TD05: GEODESICS

M1 - DIFFERENTIAL GEOMETRY, 2019-2020

CHIH-KANG HUANG

Exercise 1. Let $E \rightarrow M$ be a vector bundle over a manifold M. Let $x_{0} \in M$.
(1) Let ∇ be a connection on E. For any $y \in E_{x_{0}}$ construct a smooth section $s \in \Gamma(E)$ such that $s\left(x_{0}\right)=y$ and ∇s vanishes at x_{0} ?
(2) Conversely, let s be a smooth section of the vector bundle $E \rightarrow M$, does there always exist a connection ∇ on E such that ∇s vanishes on a neighborhood of x_{0} ? (Hint: you may deal separately with the cases in which $s\left(x_{0}\right)=0$ and $\left.s\left(x_{0}\right) \neq 0\right)$
Exercise 2 (Normal coordinates). Let $\left(M^{n}, g\right)$ be a Riemannian manifold and let $p \in M$. Show that in any normal coordinates $x=\left(x_{1}, \ldots, x_{n}\right)$ centered at p, we have that

$$
g_{i j}(x)=\operatorname{Id}_{n}+O\left(\|x\|^{2}\right), g_{i j, k}(0)=0 \text { and } \Gamma_{i j}^{k}(x)=O(\|x\|)
$$

for any $i, j, k \in\{1, \ldots, n\}$.
Exercise 3 (Difference tensor and geodesics). Let ∇ and ∇^{\prime} be two linear connections on M. The difference tensor between ∇ and ∇^{\prime} is a $(2,1)$-tensor field A defined by:

$$
A(X, Y):=\nabla_{X}^{\prime} Y-\nabla_{X} Y, \quad \forall X, Y \in \Gamma(T M)
$$

(1) Show that ∇ and ∇^{\prime} have the same torsion tensor if and only if their difference tensor is symmetric, i.e., $A(X, Y)=A(Y, X)$.
(2) Show that ∇ and ∇^{\prime} determine the same geodesics if and only if their difference tensor is antisymmetric, i.e., $A(X, Y)=-A(Y, X)$.

Exercise 4. Let $f: M \rightarrow N$ be a diffeomorphism between two connected Riemannian manifolds (M, g) and (N, h).
(1) Show that if f is an isometry, then f is geodesic-preserving. We say that f is a geodesic map.
(2) Assume that f is a conformal map, is f necessarily a geodesic map?
(3) Assume that f is a conformal geodesic map, show that f is a scaled isometry, i.e, $g=\lambda f^{*} h$ for some positive constant $\lambda>0$.

