TD12: (A BIT OF) JACOBI FIELDS

M1 - DIFFERENTIAL GEOMETRY, 2019-2020

CHIH-KANG HUANG

Definition. Let $s \mapsto \gamma_{s}$ be a family of geodesics. Set $T=\gamma_{0}^{\prime}(t)$ the vector field tangent to γ_{0} and V the variation of $\left(\gamma_{s}\right)$, the vector field along γ_{0} defined by

$$
V(t):={\frac{\partial \gamma_{s}(t)}{\partial s}}_{\mid s=0}
$$

Then V verifies the Jacobi equation

$$
\begin{equation*}
\nabla_{T}^{2} V+R(V, T) T=0 \tag{1}
\end{equation*}
$$

Conversely, for any vector field V along γ_{0} verifying (1), there exists a family of geodesics γ_{s} such that V is the variation of γ_{s}. In this case, we say that V is a Jacobi field along γ_{0}.

Exercise 1 (Application to TD10 Exercise 2-1). Let (M, g) be a Riemannian manifold of dimension 2 such that $g=d r^{2}+f(r, \theta)^{2} d \theta^{2}$ in polar coordinates. Show that the vector field $V=\frac{\partial}{\partial \theta}$ defines a Jacobi field along each line passing through origin, then (re)deduce that the Gauss curvature $K=-\frac{1}{f} \frac{\partial^{2} f}{\partial r^{2}}$.

Exercise 2 (Expansion of metric in normal coordinates). Let (M, g) be a Riemannian manifold and $p \in M$. Let \mathbf{S}^{n-1} denote the unit sphere of $T_{p} M$. In polar coordinates $(r, v) \in \mathbf{R}_{+} \times \mathbf{S}^{n-1} \mapsto$ $r v \in T_{p} M$, we write $g=d r^{2}+g_{r}$
(1) For every $v \in \mathbf{S}^{n-1}$ and $w \in T_{v} \mathbf{S}^{n-1}$, let γ be a path on \mathbf{S}^{n-1} such that $\gamma(0)=v$ and $\gamma^{\prime}(0)=w$. Let $\gamma_{s}(t)=\exp _{p}(t \gamma(s))$ and W be the corresponding variation of γ_{s}. Show that W is a Jacobi field along γ with initial conditions $W(0)=0$ and $\nabla_{v} W(0)=w$.
(2) Check that, thanks to the definition of W, we have $g_{r}(w)=\|W(r)\|_{g}^{2}$.
(3) By computing successive derivatives of the function $S: r \mapsto\|W(r)\|_{g}^{2}$, show that we have

$$
g_{r}(w)=|w|^{2} r^{2}-\frac{1}{3}\left((R(w, v, v, w)) r^{4}+o\left(r^{4}\right) .\right.
$$

(4) Deduce that in Cartesian coordinates $\left(x_{1}, \ldots, x_{n}\right)$ on $T_{p} M$, we have

$$
g_{i j}(x)=\delta_{i j}-\frac{1}{3} \sum_{k, l} R_{i k l j}(0) x_{k} x_{l}+o\left(|x|^{2}\right) .
$$

