SOLUTIONS OF THE EXAM - March 27, 2020

Exercise 1. Indicate whether the following statements are true or false (a justification is not required).
(a) If M is a non-orientable manifold, its tangent bundle $\mathrm{T} M$ is non-orientable as well.
(b) The 1 -form $\lambda=\sum_{i=1}^{n}\left(x_{i} \mathrm{~d} y_{i}-y_{i} \mathrm{~d} x_{i}\right)$ on $\mathbb{R}^{2 n}$ restricts to a contact form on the convex sphere $Y=\left\{(x, y) \in \mathbb{R}^{2 n} \mid \sum_{i=1}^{n}\left(\left|x_{i}-1\right|^{2}+\left|y_{i}\right|^{2}\right)=1\right\}$.
(c) If z_{0} is a point in a symplectic manifold (M, ω), there exists a Hamiltonian H : $M \rightarrow \mathbb{R}$ and a neighborhood $U \subseteq M$ of z_{0} with the following property: for each neighborhood $V \subseteq M$ of z_{0} there exists $\tau>0$ such that $\phi_{H}^{t}(z) \in V$ for all $z \in U$ and $t \geq \tau$.

Solution.

(a) False. The tangent bundle TM always admits a symplectic form ω, and therefore ω^{n} is a volume form for $n=\operatorname{dim}(M)=\operatorname{dim}(\mathrm{T} M) / 2$.
(b) False. Indeed, λ vanishes at $0 \in Y$, whereas a contact form is nowhere vanishing.
(c) False. If such H and U existed, we could choose the open neighborhood $V \subset M$ of z_{0} to be relatively compact and such that $\bar{V} \subset U$. Since ϕ_{H}^{τ} is symplectic, it preserves the symplectic volume form ω^{n}, where $2 n=\operatorname{dim}(M)$. Therefore, if $\phi_{H}^{\tau}(U) \subset V$, we would have

$$
\operatorname{Vol}(U, \omega)=\int_{U} \omega^{n}=\int_{\phi_{H}^{\tau}(U)} \omega^{n} \leq \int_{V} \omega^{n}=\operatorname{Vol}(V, \omega) .
$$

However, since \bar{V} is relatively compact and contained in U, the volume $\operatorname{Vol}(V, \omega)$ is finite and strictly smaller than $\operatorname{Vol}(U, \omega)$.

Exercise 2. Let (Y, α) be a contact manifold with Reeb flow ϕ_{α}^{t}. Assume that there exists a connected open subset $U \subseteq Y$ and a smooth function $\tau: U \rightarrow(0, \infty)$ such that

$$
\phi_{\alpha}^{\tau(z)}(z)=z, \quad \forall z \in U .
$$

Is τ necessarily a constant function? Prove it, or provide a counterexample.
Solution. We define

$$
\mathcal{U}:=\left\{\gamma_{z} \in C^{\infty}(\mathbb{R} / \mathbb{Z}, Y) \mid z \in U\right\},
$$

where $\gamma_{z}(t)=\phi_{\alpha}^{\tau(z) t}(z)$. Since U is connected, \mathcal{U} is connected as well. Each $\gamma_{z} \in \mathcal{U}$ is the reparametrization of a closed Reeb orbit, and therefore it is a critical point of the action functional

$$
\mathcal{A}: C^{\infty}(\mathbb{R} / \mathbb{Z}, Y) \rightarrow \mathbb{R}, \quad \mathcal{A}(\gamma)=\int_{\gamma} \alpha
$$

In particular, \mathcal{A} is constant on \mathcal{U}. Since $\tau(z)=\mathcal{A}\left(\gamma_{z}\right)$, we conclude that τ is constant.

Exercise 3. Let Y be a closed manifold of dimension $2 n+1$ equipped with two contact forms α_{0} and α_{1} defining the same Reeb vector field $R:=R_{\alpha_{0}}=R_{\alpha_{1}}$. Compute the difference of the contact volumes $\operatorname{Vol}\left(Y, \alpha_{1}\right)-\operatorname{Vol}\left(Y, \alpha_{0}\right)$, where

$$
\operatorname{Vol}\left(Y, \alpha_{i}\right)=\int_{Y} \alpha_{i} \wedge\left(\mathrm{~d} \alpha_{i}\right)^{n} .
$$

Hint. Consider the 1 -forms $\beta:=\alpha_{1}-\alpha_{0}$ and $\alpha_{s}:=(1-s) \alpha_{0}+s \alpha_{1}$ for $s \in[0,1]$. Compute $\alpha_{s}(R), \mathrm{d} \alpha_{s}(R, \cdot)$, $\beta(R), \mathrm{d} \beta(R, \cdot), \beta \wedge\left(\mathrm{d} \alpha_{s}\right)^{n}$, and finally

$$
\frac{\mathrm{d}}{\mathrm{~d} s} \int_{Y} \alpha_{s} \wedge\left(\mathrm{~d} \alpha_{s}\right)^{n} .
$$

Solution. We consider the 1-forms $\alpha_{s}:=(1-s) \alpha_{0}+s \alpha_{1}$ and $\beta:=\frac{\mathrm{d}}{\mathrm{d} s} \alpha_{s}=\alpha_{1}-\alpha_{0}$, and compute

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} s} \int_{Y} \alpha_{s} \wedge\left(\mathrm{~d} \alpha_{s}\right)^{n}=\int_{Y} \beta \wedge\left(\mathrm{~d} \alpha_{s}\right)^{n} \\
&+n \int_{Y} \alpha_{s} \wedge \mathrm{~d} \beta \wedge\left(\mathrm{~d} \alpha_{s}\right)^{n-1} \\
&=\underbrace{\int_{Y} \beta \wedge\left(\mathrm{~d} \alpha_{s}\right)^{n}}_{(*)}-n \underbrace{\int_{Y} \mathrm{~d}\left(\alpha_{s} \wedge \beta \wedge\left(\mathrm{~d} \alpha_{s}\right)^{n-1}\right)}_{(* *)}+n \underbrace{\int_{Y} \mathrm{~d} \alpha_{s} \wedge \beta \wedge\left(\mathrm{~d} \alpha_{s}\right)^{n-1}}_{=(* * *)}
\end{aligned}
$$

Notice that $\alpha_{s}(R)=1$ and $\mathrm{d} \alpha_{s}(R, \cdot)=0$, and therefore $\beta(R)=0$ and $\mathrm{d} \beta(R, \cdot)=0$. This implies that $R\lrcorner\left(\beta \wedge\left(\mathrm{d} \alpha_{s}\right)^{n}\right)=0$. Since $\beta \wedge\left(\mathrm{d} \alpha_{s}\right)^{n}=\mathrm{d} \alpha_{s} \wedge \beta \wedge\left(\mathrm{~d} \alpha_{s}\right)^{n-1}$ is a form of top degree $2 n+1$, it must vanish, and in particular

$$
(*)=(* * *)=0 .
$$

Finally, $(* *)$ vanishes by Stokes Theorem, since Y is closed. In particular, we proved that $\operatorname{Vol}\left(Y, \alpha_{0}\right)=\operatorname{Vol}\left(Y, \alpha_{1}\right)$.

Exercise 4. Let $(W, \mathrm{~d} \lambda)$ be a symplectic manifold, and $H: W \rightarrow \mathbb{R}$ a smooth Hamiltonian whose associated Hamiltonian vector field X_{H} on W is defined as usual by $\mathrm{d} \lambda\left(X_{H}, \cdot\right)=\mathrm{d} H$. Consider the functional

$$
\mathcal{A}: C^{\infty}(\mathbb{R} / \mathbb{Z}, W) \times(0, \infty) \rightarrow \mathbb{R}, \quad \mathcal{A}(\gamma, \tau)=\int_{\gamma} \lambda+\tau \int_{\mathbb{R} / \mathbb{Z}} H(\gamma(t)) \mathrm{d} t .
$$

Compute the differential $\mathrm{d} \mathcal{A}(\gamma, \tau)$, and characterize the critical points of \mathcal{A} in terms of the flow of the Hamiltonian vector field X_{H}.

Hint. Any pair $(\gamma, \tau) \in C^{\infty}(\mathbb{R} / \mathbb{Z}, W) \times(0, \infty)$ can be identified with the τ-periodic curve $\Gamma: \mathbb{R} / \tau \mathbb{Z} \rightarrow W$, $\Gamma(t)=\gamma(t / \tau)$.

Solution. Consider a 1-periodic vector field ζ along γ, and $\sigma \in \mathbb{R}$. For each $s \in \mathbb{R}$ close to 0 , we define

$$
\gamma_{s} \in C^{\infty}(\mathbb{R} / \mathbb{Z}, W), \quad \gamma_{s}(t)=\exp _{\gamma(t)}(s \zeta(t))
$$

and compute

$$
\begin{aligned}
\mathrm{d} \mathcal{A}(\gamma, \tau)(\zeta, \sigma) & =\left.\frac{\mathrm{d}}{\mathrm{~d} s}\right|_{s=0} \mathcal{A}\left(\gamma_{s}, \tau+s \sigma\right) \\
& =\left.\int_{\mathbb{R} / \mathbb{Z}} \frac{\mathrm{d}}{\mathrm{~d} s}\right|_{s=0} \gamma_{s}^{*} \lambda+\tau \int_{\mathbb{R} / \mathbb{Z}} \mathrm{d} H(\gamma(t)) \zeta(t) \mathrm{d} t+\sigma \int_{\mathbb{R} / \mathbb{Z}} H(\gamma(t)) \mathrm{d} t \\
& =\int_{\mathbb{R} / \mathbb{Z}} \gamma^{*} \mathcal{L}_{\zeta} \lambda+\tau \int_{\mathbb{R} / \mathbb{Z}} \mathrm{d} H(\gamma(t)) \zeta(t) \mathrm{d} t+\sigma \int_{\mathbb{R} / \mathbb{Z}} H(\gamma(t)) \mathrm{d} t \\
& =\int_{\mathbb{R} / \mathbb{Z}}\left(\mathrm{d} \lambda(\zeta(t), \dot{\gamma}(t))+\tau \mathrm{d} \lambda\left(X_{H}(\gamma(t)), \zeta(t)\right)\right) \mathrm{d} t+\sigma \int_{\mathbb{R} / \mathbb{Z}} H(\gamma(t)) \mathrm{d} t \\
& =\int_{\mathbb{R} / \mathbb{Z}}(\mathrm{d} \lambda(\underbrace{-\dot{\gamma}(t)+\tau X_{H}(\gamma(t))}_{(*)}, \zeta(t))) \mathrm{d} t+\sigma \underbrace{\int_{\mathbb{R} / \mathbb{Z}} H(\gamma(t)) \mathrm{d} t}_{(* *)} .
\end{aligned}
$$

This readily implies that (γ, τ) is a critical point of \mathcal{A} if and only if $(*) \equiv 0$ and $(* *)=0$. The equation $(*) \equiv 0$ can be rewritten for the τ-periodic curve $\Gamma(t)=\gamma(t / \tau)$ as

$$
\dot{\Gamma}(t)=X_{H}(\Gamma(t))
$$

Namely, $(*) \equiv 0$ if and only if Γ is a τ-periodic orbit; in this case, the function $t \mapsto H(\Gamma(t))$ is constant, and therefore the equation $(* *)=0$ can be rewritten as

$$
H \circ \Gamma \equiv 0
$$

Summing up, we showed that (γ, τ) is a critical point of \mathcal{A} if and only if $\Gamma(t)=\gamma(t / \tau)$ is a τ-periodic orbit of X_{H} on the energy hypersurface $H^{-1}(0)$.

Exercise 5. Let $S^{3} \subset \mathbb{C}^{2}$ be the unit 3-sphere, and $L(p, q)=S^{3} / \sim$ the (p, q)-lens space, which is defined as the quotient of S^{3} under the equivalence relation

$$
\left(z_{1}, z_{2}\right) \sim\left(e^{i 2 \pi / p} z_{1}, e^{i 2 \pi q / p} z_{2}\right), \quad \forall z_{1}, z_{2} \in \mathbb{C} .
$$

Can you find some integers $p, q>0$ and a Riemannian metric on $L(p, q)$ that is Besse but not Zoll?

Solution. Yes: if we choose $p, q>0$ to be relatively prime integers, the Euclidean metric on S^{3} induces a metric g to the quotient $L(p, q)$ that is Besse but not Zoll. Indeed, the unit speed geodesics of $(L(p, q), g)$ have the form

$$
\gamma(t)=[\cos (t) \boldsymbol{z}+\sin (t) \boldsymbol{w}],
$$

where $\boldsymbol{z}=\left(z_{1}, z_{2}\right)$ and $\boldsymbol{w}=\left(w_{1}, w_{2}\right)$ are orthogonal points in S^{3}. In particular, every unitspeed geodesic has period 2π. If $\boldsymbol{w}=i \boldsymbol{z}$, the geodesic γ can be expressed as $\gamma(t)=\left[e^{i t} \boldsymbol{z}\right]$; if $\boldsymbol{z}=\left(z_{1}, z_{2}\right)$ with $z_{1} \neq 0$ and $z_{2} \neq 0$, then γ has minimal period 2π, whereas if $z_{2}=0$ then γ has minimal period $2 \pi / p$.

Exercise 6. Consider the 2-torus $\mathbb{T}^{2}=S^{1} \times S^{1}$, its space of unparametrized embedded circles $\Pi=\operatorname{Emb}\left(S^{1}, \mathbb{T}^{2}\right) / \operatorname{Diff}\left(S^{1}\right)$, and the connected component $\mathcal{C} \subset \Pi$ containing the meridian $\left[\gamma_{0}\right]$, where $\gamma_{0}(t)=(t, 0)$. Find a lower bound for the number of simple closed geodesics of $\left(\mathbb{T}^{2}, g\right)$ contained in \mathcal{C}. Is the lower bound that you found sharp?
Hint. You can assume, without providing a proof, the following two facts:

- The fundamental group $\pi_{1}(\mathcal{C})$ is isomorphic to \mathbb{Z}, with generator $\Gamma: S^{1} \rightarrow \mathcal{C}, \Gamma(s)=\left[\gamma_{s}\right]$, where $\gamma_{s}(t)=(t, s)$.

- Consider the open subset $\mathcal{U}(\ell, \epsilon)=\left\{\zeta \in \mathcal{C} \mid L(\zeta) \in\left[\ell-\epsilon^{2}, \ell+\epsilon^{2}\right]\right.$, $\left.\max \left|\kappa_{\zeta}\right|<\epsilon\right\}$, where L is the g-length functional

$$
L(\zeta)=\int_{S^{1}}\|\dot{\zeta}(t)\|_{g} \mathrm{~d} t,
$$

and κ_{ζ} is the g-curvature of ζ. If there is a unique closed geodesic $\gamma \in \mathcal{C}$ of length $L(\gamma)=\ell$, then there exists $\epsilon>0$ and a contractible open subset $\mathcal{W} \subset \mathcal{C}$ such that $\mathcal{U}(\ell, \epsilon) \subset \mathcal{W}$.

Solution. For every homology class $h \in H_{*}\left(\mathcal{C} ; \mathbb{Z}_{2}\right)$, the min-max

$$
c(h)=\inf _{[\sigma]=h} \max _{\sigma} L
$$

is the length of a simple closed geodesic $[\zeta] \in \mathcal{C}$ of $\left(\mathrm{T}^{2}, g\right)$. In particular, the shortest $[\zeta] \in \mathcal{C}$ is a simple closed geodesic of $\left(\mathrm{T}^{2}, g\right)$. Indeed, if 1 is the generator of $H_{0}\left(\mathcal{C} ; \mathbb{Z}_{2}\right)$, we have $\ell:=\left.\inf L\right|_{\mathcal{C}}=c(1)$. Since $\pi_{1}(\mathcal{C}) \cong \mathbb{Z}$, we have $H_{1}\left(\mathcal{C} ; \mathbb{Z}_{2}\right) \cong H^{1}\left(\mathcal{C} ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}$, and the generators $h \in H_{1}\left(\mathcal{C} ; \mathbb{Z}_{2}\right)$ and $w \in H^{1}\left(\mathcal{C} ; \mathbb{Z}_{2}\right)$ satisfy $h \frown w=w(h)=1$. By LusternikSchnirelmann's Theorem, we have $c(1)=c(h)$ if and only if $\left.w\right|_{\mathcal{U}(\ell, \epsilon)} \neq 0$ in $H^{1}\left(\mathcal{U}(\ell, \epsilon) ; \mathbb{Z}_{2}\right)$ for all $\epsilon>0$.

We claim that there are always at least two simple closed geodesics in \mathcal{C}. Indeed, assume by contradiction that there is only one, which must have length $c(1)$. Then $c(1)=c(h)$, and if we choose $\epsilon>0$ small enough, $\mathcal{U}(\ell, \epsilon)$ is contained in a contractible open subset $\mathcal{W} \subset \mathcal{U}$. In particular $\left.w\right|_{\mathcal{W}} \neq 0$ in $H^{1}(\mathcal{W})$, and therefore $\left.w\right|_{\mathcal{U}(\ell, \epsilon)}=\left.\left(\left.w\right|_{\mathcal{W}}\right)\right|_{\mathcal{U}(\ell, \epsilon)}=0$ as well, contradicting Lusternik-Schnirelmann's Theorem.

The lower bound of two simple closed geodesics in \mathcal{C} is sharp: by Clairaut's relation, the following torus of revolution (in which the boundary curves α are glued together) has only two simple closed geodesics in \mathcal{C}, that is, α and β.

