TD08: RIEMANN TENSOR

M1 - DIFFERENTIAL GEOMETRY, 2019-2020

CHIH-KANG HUANG

Solutions of Exercise 1.

(1) Let $y \in E_{x}$. There exists $s \in \Gamma(E)$ s.t. $s(x)=y$. We define $f(y)=(F(s))(x) \in E_{x}^{\prime}$. It remains to show that f is well-defined. (And thus $f_{\mid E_{x}}: E_{x} \rightarrow E_{x}^{\prime}$ satisfies (1)). Let $\left(e_{1}, \ldots, e_{k}\right)$ be a local frame for E, defined on a neighborhood U of x. Let $\chi: M \rightarrow[0,1]$ smooth s.t. $\overline{\operatorname{supp}}(\chi) \subset U$ and $\chi(x)=1$. By $C^{\infty}(M)$-linearity, we have $F(\chi s)=\chi F(s)$. We can also write $s=\sum \varphi_{i} e_{i}$ on U with $\varphi_{x}(x)=y_{i}$ and $y=\sum y_{i} e_{i}(x)$. Therefore, we get that

$$
\begin{aligned}
F(s)(x) & =F(\chi s)(x)=F\left(\sum \varphi_{i} \chi e_{i}\right)(x) \\
& =\sum \varphi_{x}(x) F\left(\chi e_{i}\right)(x)=\sum y_{i} F\left(\chi e_{i}\right)(x)=\sum y_{i} F\left(e_{i}\right)(x)
\end{aligned}
$$

which depends only on $y=s(x)$ and is linear in y. Thus f is well-defined and $f_{\mid E_{x}} \in$ $\operatorname{End}\left(E_{x}, E_{x}^{\prime}\right)$.
(2) $x \mapsto f_{\mid E_{x}}$ is a section of $\operatorname{End}\left(E_{x}, E_{x}^{\prime}\right) \simeq E^{*} \otimes E^{\prime}$.

Let $\left(e_{1}, \ldots, e_{k}\right)$ be a local frame of E over U and $\left(e_{1}^{\prime}, \ldots, e_{l}^{\prime}\right)$ be a local frame of E^{\prime} over U^{\prime} then $\left(\left(e^{j}\right)^{*} \otimes e_{i}^{\prime}\right)$ form a local frame for $E^{*} \otimes E^{\prime}$ and we have

$$
f \circ e_{j}=F\left(e_{j}\right):=\sum F_{i j} e_{i}^{\prime}
$$

Hence $f=\sum F_{i j} e^{j} \otimes e_{i}^{\prime}$ where $\left(F_{i j}\right)_{1 \leq i \leq k}$ are the components of $F\left(e_{j}\right)$ thus smooth, which gives $f \in \Gamma\left(E^{*} \otimes E^{\prime}\right)$.
(3) Let $f \in \Gamma\left(E^{*} \otimes E^{\prime}\right) \simeq \Gamma\left(\operatorname{End}\left(E, E^{\prime}\right)\right)$. We set

$$
\begin{aligned}
F: \Gamma(E) & \rightarrow \Gamma\left(E^{\prime}\right) \\
s & \mapsto f \circ s
\end{aligned}
$$

One can check that F is $C^{\infty}(M)$-linear and satisfies (1).
(4) Thanks to the previous questions, we have defined a canonical isomorphism of $C^{\infty}(M)$ modules between $\operatorname{Hom}\left(\Gamma(E), \Gamma\left(E^{\prime}\right)\right)$ and $\Gamma\left(E^{*} \otimes E\right)$.

Solutions of Exercise 2.

(1) Let $f \in C^{\infty}(M)$ and $s \in \Gamma(E)$. By Leibniz's rule, we have

$$
\nabla_{x}(f s)=d_{x} f \otimes s(x)+f(x) \nabla_{x} s
$$

In a local frame $\left(e_{1}, \ldots, e_{k}\right)$ over $U \ni x$, we can write $\nabla s=\sum_{i=1}^{k} \alpha_{i} \otimes e_{i}$ with $\alpha_{i} \in \Omega^{1}(U)$. We have that

$$
\begin{aligned}
\nabla_{x}(\nabla(f s)) & =\nabla_{x}(d f \otimes s+f \nabla s) \\
& =d_{x}(d f) \otimes s(x)-d_{x} f \wedge \nabla_{x} s+\sum d_{x}\left(f \alpha_{i}\right) \otimes e_{i}(x)-f \alpha_{i} \wedge \nabla_{x} e_{i} \\
& =-d_{x} f \wedge \nabla_{x} s+\sum d_{x}\left(f \alpha_{i}\right) \otimes e_{i}(x)-f \alpha_{i} \wedge \nabla_{x} e_{i}
\end{aligned}
$$

Since $d_{x}\left(f \alpha_{i}\right)=d_{x} f \wedge \alpha_{i}+f d \alpha_{i}$, we get by computation that

$$
\nabla_{x}(\nabla(f s))=f \sum d \alpha_{i} \otimes e_{i}-\alpha_{i} \wedge \nabla_{x} e_{i}=f(x) \nabla_{x}(\nabla s)
$$

Thus $\nabla \circ \nabla(f s)=f \nabla \circ \nabla s$.
(2) $\nabla^{2}: \Gamma(E) \simeq \Omega^{0}(M, E) \rightarrow \Omega^{2}(M, E) \simeq \Gamma\left(\bigwedge^{2} T^{*} M \otimes E\right)$ is $C^{\infty}(M)$-linear. By Exercise 1, there exists a unique $R \in \Gamma\left(E n d\left(E, \bigwedge^{2} T^{*} M \otimes E\right)\right.$ s.t

$$
\left(\nabla^{2}(s)\right)(x)=R(s(x)), \forall s \in \Gamma(E)
$$

Since we have

$$
\operatorname{End}\left(E, \bigwedge^{2} T^{*} M \otimes \operatorname{End}(E)\right) \simeq \bigwedge^{2} T^{*} M \otimes E \otimes E^{*} \simeq \bigwedge^{2} T^{*} M \otimes \operatorname{End}(E)
$$

We obtain $R \in \Gamma\left(\bigwedge^{2} T^{*} M \otimes \operatorname{End}(E)\right) \simeq \Omega^{2}(M) \otimes \Gamma(\operatorname{End}(E))=: \Omega^{2}(M, \operatorname{End}(E))$.
(3) Thanks to the fact that

$$
\nabla e_{k}=\sum_{j} \sum_{l} \Gamma_{j k}^{l} d x^{j} \otimes e_{l}
$$

we can write

$$
\begin{aligned}
R(\cdot, \cdot) e_{k}:=\nabla\left(\nabla e_{k}\right) & =\sum_{j, l} \nabla\left(\Gamma_{j k}^{l} d x^{j} \otimes e_{l}\right) \\
& =\sum_{j, l} d\left(\Gamma_{j k}^{l} d x^{j}\right) \otimes e_{l}-\sum_{j, m} \Gamma_{j k}^{m} d x^{j} \wedge \nabla e_{m} \\
& =\sum_{i, j, l} \frac{\partial \Gamma_{j k}^{l}}{\partial x_{i}} d x^{i} \wedge d x^{j} \otimes e_{l}-\sum_{j, m} \Gamma_{j k}^{m} d x^{j} \wedge \sum_{i, l} \Gamma_{i m}^{l} d x^{i} \otimes e_{l} \\
& =\sum_{i, j, l}\left(\frac{\partial \Gamma_{j k}^{l}}{\partial x_{i}}+\sum_{m} \Gamma_{j k}^{m} \Gamma_{i m}^{l}\right) d x^{i} \wedge d x^{j} \otimes e_{l}
\end{aligned}
$$

Hence we get

$$
R\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right) e_{k}=\sum_{l}\left(\frac{\partial \Gamma_{j k}^{l}}{\partial x_{i}}-\frac{\partial \Gamma_{i k}^{l}}{\partial x_{j}}+\sum_{m=1}^{r} \Gamma_{j k}^{m} \Gamma_{i m}^{l}-\sum_{m=1}^{r} \Gamma_{i k}^{m} \Gamma_{j m}^{l}\right) e_{l} .
$$

Solutions of Exercise 3. Hint: This is a relatively classical exercise. Using the symmetric and skew-symmetric properties, one can first show that the family of tensor coefficients ($R_{i j k l}$) is of $\operatorname{rank} \frac{1}{12} n^{2}\left(n^{2}-1\right)$.

