TD09: CURVATURES, PART I

M1 - DIFFERENTIAL GEOMETRY, 2019-2020

CHIH-KANG HUANG

Exercise 1. Compute the Riemann, Ricci and scalar curvatures of the following Riemmannian manifolds with their standard metric:

- Euclidean space \mathbf{R}^n ,
- Unit *n*-sphere \mathbf{S}^n ,
- Flat torus \mathbf{T}^n ,
- Poincaré's Disc $(\mathbf{D}, g_{\mathbf{D}})$.

Exercise 2. Let N denote the North pole of S^2 and $\rho \in (0, \pi)$.

- (1) Compute the volume of the geodesic ball $B_{\mathbf{S}^2}(N,\rho)$. Compare it to the volume of the Euclidean ball of radius ρ in \mathbf{R}^2 .
- (2) Compute the length of the circle $C_{\mathbf{S}^2}(N,\rho)$. Also give its expansion at $\rho=0$.
- (3) Let γ_1 and γ_2 be two geodesics parametrized by arc length on \mathbf{S}^2 such that $\gamma_i(0) = N$. We denote $v_i = \gamma_i'(0)$, compute the distance between $\gamma_1(t)$ and $\gamma_2(t)$ for $t \in (-\pi, \pi)$. Compare the distance to its Euclidean analogue.

Exercise 3 (Gauss curvatures of homothetic/conformal metrics). Let M be a 2-manifold and g_1, g_2 two Riemmannian metrics on M.

- (1) Show that if there exists $\lambda > 0$ such that $g_2 = \lambda^2 g_1$, then we have $K_2 = \lambda^{-2} \lambda_1$ where K_1 and K_2 respectly denotes the Gauss curvature of (M, g_1) and (M, g_2) .
- (2) (Liouville's equation) Show that if g_1 and g_2 are conformal: $g_2 = e^{2f}g_1$ for some smooth function f on M, then we have

$$K_2 = e^{-2f}(K + \Delta f)$$
 on M .