TD08: RIEMANN TENSOR

M1 - DIFFERENTIAL GEOMETRY, 2019-2020

CHIH-KANG HUANG

Exercise 1. Let E and E^{\prime} be two smooth vector bundles over a manifold M. Let $F: \Gamma(E) \rightarrow$ $\Gamma\left(E^{\prime}\right)$ be a $C^{\infty}(M)$-linear map.
(1) Show that there exists a unique $f: E \rightarrow E^{\prime}$ which is a bundle map over M and satisfies:

$$
\begin{equation*}
\forall s \in \Gamma(E), \forall x \in M, F(s)(x)=f(s(x)) \tag{1}
\end{equation*}
$$

(2) Check that f defines an element of $\Gamma\left(E^{*} \otimes E^{\prime}\right)$.
(3) Conversely, check that a section $f \in \Gamma\left(E^{*} \otimes E^{\prime}\right)$ defines a unique $C^{\infty}(M)$-linear map $F: \Gamma(E) \rightarrow \Gamma\left(E^{\prime}\right)$ satisfying (1).
(4) Conclusion.

Remark: Similarly, $\Gamma\left(\bigwedge^{k} T^{*} M \otimes_{\mathbf{R}} E\right)$ is isomorphic to $\Omega^{k}(M, E):=\Omega^{k}(M) \otimes_{C^{\infty}(M)}$ $\Gamma(E)$, the space of k-forms with values in E.
Exercise 2. Let ∇ be a connection on a smooth vector bundle $E \rightarrow M$. We extend ∇ : $\Omega^{k}(M, E) \rightarrow \Omega^{k+1}(M, E)$ by the Leibniz rule:

$$
\forall \alpha \in \Omega^{k}(M), \forall s \in \Gamma(E), \forall x \in M, \quad \nabla_{x}(\alpha \otimes s)=d_{x} \alpha \otimes s(x)+(-1)^{k} \alpha_{x} \wedge \nabla_{x} s
$$

and by \mathbf{R}-linearity.
(1) Show that $\nabla \circ \nabla$ is $C^{\infty}(M)$-linear from $\Omega^{0}(M, E)$ to $\Omega^{2}(M, E)$.
(2) Show that, by using the previous exercise, $\nabla \circ \nabla$ defines a section $R \in \Omega^{2}(M, E n d(E))$. We call R the curvature of (E, ∇).
(3) Let $\left(x_{1}, \ldots, x_{n}\right)$ be local coordinates on M and $\left(e_{1}, \ldots, e_{r}\right)$ be a local frame for E defined on the same open set U. We denote by $\left(\Gamma_{i j}^{k}\right)$ the Christoffel symbols of ∇ in these coordinates. We also define $\left(R_{i j k}^{l}\right)$ by:

$$
\forall i, j \in\{1, \ldots, n\}, \forall k \in\{1, \ldots, r\}, R\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right) e_{k}=\sum_{l=1}^{r} R_{i j k}^{l} e_{l} .
$$

Check that, for any $i, j \in\{1, \ldots, n\}$ and any $k, l \in\{1, \ldots, r\}$, we have

$$
R_{i j k}^{l}=\frac{\partial \Gamma_{j k}^{l}}{\partial x_{i}}-\frac{\partial \Gamma_{i k}^{l}}{\partial x_{j}}+\sum_{m=1}^{r} \Gamma_{j k}^{m} \Gamma_{i m}^{l}-\sum_{m=1}^{r} \Gamma_{i k}^{m} \Gamma_{j m}^{l}
$$

(4) Check that for any $X, Y \in \Gamma(T M)$ and any $s \in \Gamma(E)$, we have

$$
\nabla_{X}\left(\nabla_{Y} s\right)-\nabla_{Y}\left(\nabla_{X} s\right)-\nabla_{[X, Y]} s=R(X, Y) s
$$

Exercise 3 (Riemann tensors in dimension 2 and 3). Let (M, g) be a Riemannian n-manifold. Let R be a $(4,0)$-tensor defined by

$$
\mathrm{R}(X, Y, W, Z)=g(R(X, Y) W, Z), \forall X, Y, W, Z \in \Gamma(T M)
$$

where R denotes the Riemann curvature tensor on (M, g). We also denote the Ricci tensor by Ric and the scalar curvature by S.
(1) Recall briefly the definitions of Ric and S . Show that in the case $n=2, \mathrm{R}$ is given by the scalar curvature \mathbf{S} and that, in terms of local coordinates, we can write

$$
\mathrm{R}_{i j k l}=\frac{\mathrm{S}}{2}\left(g_{i k} g_{j l}-g_{i l} g_{j k}\right), \forall i, j, k, l \in\{1,2\}
$$

(2) Show that in $n=3, \mathrm{R}$ is given by the Ricci tensor:
$\mathrm{R}_{i j k l}=f\left(\operatorname{Ric}_{i k}\right) g_{j l}-f\left(\operatorname{Ric}_{i l}\right) g_{j k}+f\left(\operatorname{Ric}_{j l}\right) g_{i k}-f\left(\operatorname{Ric}_{j k}\right) g_{i l}, \forall i, j, k, l \in\{1,2,3\}$ where $f\left(\operatorname{Ric}_{i j}\right)=\operatorname{Ric}_{i j}-\frac{1}{4} \mathrm{~S} g_{i j}$.

