TD11: GAUSS-BONNET'S THEOREM
 M1 - DIFFERENTIAL GEOMETRY, 2019-2020

CHIH-KANG HUANG

Solution of exercise 1.

(1) Yes (try to for instance, locally deform the unit sphere to get a saddle point.)
(2) Thanks to Gauss-Bonnet's theorem, we have $\chi\left(\mathbf{T}^{2}\right)=0=\int_{\mathbf{T}^{2}} K_{g} d v_{g}$. If K_{g} did not vanish, then by continuity of $K_{g}: \mathbf{T}^{2} \rightarrow \mathbf{R}$, we would have $\int_{\mathbf{T}^{2}} K_{g} d v_{g} \neq 0$.
(3) Yes, for instance, a plane $P:=f^{-1}(0)$ with $f(x, y, z)=z$. Since $\nabla^{2} f=D^{2} f=0$, we get $\mathrm{II}_{p} \equiv 0$ and $K_{p}=0$ for every $p \in P$.

Other than planes? Yes a cylinder for example. Let $f(x, y, z)=x^{2}+y^{2}-1$ and $\mathcal{C}=f^{-1}(0)$. For $p=(x, y, z)$, we have $d_{p} f=2 x d x+2 y d y$ and $\nabla_{p}^{2} f=2(d x \otimes d x+d y \otimes d y)$.

Let $p \in \mathcal{C}$, then we have $T_{p} \mathcal{C}=\operatorname{Ker} d_{p} f=(x, y, 0)^{\perp}=\operatorname{spam}\left(e_{1}, e_{2}\right)$ with $e_{1}=(-y, x, 0)$ and $e_{2}=(0,0,1)$. Hence we have $\nabla_{p}^{2} f=\left(\begin{array}{cc}\star & 0 \\ 0 & 0\end{array}\right)$ in $\left(e_{1}, e_{2}\right)$.

Moreover, thanks to the previous exercise in TD10, using the fact that $\mathrm{II}_{p}=-\frac{\nabla_{p}^{2} f}{\left\|\nabla_{p} f\right\|^{2}} \nabla_{p} f$. we get that

$$
\operatorname{det}\left(\nabla_{p}^{2} f\right)=0 \text { iff } \operatorname{det}\left(\operatorname{II}_{p} f\right)=0 \text { iff } K_{p}=0 \forall p \in \mathcal{C}
$$

Remark: One can show that the cylinder is locally isometric to a plane.
(4) Let $N: M \rightarrow \mathbf{S}^{2}$ be a unit (outer) normal vector. We have $d_{x} N: T_{x} M \rightarrow T_{N(x)} \mathbf{S}^{2}$ with $N^{\perp}=T_{x} M=T_{N(x)} \mathbf{S}^{2}$ and $K(x)=\operatorname{det}(d N)$.

If $K \equiv 0$, then for every $x \in M, \operatorname{det}\left(d_{x} N\right)=0$ and thus x is critical of N. Hence the set of critival values of N is $N(M)$ and by Sard's theorem, we have $N(M) \neq \mathbf{S}^{2}$, this contradicts the fact that N is surjective. Indeed, for every $v \in \mathbf{S}^{2}$, by compacity of M, there exists a smallest t such that $\left(t v+v^{\perp}\right) \cap M \neq \emptyset$. Let $x \in\left(t v+v^{\perp}\right) \cap M$ then by the definition of $t, T_{x} M=v^{\perp}$ and $N(x)=v$. (Draw a picture to convince yourself!)
(5) No, as before, for every $v \in \mathbf{S}^{2}$, consider the smallest t such that $\left(t v+v^{\perp}\right) \cap M \neq \emptyset$.

Let $x \in\left(t v+v^{\perp}\right) \cap M$. Then $v^{\perp}=T_{x} M$. Let $f: \mathbf{R}^{3} \rightarrow \mathbf{R}$ such that locally around x, we have $M=f^{-1}(0)$. Up to translation and rotations, we can assume $x=0$ and $d_{0} f=d z$. We have $K(0)<0$ and $\operatorname{det}\left(\nabla_{0}^{2} f_{\mid T_{0} M}\right)<0$. Therefore, in the propriate basis of $T_{0} M=\mathbf{R}^{2} \times\{0\}$ we have $\nabla_{0}^{2} f_{\mid T_{0} M}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ and $f(x, y, 0)=\frac{1}{2}\left(x^{2}-y^{2}\right)+o\left(\|(x, y)\|^{2}\right)$, which is in contradiction with the fact that $(x, y) \mapsto f(x, y, 0)$ has constant sign around $(0,0)$ (since locally M only intersects the $T_{x} M$ at x).

Solution of exercise 2.

(1) 1.
(2) Since M is compact, there exists $p \in M$ such that p is at maximal distance from the origin, that is, $\|p\|=\max _{x \in M}\|x\|$. Up to a rotation and a homothetic transformation, one can assume that $p=(1,0,0)$. In a neighbourhood U of x in \mathbf{R}^{3}, we have $M=f^{-1}(0)$ for some submersion $f: \mathbf{R}^{3} \rightarrow \mathbf{R}$. Up to multiply f with a constant, one can assume that $\nabla_{x} f=e_{1}$.

Let N denote the normal vector on $U \cap M$. the matrix of the differential $d_{p} N$ in the basis $\left(e_{2}, e_{3}\right)$ is given by

$$
d_{p} N=\left(\begin{array}{cc}
\frac{\partial^{2} f}{\partial X^{2}}(p) & \frac{\partial^{2} f}{\partial X_{2} \partial X_{3}}(p) \\
\frac{\partial^{2} f}{\partial X_{2} \partial X_{3}}(p) & \frac{\partial^{2} f}{\partial X_{3}^{2}}(p)
\end{array}\right) .
$$

We also have $K_{p}=\operatorname{det}\left(d_{p} N\right)$. In order to prove that $K_{p}>0$, one only needs to show that the quadratic form $Q\left(h_{2}, h_{3}\right)=\frac{\partial^{2} f}{\partial X_{2}^{2}}(p) h_{2}^{2}+2 \frac{\partial^{2} f}{\partial X_{2} \partial X_{3}}(p)+\frac{\partial^{2} f}{\partial X_{3}^{2}}(p) h_{3}^{2}$ is definite positive.

Indeed, for h_{2} and h_{3} small enough and et $h_{1}=\frac{-\left(h_{2}^{2}+h_{3}^{2}\right)}{4}$ such that $(1+h) \notin B(0,1)$. In particular, thanks to the definition of x, we have $M \subset B(0,1)$ and thus $f(1+h) \geq 0$. Finally, using the expansion of f, we get that

$$
Q\left(h_{2}, h_{3}\right) \geq \frac{h_{2}^{2}+h_{3}^{2}}{4}
$$

This shows that Q is definite positive.
(3) Thanks to Gauss-Bonnet's theorem, we have

$$
\int_{M} K_{g} d v_{g} \leq 0
$$

since M is not diffeomorphic to \mathbf{S}^{2}. Therefore the curvature K of M takes negative values at some point. Moreover, thanks to the previous question, K takes non-negative values as well. Hence, by the connectness of M, K vanishes at some point of M.

