TD06: GEODESICS AND COMPLETE RIEMANNIAN MANIFOLDS M1 - DIFFERENTIAL GEOMETRY, 2019-2020

CHIH-KANG HUANG

Exercise 1 (Geodesics of the Model spaces). Determine the geodesics of the following model Riemannian manifolds (M, g). Compute the exponential map and its injectivity radius at any point $p \in M$.

- (1) $(M,g) = (\mathbf{R}^n, g_0);$
- (2) $(M,g) = (\mathbf{S}^n, g)$ where g is the induced metric by the Euclidean metric on \mathbf{R}^{n+1} ;
- (3) $(M,g) = (\mathbf{T}_L^n, g_L)$, where $L = \omega_1 \mathbf{Z} + \dots + \omega_n \mathbf{Z}$ with $\omega_i > 0$ and $\mathbf{T}_L^n := \mathbf{R}^n / L$ is the *n*-torus induced by L endowed with the quotient metric g_L ;
- (4) Poincaré's Disc $(M,g) = (\mathbf{D}^2, g_{\mathbf{D}});$
- (5) Hyperbolic half-plane $(M, g) = (\mathbf{H}^2, g_{\mathbf{H}^2})$

Exercise 2. We say that two maximal geodesics are *parallel* if they are either disjoint or equal up to reparametrization. Let γ be a geodesic of (M, g) and $p \in M \setminus \text{Im}(\gamma)$ where (M, g) is chosen as model Riemannian manifolds in the previous exercise. How many geodesics passing through p and parallel to γ are there?

Exercise 3. Show that the meridians of a surface of revolution $M \subset \mathbf{R}^3$ are geodesics.

Exercise 4. Let $(g_t)_{t \in \mathbf{R}}$ be a family of Riemannian metrics on \mathbf{R}^n . Consider \mathbf{R}^{n+1} endowed with the metric $g = g_t + dt^2$. Show that the curves $\gamma_x : t \mapsto (x, t)$ are geodesics. Are they minimizers of the length functional L_g ?

Exercise 5 (Common perpendicular of two submanifolds). Let (M, g) be a Riemannian manifold. Let N_1 and N_2 be two submanifolds of M. Show that if there exists a path γ joining N_1 to N_2 such that γ is length-minimizing (among any path joining N_1 to N_2), then γ is a geodesic and γ is orthogonal to N_1 and N_2 at its extremities.