TD03: HYPERBOLIC SPACES AND CONFORMAL MAPS

M1 - DIFFERENTIAL GEOMETRY, 2019-2020

CHIH-KANG HUANG

Exercise 1 (Hyperbolic spaces). Let $B = -dx^0 \otimes dx^0 + dx^1 \otimes dx^1 + \cdots + dx^n \otimes dx^n$ denote the standard Lorentz form on \mathbb{R}^{n+1} . Let \mathcal{H}^n denote the set $\{x \in \mathbb{R}^{n+1} \mid B(x,x) = -1, x_0 > 0\}$. We also denote by \mathbf{H}^n the half-space $\{x \in \mathbf{R}^n \mid x_n > 0\}$ and by \mathbf{D}^n the unit open ball in \mathbf{R}^n . Prove that the following Riemannian manifolds are isometric to one another:

- \mathcal{H}^n endowed with the restriction of B, \mathbf{H}^n with the metric $\frac{1}{|x_n|^2} \sum_{i=1}^n dx^i \otimes dx^i$, \mathbf{D}^n with the metric $\frac{4}{(1-||x||^2)^2} \sum_{i=1}^n dx^i \otimes dx^i$

Exercise 2 (Hyperbolic half-plane and Poincaré disc). In this exercise, we simply denote by H the hyperbolic half-plane \mathbf{H}^2 and by \mathbf{D} the hyperbolic disc \mathbf{D}^2 (also called *Poincaré disc*).

- (1) Check that conformal diffeomorphisms of **D** (resp. **H**) preserving the orientation are biholomorphisms.
- (2) Describe the conformal diffeomorphisms of **D** (resp. **H**). Which one are isometries?

Exercise 3 (Connections on **R**). Let g be a Riemannian metric on **R** defined by $g_x := e^{-x^2}(g_0)_x$ for any $x \in \mathbf{R}$. Let ∇_0 (resp. ∇) denote the Levi-Civita connection of $T\mathbf{R}$ associated with g_0 (resp. g). Compute $\nabla_0 \frac{\partial}{\partial x}$ and $\nabla \frac{\partial}{\partial x}$.