TD02: SOLUTION OF EXERCISE 2.3

M1 - DIFFERENTIAL GEOMETRY, 2019-2020

CHIH-KANG HUANG

Exercise 1. What are smooth curves endowed with an intrinsic metric and without boundary up to isometries?

Solution:

Let (M, g) be a curve without boundary. Since an isometry is also a diffeomorphism, M is either diffeomorphic to \mathbf{R} (if M is not compact) or to the circle \mathbf{S}^1 (If M is compact).

(1) <u>First case:</u> We assume that M is diffeomorphic to \mathbf{R} . Let $\varphi : \mathbf{R} \to M$ denote the diffeomorphism. In the following, we construct a parametrization of M by arc-length. Let $\gamma : \mathbf{R} \to \mathbf{R}$ be defined by

$$\gamma: t \mapsto \int_0^t \sqrt{g_s\left(d_s\varphi(1), d_s\varphi(1)\right)} \, ds = \int_0^t \|\varphi'(s)\|_{g_s} \, ds.$$

Since γ' is smooth and positive, γ induces a diffeomorphism from \mathbf{R} to its image $I = \gamma(\mathbf{R})$ which is an open interval of \mathbf{R} . Let $\psi := \varphi \circ \gamma^{-1} : I \to M$. It remains to show that ψ is an isometry from (I, g_0) to (M, g). Indeed, for any $t \in I$ and $(\alpha, \beta) \in (T_t \mathbf{R})^2 \simeq \mathbf{R}^2$, we have

$$(\psi^* g)_t(\alpha, \beta) = g_{\psi(t)} (d_t \psi(\alpha), d_t \psi(\beta)) = \alpha \beta g_{\psi(t)} (d_t \psi(1), d_t \psi(1))$$

$$= \alpha \beta g_{\psi(t)} (d_{\gamma^{-1}(t)} \varphi((\gamma^{-1})'(t)), d_{\gamma^{-1}(t)} \varphi((\gamma^{-1})'(t)))$$

$$= \alpha \beta ((\gamma^{-1})'(t))^2 g_{\varphi \circ \gamma^{-1}(t)} (d_{\gamma^{-1}(t)} \varphi(1), d_{\gamma^{-1}(t)} \varphi(1))$$

$$= \alpha \beta \left(\frac{1}{\gamma'(\gamma^{-1}(t))}\right)^2 \gamma'(\gamma^{-1}(t))^2$$

$$= \alpha \beta = (g_0)_t(\alpha, \beta).$$

Thus (M, g) is isometric to (I, g_0) .

(2) Second case: Now assume that M is diffeomorphic to \mathbf{S}^1 and let $\varphi: \mathbf{S}^1 \to M$ be a diffeomorphism. We identify \mathbf{S}^1 to the unit circle in \mathbf{C} and let $\tilde{\varphi}: \mathbf{R} \to M$ be defined by $\tilde{\varphi}(t) = \varphi(e^{it})$. Let $L := \int_0^{2\pi} \|\tilde{\varphi}'(t)\|_{g_{\tilde{\varphi}(t)}} dt$ denotes the total length of M. Indeed, we have

$$L = \int_{0}^{2\pi} \sqrt{g_{\varphi(e^{i\theta})} \left(d_{e^{i\theta}} \varphi \left(\frac{\partial}{\partial \theta} \right), d_{e^{i\theta}} \varphi \left(\frac{\partial}{\partial \theta} \right) \right)} d\theta$$
$$= \int_{0}^{2\pi} \sqrt{(\varphi^* g)_{e^{i\theta}} \left(\frac{\partial}{\partial \theta}, \frac{\partial}{\partial \theta} \right)} d\theta = \int_{\mathbf{S}^1} \operatorname{vol}_{\varphi^* g} = \int_{M} \operatorname{vol}_{g}.$$

Let us now prove that (M, g) is isometric to $(\mathbf{R}/L\mathbf{Z}, g_0)$ where by abuse of notation, g_0 is the induced quotient metric by (\mathbf{R}, g_0) .

Let $\gamma: \mathbf{R} \to \mathbf{R}$ be defined by

$$\gamma: t \mapsto \int_0^t \|\tilde{\varphi}'(s)\|_{g_s} \, ds,$$

Since γ' is smooth and positive and $\lim_{t\to\pm+\infty}\gamma(t)=\pm\infty$, γ is a diffeomorphism from \mathbf{R} to \mathbf{R} . Set $\tilde{\psi}:=\tilde{\varphi}\circ\gamma^{-1}$, since $\tilde{\varphi}$ is 2π -periodic, $\tilde{\psi}$ is L-periodic and thus induces a smooth map $\psi:\mathbf{R}/L\mathbf{Z}\to M$. By direct computations, one can show that ψ is a smooth bijection. Moreover, locally in charts ψ coincides with $\tilde{\psi}=\tilde{\varphi}\circ\gamma^{-1}$, hence its differential is not zero,

and ψ is a diffeomorphism. Let $s \in \mathbf{R}$ such that $x = \overline{s}$, then by the same computations as in the case of \mathbf{R} , one can show that $(\psi^*g)_x = g_{\tilde{\psi}(s)}\left(d_s\tilde{\psi}\cdot d_s\tilde{\psi}\cdot\right) = (g_0)_x$. Conclusion: A curve without boundary is isometric to (I,g_0) where I is an open interval of \mathbf{R} , or

is isometric to $(\mathbf{R}/L\mathbf{Z}, g_0)$ if compact of length L > 0.