TD11: GAUSS-BONNET'S THEOREM
 M1 - DIFFERENTIAL GEOMETRY, 2019-2020

CHIH-KANG HUANG

Exercise 1.

(1) Is there a metric g on the 2 -sphere \mathbf{S}^{2} such that the Gauss curvature K takes negative values at some point?
(2) Is there a metric g on the torus \mathbf{T}^{2} such that K does not vanish?
(3) Is there a 2 -dimensional submanifold M without boundary of \mathbf{R}^{3} such that K vanishes everywhere on M ?
(4) Same question assuming that M is compact without boundary (Hint: One can consider Sard's theorem: the set of critical values of a smooth map between manifolds is negligible.)
(5) Is there a compact surface M without boundary in \mathbf{R}^{3} such that K is negative everywhere?

Exercise 2 (More Gauss curvature).
(1) Recall the Gauss curvature of the unit sphere \mathbf{S}^{2} embedded in \mathbf{R}^{3}.
(2) Let $M \subset \mathbf{R}^{3}$ be a compact connected oriented surface. Show that there exists $p \in M$ such that the Gauss curvature at p is positive: $K_{p}>0$.
(3) Show that any compact connected oriented surface in \mathbf{R}^{3} which is not diffeomorphic to the sphere \mathbf{S}^{2} has its Gauss curvature vanishing at some point.

