TD04: CONNECTIONS ON VECTOR BUNDLES
 M1 - DIFFERENTIAL GEOMETRY, 2019-2020

CHIH-KANG HUANG

Exercise 1 (Warm up). Given two local coordinates $\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)$ and $\left(x_{1}^{\prime}, \ldots, x_{j}^{\prime}, \ldots, x_{n}^{\prime}\right)$ on a open set U of M such that $x_{i}=a_{i j} x^{\prime j}$ for some matrix of functions $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$. Let ∇ be a linear connection on M. Let $\Gamma_{i j}^{k}$ and $\left(\Gamma^{\prime}\right)_{i j}^{k}$ denote the Christoffel symbols of ∇ with respect to these two coordinates. Express $\Gamma_{i j}^{k}$ in terms of $\left(\Gamma^{\prime}\right)_{i j}^{k}$ and A.

Exercise 2. Let g and g^{\prime} be two conformal metrics on M. Let ∇ and ∇^{\prime} denote respectly the Levi-Civita connection of g and g^{\prime}. Show that we have

$$
\nabla_{X}^{\prime} Y=\nabla_{X} Y+d \lambda(X) Y+d \lambda(Y) X-g(X, Y) \nabla \lambda
$$

where $\lambda: M \rightarrow \mathbf{R}$ is smooth map satisfying $g^{\prime}=e^{2 \lambda} g$.
Exercise 3 (Hessian and symmetric connection). Let M be a n-manifold and let $f: M \rightarrow \mathbf{R}$ be a smooth map.
(1) Is there an intrinsic notion of second differential of f that would read as $D^{2}\left(f \circ \varphi^{-1}\right)$ in any local chart (U, φ) ?
(2) Let ∇ be a linear connection on M. Show that ∇ is symmetric if and only if its Christoffel symbols in any local chart are symmetric, that is, $\Gamma_{i j}^{k}=\Gamma_{j i}^{k}$ for any $i, j, k \in\{1, \ldots, n\}$.
(3) We define the covariant Hessian $\nabla^{2} f$ of f by:

$$
\nabla^{2} f(X, Y):=\left(\nabla_{X}(d f)\right) \cdot Y, \forall X, Y \in \Gamma(T M)
$$

Show that $\nabla^{2} f(X, Y)=X \cdot(Y \cdot f)-\left(\nabla_{X} Y\right) \cdot f$.
(4) Show that ∇ is symmetric if and only if $\nabla^{2} f$ is a symmetric (2,0)-tensor field for any $f \in C^{\infty}(M)$.

Exercise 4 (Computations of Christoffel symbols). (1) Let (M, g) be a Riemannian n-manifold. We denote by $\left(x_{1}, \ldots, x_{n}\right)$ local coordinates on a open subset U of M and by $G=$ $\left(g_{i j}\right)_{1 \leq i, j \leq n}$ the matrix of g in these coordinates. Show that we have, for any $i, j, k \in$ $\{1, \ldots, n\}$,

$$
\Gamma_{i j}^{k}=\frac{1}{2} \sum_{l=1}^{n} g^{k l}\left(\frac{\partial g_{i l}}{\partial x_{j}}+\frac{\partial g_{j l}}{\partial x_{i}}-\frac{\partial g_{i j}}{\partial x_{l}}\right)
$$

where $G^{-1}:=\left(g^{k l}\right)_{1 \leq k, l \leq n}$ is the invertible matrix of G.
(2) Consider the hyperbolic half-plane $\mathbf{H}^{2}:=\left\{(x, y) \in \mathbf{R}^{2} \mid y>0\right\}$ endowed with the metric

$$
g_{(x, y)}=\frac{1}{y^{2}}(d x \otimes d x+d y \otimes d y)
$$

Let ∇ denote the associated Levi-Civita connection. Compute $\nabla \frac{\partial}{\partial x}$ and $\nabla \frac{\partial}{\partial y}$.
(3) Consider the Poincarés disc $\mathbf{D}^{2}:=\left\{(x, y) \in \mathbf{R}^{2} \mid y>0\right\}$ endowed with the metric

$$
g_{(x, y)}=\frac{4}{1-\left(x^{2}+y^{2}\right)}(d x \otimes d x+d y \otimes d y) .
$$

Let ∇ denote the associated Levi-Civita connection. Compute the covariant derivatives $\nabla \frac{\partial}{\partial r}$ and $\nabla \frac{\partial}{\partial \theta}$ associated with the polar coordinates.

