TD09: CURVATURES, PART I

M1 - DIFFERENTIAL GEOMETRY, 2019-2020

CHIH-KANG HUANG

Solution of exercise 1. Recall that

$$
\left.R_{i j k}^{l}=\frac{\partial \Gamma_{j k}^{l}}{\partial x_{i}}-\frac{\partial \Gamma_{i k}^{l}}{\partial x_{j}}+\sum_{m} \Gamma_{j k}^{m} \Gamma_{i m}^{l}-\Gamma_{i k}^{m} \Gamma_{j m}^{l}\right) .
$$

(1) Since $\Gamma_{i j}^{k} \equiv 0, R \equiv \operatorname{Ric} \equiv S \equiv 0$.
(2) Let $p \in \mathbf{S}^{n}$ and $\left(e_{1}, \ldots, e_{n}\right)$ an orthonormal basis of $T_{p} \mathbf{S}^{n}$. Without lost of generality, one can assume that $\left(p, e_{1}, \ldots, e_{n}\right)$ is the canonical basis in \mathbf{R}^{n+1}. Let

$$
F:\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(\sqrt{1-\|x\|^{2}}, x_{1}, \ldots, x_{n}\right)
$$

be local coordinates such that $e_{i}=\frac{\partial}{\partial x_{i}}(0)$. By direct computation, we get that

$$
g_{i j}(x)=\delta_{i j}+x_{i} x_{j}+O\left(\|x\|^{4}\right), \frac{\partial g_{i j}}{\partial x_{k}}(0)=0 \text { and } \frac{\partial^{2} g_{i j}}{\partial x_{k} \partial x_{l}}(0)=\delta_{k i} \delta_{l j}+\delta_{i l} \delta_{j k} .
$$

Moreover, using

$$
\begin{equation*}
\Gamma_{i j}^{k}(x)=\frac{1}{2} \sum_{m} g^{k m}\left(\frac{\partial g_{i m}}{\partial x_{j}}+\frac{\partial g_{j m}}{\partial x_{i}}-\frac{\partial g_{i j}}{\partial x_{m}}\right), \tag{1}
\end{equation*}
$$

we get that

$$
R_{i j k l}(0)=\frac{\partial \Gamma_{j k}^{l}}{\partial x_{i}}(0)-\frac{\partial \Gamma_{i k}^{l}}{\partial x_{j}}(0)=\delta_{i l}-\delta_{i k} \delta_{j l}
$$

Consequently, we obtain that

$$
R_{p}=\sum_{i<j, k<j} R_{i j k l}(0) d x^{i} \wedge d x^{j} \otimes d x^{k} \zeta d x^{l}=-\sum_{i<j} d x^{i} \wedge d x^{j} \otimes d x^{i} \wedge d x^{j} .
$$

Since $\operatorname{Ric}_{j k}(0)=\sum_{i} R_{i j k}^{i}(0)=(n-1) \delta_{j k}$, we also have $\operatorname{Ric}_{p}=(n-1) g$ and $S(p)=n(n-1)$.
(3) Same as in \mathbf{R}^{n}, since the flat torus is locally isometric to \mathbf{R}^{n}.
(4) By direct computation and the fact that $\forall x \in \mathbf{D}, g_{i j}(x)=\delta_{i j}\left(1+\frac{\|x\|^{2}}{2}+O\left(\|x\|^{4}\right)\right) \mathrm{i}$, we get that $R_{i j k l}(0)=\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}$, Ric $=-g_{\mathbf{D}}$ and $S=-2$.

Solution of exercise 2.

(1) Using spherical coordinates, we have

$$
\operatorname{Vol}(B(N, \rho))=\int_{\theta=0}^{l} \int_{\varphi=0}^{2 \pi} \sin \theta d \theta d \varphi=2 \pi(1-\cos \rho) .
$$

Moreover we have

$$
\operatorname{Vol}(B(N, \rho))=\operatorname{Vol}\left(B_{\mathbf{R}^{2}}(0, \rho)\right)=-2 \pi\left(\cos \rho-\left(1-\rho^{2} / 2\right)<0\right.
$$

for $\rho>0$ small enought. Hence $\operatorname{Vol}\left(B_{\mathbf{S}^{2}}(N, \rho)\right)<\operatorname{Vol}\left(B_{\mathbf{R}^{2}}(0, \rho)\right)$.
(2) Let $\gamma:[0,2 \pi] \rightarrow \mathbf{R}^{3}$ with $\gamma(\theta)=(\sin \rho \cos \theta, \sin \rho \sin \theta, \cos \rho)$ be a parametrization of $C(N, \rho)$. We have $L(C(N, \rho))=2 \pi \sin \rho$.
(3) Set $\gamma_{i}(t)=\exp _{N}\left(t v_{i}\right)=\cos t p+\sin t v_{i}$ and $\alpha=d\left(\gamma_{1}(t), \gamma_{2}(t)\right)$. Since α is also the angle between $\overline{O \gamma_{1}(t)}$ and $\overline{O \gamma_{2}(t)}$ (draw the corresponding figure!) We have $\cos (\alpha)=\left\langle\gamma_{1}(t), \gamma_{2}(t)\right\rangle$ and thus $\alpha=\arccos \left(1-(\sin t)^{2}\left(1-\left\langle v_{1}, v_{2}\right\rangle\right)\right.$. One can also show that $d_{\mathbf{S}^{2}}\left(\gamma_{1}(t), \gamma_{2}(t)\right) \leq$ $d_{\mathbf{R}^{2}}\left(\tilde{\gamma}_{1}(t), \tilde{\gamma}_{2}(t)\right)$.

Solution of exercise 3.

(1) For convenience reasons, we write $g=g_{2}$ and $\tilde{g}=g_{1}$. We then have $g=\lambda^{2} \tilde{g}$. Thanks to the previous formulae on Riemann tensor and Christoffel symbols (1), we deduce that $\Gamma_{i j}^{k}=\tilde{\Gamma}_{i j}^{k}, R_{i j k}^{l}=\tilde{R}_{i j k}^{l}$ and $R_{i j k l}=\lambda^{2} \tilde{R}_{i j k l}$. Let $p \in M$ and (X, Y) a basis of $T_{p} M$. We can write

$$
K_{p}=\frac{R(X, Y, Y, X)}{g(X, X) g(Y, Y)-g(X, Y)^{2}}=\frac{\frac{1}{\lambda^{2}} \tilde{R}(X, Y, Y, X)}{\frac{1}{\lambda^{4}}\left[\tilde{g}(X, X) \tilde{g}(Y, Y)-\tilde{g}(X, Y)^{2}\right]}=\lambda^{2} \tilde{K}_{p}
$$

Remark: One can also recall that the associated Levi-Civita connexions are identics, thus have the same Christoffel symbols and Riemann tensors, thanks to the exercise in previous TD.
(2) Hint: For any (X, Y) orthonormal basis for the metric g, we can show that $|\nabla f|^{2}=$ $\left(\nabla_{X} f\right)^{2}+\left(\nabla_{Y} f\right)^{2}$ and

$$
-\nabla_{X, X}^{2} f-\nabla_{Y, Y}^{2} f=-\operatorname{trace}\left(\nabla^{2} f\right)
$$

which gives the Laplcian of f. The result can be obtained in an analogue way as in the previous question.

