TD12: (A BIT OF) JACOBI FIELDS

M1 - DIFFERENTIAL GEOMETRY, 2019-2020

CHIH-KANG HUANG

Solution of exercise 1. Set $V=\frac{\partial}{\partial \theta}$. It is clear that V is the variation of the family of geodesics $\gamma_{\theta}(r)=(r, \theta)$. Therefore, thanks to the Proposition $1, W(r)=f(r, \theta) e_{\theta}$ is a Jacobi field along $r \rightarrow(r, 0)$. By injecting the expression of $W(r)$ in the Jacobi equation, we get

$$
\frac{\partial^{2} f}{\partial r^{2}}+K f=0
$$

which gives the result.
Solution of exercise 2. Set $T(t)=\gamma_{0}^{\prime}(t)$
(1) We have

$$
\nabla_{T} W(0)=\left(\nabla_{W} \gamma_{0}^{\prime}\right)(0)=v^{\prime}(0)=w
$$

(2) Using the exponention chart at p, since

$$
d_{r v} \exp _{p}(w)=\frac{\partial}{\partial s} \gamma_{s}(r)_{\mid s=0}=W(r)
$$

, we get

$$
\begin{aligned}
g_{r}(w) & =\exp _{p}^{*}(g)(w) \\
& =g\left(d_{r v} \exp _{p}(w)\right) \\
& =|W(r)|^{2}
\end{aligned}
$$

(3) Set $W^{\prime}=n a b l a_{T} W$, $W^{\prime \prime}=\nabla_{T} \nabla_{T} W$, etc. \ldots. The Jacobi equation can be written as $W^{\prime \prime}+R(W, T) T=0$. By direct computions, we have

$$
\begin{aligned}
S^{\prime}(0) & =0 \\
S^{\prime \prime}(0) & =2|w|^{2} \\
S^{(3)}(0) & =6 g\left(W^{\prime \prime}(0), W^{\prime}(0)\right) \\
& =-6 g(R(W, T) T(0), w)=0 \\
S^{(4)}(0) & =8 g\left(W^{(3)}(0), W^{\prime}(0)\right)+6 g\left(W^{\prime \prime}(0), W^{\prime \prime}(0)\right) \\
& =8 g\left(W^{(3)}(0), W^{\prime}(0)\right)
\end{aligned}
$$

since $W^{\prime \prime}(0)=R(W, T) T(0)=0$. Moreover, we have

$$
\begin{aligned}
W^{\prime \prime \prime}(0) & =-\nabla_{T}(R(W, T) T)(0) \\
& =-\left(\left(\nabla_{T} R\right)(W, T) T\right)(0)-\left(R\left(\nabla_{T} W, T\right) T\right)(0)-\left(R\left(W, \nabla_{T} T\right) T\right)(0)-\left(R(W, T) \nabla_{T} T\right)(0) \\
& =-R\left(W^{\prime}(0), T(0)\right) T(0) \\
& =-R(w, v) v
\end{aligned}
$$

which gives $S^{4}(0)=-8 g(R(w, v) v, w)=R(w, v, v, w)$ (covariant version). Finally, thanks to Taylor's formula, we obtain

$$
g_{r}(w)=S(r)=|w|^{2} r^{2}-\frac{8}{4!} R(w, v, v, w) r^{4}+o\left(r^{4}\right)
$$

(4) Let $x=\sum_{k} x_{k} \frac{\partial}{\partial x_{k}}$ be a point of $T_{p} M$ such that $x=r v$ and $y=\sum_{i} y_{i} \frac{\partial}{x_{i}}$ a vector of $T_{p} M$ with $y=r w$ where $w \in T_{v} \mathbf{S}^{n-1}$, then we have

$$
\begin{aligned}
\exp _{p}^{*} g_{x}(y, y) & =|w|^{2} r^{2}-\frac{8}{4!} R(w, v, v, w) r^{4}+o\left(r^{4}\right) \\
& \left.=\langle y, y\rangle-\frac{1}{3} \sum_{i, j, k, l} R_{i k l j}(0) y_{i} x_{k} x_{l} y_{k}\right)+o\left(r^{4}\right)
\end{aligned}
$$

which implies

$$
g_{i j}(x)=\delta_{i j}-\frac{1}{3} \sum_{k, l} R_{i k l j}(0) x_{k} x_{l}+o\left(|x|^{2}\right) .
$$

