TD06: GEODESICS AND COMPLETE RIEMANNIAN MANIFOLDS

CHIH-KANG HUANG

Exercise 1 (Geodesics of the Model spaces). Determine the geodesics of the following model Riemannian manifolds (M, g). Compute the exponential map and its injectivity radius at any point $p \in M$.
(1) $(M, g)=\left(\mathbf{R}^{n}, g_{0}\right)$;
(2) $(M, g)=\left(\mathbf{S}^{n}, g\right)$ where g is the induced metric by the Euclidean metric on \mathbf{R}^{n+1};
(3) $(M, g)=\left(\mathbf{T}_{L}^{n}, g_{L}\right)$, where $L=\omega_{1} \mathbf{Z}+\cdots+\omega_{n} \mathbf{Z}$ with $\omega_{i}>0$ and $\mathbf{T}_{L}^{n}:=\mathbf{R}^{n} / L$ is the n-torus induced by L endowed with the quotient metric g_{L};
(4) Poincaré's Disc $(M, g)=\left(\mathbf{D}^{2}, g_{\mathbf{D}}\right)$;
(5) Hyperbolic half-plane $(M, g)=\left(\mathbf{H}^{2}, g_{\mathbf{H}^{2}}\right)$

Exercise 2. We say that two maximal geodesics are parallel if they are either disjoint or equal up to reparametrization. Let γ be a geodesic of (M, g) and $p \in M \backslash \operatorname{Im}(\gamma)$ where (M, g) is chosen as model Riemannian manifolds in the previous exercise. How many geodesics passing through p and parallel to γ are there?

Exercise 3. Show that the meridians of a surface of revolution $M \subset \mathbf{R}^{3}$ are geodesics.
Exercise 4. Let $\left(g_{t}\right)_{t \in \mathbf{R}}$ be a family of Riemannian metrics on \mathbf{R}^{n}. Consider \mathbf{R}^{n+1} endowed with the metric $g=g_{t}+d t^{2}$. Show that the curves $\gamma_{x}: t \mapsto(x, t)$ are geodesics. Are they minimizers of the length functional L_{g} ?

Exercise 5 (Common perpendicular of two submanifolds). Let (M, g) be a Riemannian manifold. Let N_{1} and N_{2} be two submanifolds of M. Show that if there exists a path γ joining N_{1} to N_{2} such that γ is length-minimizing (among any path joining N_{1} to N_{2}), then γ is a geodesic and γ is orthogonal to N_{1} and N_{2} at its extremities.

