TD11: GAUSS-BONNET'S THEOREM

M1 - DIFFERENTIAL GEOMETRY, 2019-2020

CHIH-KANG HUANG

Exercise 1.

- (1) Is there a metric g on the 2-sphere S^2 such that the Gauss curvature K takes negative values at some point?
- (2) Is there a metric g on the torus \mathbf{T}^2 such that K does not vanish?
- (3) Is there a 2-dimensional submanifold M without boundary of \mathbb{R}^3 such that K vanishes everywhere on M?
- (4) Same question assuming that M is compact without boundary (Hint: One can consider Sard's theorem: the set of critical values of a smooth map between manifolds is negligible.)
- (5) Is there a compact surface M without boundary in \mathbb{R}^3 such that K is negative everywhere?

Exercise 2 (More Gauss curvature).

- (1) Recall the Gauss curvature of the unit sphere S^2 embedded in \mathbb{R}^3 .
- (2) Let $M \subset \mathbf{R}^3$ be a compact connected oriented surface. Show that there exists $p \in M$ such
- that the Gauss curvature at p is positive: $K_p > 0$. (3) Show that any compact connected oriented surface in \mathbf{R}^3 which is not diffeomorphic to the sphere S^2 has its Gauss curvature vanishing at some point.