partial x_{i}}$. Thus we have $d V=\left(1-\frac{1}{6} \operatorname{Ric}_{p}(X, X)+O\left(\|x\|^{3}\right)\right) d x^{1} \wedge \cdots \wedge d x^{n}$. Remark: $\operatorname{Ric}_{p}(X, X)$ controls " $d V-d V_{\text {eucl" }}$ to the first order in the direction X (in normal coordinates).
(2) Using the exponential chart at p, we can write

$$
\begin{aligned}
\operatorname{Vol}\left(B_{M}(p, r)\right) & =\int_{B_{M}(p, r)} d V \\
& =\int_{B_{\mathbf{R}^{n}(0, r)}} \sqrt{\operatorname{det} g_{i j}} d x^{1} \wedge \cdots \wedge d x^{n} \\
& =\int_{B_{\mathbf{R}^{n}(0, r)}}\left(1-\frac{1}{6} \operatorname{Ric}_{p}(x, x)+O\left(\|x\|^{3}\right)\right) d x^{1} \wedge \cdots \wedge d x^{n} \\
& =\operatorname{Vol}\left(B_{\mathbf{R}^{n}}(0, r)\right)-\frac{1}{6} \int_{B_{\mathbf{R}^{n}(0, r)}} \operatorname{Ric}_{p}(x, x) d x+\int_{B_{\mathbf{R}^{n}(0, r)}} O\left(\|x\|^{3}\right) d x
\end{aligned}
$$

We have
$\int_{B_{\mathbf{R}^{n}(0, r)}}\|x\|^{3} d x=\int_{0}^{r} \rho^{n+2} d \rho \operatorname{Vol}\left(\mathbf{S}^{n-1}\right)=O\left(r^{n+3}\right)=\operatorname{Vol}\left(B_{\mathbf{R}^{n}}(0, r)\right) O\left(r^{3}\right)$ and

$$
\int_{B_{\mathbf{R}^{n}(0, r)}} \operatorname{Ric}_{p}(x, x) d x=\sum_{k, l} \operatorname{Ric}_{k l}(0) \int_{B_{\mathbf{R}^{n}(0, r)}} x^{k} x^{l} d x
$$

If $k \neq l$, by symmetry of the domain, we get $\int_{B_{\mathbf{R}^{n}(0, r)}} x^{k} x^{l} d x=0$.
If $k=l$, we have $\int_{B_{\mathbf{R}^{n}}(0, r)} x^{k} x^{k} d x=\int_{B_{\mathbf{R}^{n}(0, r)}}\left(x^{k}\right)^{2} d x$ which is independent of k by symmetry. Moreover, we have

$$
\begin{aligned}
\frac{1}{n} \int_{B_{\mathbf{R}^{n}(0, r)}}\left(x^{k}\right)^{2} d x & =\int_{B_{\mathbf{R}^{n}(0, r)}}\|x\|^{2} d x=\operatorname{Vol}\left(\mathbf{S}^{n-1}\right) \int_{0}^{r} \rho^{n+1} d \rho \\
& =\operatorname{Vol}\left(B_{\mathbf{R}^{n}}(0, r)\right) \frac{r^{2}}{n+2}
\end{aligned}
$$

Hence we get

$$
\begin{aligned}
\operatorname{Vol}\left(B_{M}(0, r)\right) & =\operatorname{Vol}\left(B_{\mathbf{R}^{n}}(0, r)\right)\left(1-\frac{1}{6}\left(\sum_{k, l} \operatorname{Ric}_{k l}(0) \delta_{k l}\right) \frac{r^{n}}{n+2}+O\left(r^{3}\right)\right) \\
& =\operatorname{Vol}\left(B_{\mathbf{R}^{n}}(0, r)\right)\left(1-\frac{1}{6} S_{p} \frac{r^{n}}{n+2}+O\left(r^{3}\right)\right)
\end{aligned}
$$

where S_{p} is the scalar curvature of M at p.

Solutions of exercise 2.

(1) Set $f^{\prime}=\frac{\partial f}{\partial r}$ and $f^{\prime \prime}=\frac{\partial^{2} f}{\partial r^{2}}$. By using the formula seen in the course:

$$
R(X, Y, Z, W)=K_{g}(g(Y, Z) g(X, W)-g(X, Z) g(Y, W))
$$

with $X=Z=e_{r}$ and $Y=W=e_{\theta}$, we have

$$
\begin{aligned}
-K_{g} & =R(X, Y, X, Y) \\
& =g\left(\nabla_{X} \nabla_{Y} X, Y\right)-g\left(\nabla_{Y} \nabla_{X} X, Y\right)-g\left(\nabla_{[X, Y]} X, Y\right), \\
& =g\left(\nabla_{X}\left(\frac{f^{\prime}}{f} Y\right), Y\right)-0-g\left(\nabla_{-\frac{f^{\prime}}{f} Y} X, Y\right) \\
& =\frac{f f^{\prime \prime}-\left(f^{\prime}\right)^{2}}{f^{2}}+\frac{f^{\prime}}{f} g\left(\nabla_{X} Y, Y\right)+\frac{f^{\prime}}{f} g\left(\nabla_{Y} X, Y\right) \\
& =\frac{f f^{\prime \prime}-\left(f^{\prime}\right)^{2}}{f^{2}}+\frac{\left(f^{\prime}\right)^{2}}{f^{2}}=\frac{f^{\prime \prime}}{f},
\end{aligned}
$$

which gives $K_{g}=-\frac{f^{\prime \prime}}{f}$.
(2) Since $C(p, r)$ is the image of the circle of radius r on the tangent space $T_{p} M$ by the exponential map at p, in polar coordinates, thanks to the expansion of G around p, we have

$$
g_{i j}(x)=\delta_{i j}-\frac{1}{3} \sum_{1 \leq k, l \leq 2} R_{i k l j}(0) x^{k} x^{l}+o\left(\|x\|^{2}\right), \forall x \in C_{\mathbf{R}^{2}}(0, r)
$$

In particular, taking $i=j=2$, we obtain that

$$
\frac{f^{2}}{r^{2}}=1-\frac{r^{2}}{3} K_{p}+o\left(r^{2}\right) .
$$

Therefore, by computation, we get that

$$
L(C(p, r))=\int_{0}^{2 \pi} f(r, \theta) d \theta=2 \pi r-\frac{\pi}{3} K_{p} r^{3}+o\left(r^{3}\right)
$$

Solutions of exercise 3.

(1) Let $X, Y \in \Gamma(T Z)$ defined on a neighbourhood of $x \in Z$. We can extend X and Y locally into vector fields on a neighbourhood of x. We have $d f(Y) \equiv 0$ since $T Z=\operatorname{Ker}(d f)$. We can then write

$$
\begin{aligned}
0=d(d f(Y))(X) & =\left(\nabla_{X} d f\right)(Y)+d f\left(\nabla_{X} Y\right) \\
& =\nabla^{2} f(X, Y)+d f\left(\left(\nabla_{X} Y\right)^{\perp}\right) \\
& =\nabla^{2} f(X, Y)+d f \circ \mathrm{II}(X, Y),
\end{aligned}
$$

which gives the result.
(2) For any $x \in Z$ and $X, Y \in T_{x} Z$, we have

$$
\mathrm{II}_{x}(X, Y) \in\left(T_{x} Z\right)^{\perp}
$$

Since $\left(T_{x} Z\right)^{\perp}=\operatorname{Span}\left(\operatorname{grad}_{x} f\right)$, we get $\mathrm{II}_{x}(X, Y)=\alpha \operatorname{grad}_{x} f$ for some $\alpha \in \mathbf{R}$. Moreover, we have

$$
\begin{aligned}
\alpha\left\|\nabla_{x} f\right\|^{2}=\alpha\left\|\operatorname{grad}_{x} f\right\|^{2} & =g_{x}\left(\operatorname{grad}_{x} f, \mathrm{II}_{x}(X, Y)\right) \\
& :=d_{x} f\left(\operatorname{II}_{x}(X, Y)\right)=-\nabla_{x}^{2} f(X, Y) .
\end{aligned}
$$

Therefore, we obtain

$$
\mathrm{I}_{x}=-\frac{\nabla_{x}^{2} f_{\mid T_{x} Z}}{\left\|\nabla_{x} f\right\|^{2}} \nabla_{x} f
$$

