TD02: SOLUTION OF EXERCISE 2.3
 M1 - DIFFERENTIAL GEOMETRY, 2019-2020

CHIH-KANG HUANG

Exercise 1. What are smooth curves endowed with an intrinsic metric and without boundary up to isometries?

Solution:

Let (M, g) be a curve without boundary. Since an isometry is also a diffeomorphism, M is either diffeomorphic to \mathbf{R} (if M is not compact) or to the circle \mathbf{S}^{1} (If M is compact).
(1) First case: We assume that M is diffeomorphic to \mathbf{R}. Let $\varphi: \mathbf{R} \rightarrow M$ denote the diffeomorphism. In the following, we construct a parametrization of M by arc-length. Let $\gamma: \mathbf{R} \rightarrow \mathbf{R}$ be defined by

$$
\gamma: t \mapsto \int_{0}^{t} \sqrt{g_{s}\left(d_{s} \varphi(1), d_{s} \varphi(1)\right)} d s=\int_{0}^{t}\left\|\varphi^{\prime}(s)\right\|_{g_{s}} d s
$$

Since γ^{\prime} is smooth and positive, γ induces a diffeomorphism from \mathbf{R} to its image $I=\gamma(\mathbf{R})$ which is an open interval of \mathbf{R}. Let $\psi:=\varphi \circ \gamma^{-1}: I \rightarrow M$. It remains to show that ψ is an isometry from $\left(I, g_{0}\right)$ to (M, g). Indeed, for any $t \in I$ and $(\alpha, \beta) \in\left(T_{t} \mathbf{R}\right)^{2} \simeq \mathbf{R}^{2}$, we have

$$
\begin{aligned}
\left(\psi^{*} g\right)_{t}(\alpha, \beta) & =g_{\psi(t)}\left(d_{t} \psi(\alpha), d_{t} \psi(\beta)\right)=\alpha \beta g_{\psi(t)}\left(d_{t} \psi(1), d_{t} \psi(1)\right) \\
& =\alpha \beta g_{\psi(t)}\left(d_{\gamma^{-1}(t)} \varphi\left(\left(\gamma^{-1}\right)^{\prime}(t)\right), d_{\gamma^{-1}(t)} \varphi\left(\left(\gamma^{-1}\right)^{\prime}(t)\right)\right) \\
& =\alpha \beta\left(\left(\gamma^{-1}\right)^{\prime}(t)\right)^{2} g_{\varphi \circ \gamma^{-1}(t)}\left(d_{\gamma^{-1}(t)} \varphi(1), d_{\gamma^{-1}(t)} \varphi(1)\right) \\
& =\alpha \beta\left(\frac{1}{\gamma^{\prime}\left(\gamma^{-1}(t)\right)}\right)^{2} \gamma^{\prime}\left(\gamma^{-1}(t)\right)^{2} \\
& =\alpha \beta=\left(g_{0}\right)_{t}(\alpha, \beta)
\end{aligned}
$$

Thus (M, g) is isometric to $\left(I, g_{0}\right)$.
(2) Second case: Now assume that M is diffeomorphic to \mathbf{S}^{1} and let $\varphi: \mathbf{S}^{1} \rightarrow M$ be a diffeomorphism. We identify \mathbf{S}^{1} to the unit circle in \mathbf{C} and let $\tilde{\varphi}: \mathbf{R} \rightarrow M$ be defined by $\tilde{\varphi}(t)=\varphi\left(e^{i t}\right)$. Let $L:=\int_{0}^{2 \pi}\left\|\tilde{\varphi}^{\prime}(t)\right\|_{g_{\tilde{\varphi}(t)}} d t$ denotes the total length of M. Indeed, we have that

$$
\begin{aligned}
L & =\int_{0}^{2 \pi} \sqrt{g_{\varphi\left(e^{i \theta}\right)}\left(d_{e^{i \theta}} \varphi\left(\frac{\partial}{\partial \theta}\right), d_{e^{i \theta}} \varphi\left(\frac{\partial}{\partial \theta}\right)\right)} d \theta \\
& =\int_{0}^{2 \pi} \sqrt{\left(\varphi^{*} g\right)_{e^{i \theta}}\left(\frac{\partial}{\partial \theta}, \frac{\partial}{\partial \theta}\right)} d \theta=\int_{\mathbf{S}^{1}} \operatorname{vol}_{\varphi^{*} g}=\int_{M} \operatorname{vol}_{g}
\end{aligned}
$$

Let us now prove that (M, g) is isometric to $\left(\mathbf{R} / L \mathbf{Z}, g_{0}\right)$ where by abuse of notation, g_{0} is the induced quotient metric by $\left(\mathbf{R}, g_{0}\right)$.

Let $\gamma: \mathbf{R} \rightarrow \mathbf{R}$ be defined by

$$
\gamma: t \mapsto \int_{0}^{t}\left\|\tilde{\varphi}^{\prime}(s)\right\|_{g_{s}} d s
$$

Since γ^{\prime} is smooth and positive and $\lim _{t \rightarrow \pm+\infty} \underset{\sim}{\gamma}(t)= \pm \infty, \gamma$ is a diffeomorphism from \mathbf{R} to \mathbf{R}. Set $\tilde{\psi}:=\tilde{\varphi} \circ \gamma^{-1}$, since $\tilde{\varphi}$ is 2π-periodic, $\tilde{\psi}$ is L-periodic and thus induces a smooth $\operatorname{map} \psi: \mathbf{R} / L \mathbf{Z} \rightarrow M$. By direct computations, one can show that ψ is a smooth bijection. Moreover, locally in charts ψ coincides with $\tilde{\psi}=\tilde{\varphi} \circ \gamma^{-1}$, hence its differential is not zero,
and ψ is a diffeomorphism. Let $s \in \mathbf{R}$ such that $x=\bar{s}$, then by the same computations as in the case of \mathbf{R}, one can show that $\left(\psi^{*} g\right)_{x}=g_{\tilde{\psi}(s)}\left(d_{s} \tilde{\psi} \cdot, d_{s} \tilde{\psi} \cdot\right)=\left(g_{0}\right)_{x}$.
Conclusion: A curve without boundary is isometric to (I, g_{0}) where I is an open interval of \mathbf{R}, or is isometric to $\left(\mathbf{R} / L \mathbf{Z}, g_{0}\right)$ if compact of length $L>0$.

