TD09: CURVATURES, PART I M1 - DIFFERENTIAL GEOMETRY, 2019-2020 ## CHIH-KANG HUANG **Exercise 1.** Compute the Riemann, Ricci and scalar curvatures of the following Riemmannian manifolds with their standard metric: - Euclidean space \mathbf{R}^n , - Unit *n*-sphere \mathbf{S}^n , - Flat torus \mathbf{T}^n , - Poincaré's Disc $(\mathbf{D}, g_{\mathbf{D}})$. **Exercise 2.** Let N denote the North pole of S^2 and $\rho \in (0, \pi)$. - (1) Compute the volume of the geodesic ball $B_{\mathbf{S}^2}(N,\rho)$. Compare it to the volume of the Euclidean ball of radius ρ in \mathbf{R}^2 . - (2) Compute the length of the circle $C_{\mathbf{S}^2}(N,\rho)$. Also give its expansion at $\rho=0$. - (3) Let γ_1 and γ_2 be two geodesics parametrized by arc length on \mathbf{S}^2 such that $\gamma_i(0) = N$. We denote $v_i = \gamma_i'(0)$, compute the distance between $\gamma_1(t)$ and $\gamma_2(t)$ for $t \in (-\pi, \pi)$. Compare the distance to its Euclidean analogue. **Exercise 3** (Gauss curvatures of homothetic/conformal metrics). Let M be a 2-manifold and g_1, g_2 two Riemmannian metrics on M. - (1) Show that if there exists $\lambda > 0$ such that $g_2 = \lambda^2 g_1$, then we have $K_2 = \lambda^{-2} \lambda_1$ where K_1 and K_2 respectly denotes the Gauss curvature of (M, g_1) and (M, g_2) . - (2) (Liouville's equation) Show that if g_1 and g_2 are conformal: $g_2 = e^{2f}g_1$ for some smooth function f on M, then we have $$K_2 = e^{-2f}(K + \Delta f)$$ on M .