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SOLUTIONS OF THE EXAM – March 27, 2020

Exercise 1. Indicate whether the following statements are true or false (a justification is
not required).

(a) If M is a non-orientable manifold, its tangent bundle TM is non-orientable as well.

(b) The 1-form λ =
∑n

i=1(xidyi − yidxi) on R2n restricts to a contact form on the
convex sphere Y = {(x, y) ∈ R2n |

∑n
i=1(|xi − 1|2 + |yi|2) = 1}.

(c) If z0 is a point in a symplectic manifold (M,ω), there exists a Hamiltonian H :
M → R and a neighborhood U ⊆ M of z0 with the following property: for each
neighborhood V ⊆ M of z0 there exists τ > 0 such that φtH(z) ∈ V for all z ∈ U
and t ≥ τ .

Solution.

(a) False. The tangent bundle TM always admits a symplectic form ω, and therefore
ωn is a volume form for n = dim(M) = dim(TM)/2.

(b) False. Indeed, λ vanishes at 0 ∈ Y , whereas a contact form is nowhere vanishing.

(c) False. If such H and U existed, we could choose the open neighborhood V ⊂ M
of z0 to be relatively compact and such that V ⊂ U . Since φτH is symplectic,
it preserves the symplectic volume form ωn, where 2n = dim(M). Therefore, if
φτH(U) ⊂ V , we would have

Vol(U, ω) =

∫
U

ωn =

∫
φτH(U)

ωn ≤
∫
V

ωn = Vol(V, ω).

However, since V is relatively compact and contained in U , the volume Vol(V, ω) is
finite and strictly smaller than Vol(U, ω).
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Exercise 2. Let (Y, α) be a contact manifold with Reeb flow φtα. Assume that there exists
a connected open subset U ⊆ Y and a smooth function τ : U → (0,∞) such that

φτ(z)α (z) = z, ∀z ∈ U.
Is τ necessarily a constant function? Prove it, or provide a counterexample.

Solution. We define

U := {γz ∈ C∞(R/Z, Y ) | z ∈ U},

where γz(t) = φ
τ(z)t
α (z). Since U is connected, U is connected as well. Each γz ∈ U is the

reparametrization of a closed Reeb orbit, and therefore it is a critical point of the action
functional

A : C∞(R/Z, Y )→ R, A(γ) =

∫
γ

α.

In particular, A is constant on U . Since τ(z) = A(γz), we conclude that τ is constant.
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Exercise 3. Let Y be a closed manifold of dimension 2n + 1 equipped with two contact
forms α0 and α1 defining the same Reeb vector field R := Rα0 = Rα1 . Compute the
difference of the contact volumes Vol(Y, α1)− Vol(Y, α0), where

Vol(Y, αi) =

∫
Y

αi ∧ (dαi)
n.

Hint. Consider the 1-forms β := α1−α0 and αs := (1−s)α0+sα1 for s ∈ [0, 1]. Compute αs(R), dαs(R, ·),
β(R), dβ(R, ·), β ∧ (dαs)

n, and finally
d

ds

∫
Y

αs ∧ (dαs)
n.

Solution. We consider the 1-forms αs := (1 − s)α0 + sα1 and β := d
ds
αs = α1 − α0, and

compute

d

ds

∫
Y

αs ∧ (dαs)
n =

∫
Y

β ∧ (dαs)
n + n

∫
Y

αs ∧ dβ ∧ (dαs)
n−1

=

∫
Y

β ∧ (dαs)
n︸ ︷︷ ︸

(∗)

−n
∫
Y

d(αs ∧ β ∧ (dαs)
n−1)︸ ︷︷ ︸

(∗∗)

+n

∫
Y

dαs ∧ β ∧ (dαs)
n−1︸ ︷︷ ︸

=(∗∗∗)

Notice that αs(R) = 1 and dαs(R, ·) = 0, and therefore β(R) = 0 and dβ(R, ·) = 0. This
implies that R y (β ∧ (dαs)

n) = 0. Since β ∧ (dαs)
n = dαs ∧ β ∧ (dαs)

n−1 is a form of top
degree 2n+ 1, it must vanish, and in particular

(∗) = (∗ ∗ ∗) = 0.

Finally, (∗∗) vanishes by Stokes Theorem, since Y is closed. In particular, we proved that
Vol(Y, α0) = Vol(Y, α1).
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Exercise 4. Let (W, dλ) be a symplectic manifold, and H : W → R a smooth Hamiltonian
whose associated Hamiltonian vector field XH on W is defined as usual by dλ(XH , ·) = dH.
Consider the functional

A : C∞(R/Z,W )× (0,∞)→ R, A(γ, τ) =

∫
γ

λ+ τ

∫
R/Z

H(γ(t)) dt.

Compute the differential dA(γ, τ), and characterize the critical points of A in terms of the
flow of the Hamiltonian vector field XH .

Hint. Any pair (γ, τ) ∈ C∞(R/Z,W )× (0,∞) can be identified with the τ -periodic curve Γ : R/τZ→W ,
Γ(t) = γ(t/τ).

Solution. Consider a 1-periodic vector field ζ along γ, and σ ∈ R. For each s ∈ R close to
0, we define

γs ∈ C∞(R/Z,W ), γs(t) = expγ(t)(sζ(t)),

and compute

dA(γ, τ)(ζ, σ) = d
ds

∣∣
s=0
A(γs, τ + sσ)

=

∫
R/Z

d
ds

∣∣
s=0

γ∗sλ+ τ

∫
R/Z

dH(γ(t))ζ(t) dt+ σ

∫
R/Z

H(γ(t)) dt

=

∫
R/Z

γ∗Lζλ+ τ

∫
R/Z

dH(γ(t))ζ(t) dt+ σ

∫
R/Z

H(γ(t)) dt

=

∫
R/Z

(
dλ(ζ(t), γ̇(t)) + τ dλ(XH(γ(t)), ζ(t))

)
dt+ σ

∫
R/Z

H(γ(t)) dt

=

∫
R/Z

(
dλ(− γ̇(t) + τXH(γ(t))︸ ︷︷ ︸

(∗)

, ζ(t))
)

dt+ σ

∫
R/Z

H(γ(t)) dt︸ ︷︷ ︸
(∗∗)

.

This readily implies that (γ, τ) is a critical point of A if and only if (∗) ≡ 0 and (∗∗) = 0.
The equation (∗) ≡ 0 can be rewritten for the τ -periodic curve Γ(t) = γ(t/τ) as

Γ̇(t) = XH(Γ(t)).

Namely, (∗) ≡ 0 if and only if Γ is a τ -periodic orbit; in this case, the function t 7→ H(Γ(t))
is constant, and therefore the equation (∗∗) = 0 can be rewritten as

H ◦ Γ ≡ 0.

Summing up, we showed that (γ, τ) is a critical point of A if and only if Γ(t) = γ(t/τ) is
a τ -periodic orbit of XH on the energy hypersurface H−1(0).
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Exercise 5. Let S3 ⊂ C2 be the unit 3-sphere, and L(p, q) = S3/ ∼ the (p, q)-lens space,
which is defined as the quotient of S3 under the equivalence relation

(z1, z2) ∼ (ei2π/pz1, e
i2πq/pz2), ∀z1, z2 ∈ C.

Can you find some integers p, q > 0 and a Riemannian metric on L(p, q) that is Besse but
not Zoll?

Solution. Yes: if we choose p, q > 0 to be relatively prime integers, the Euclidean metric
on S3 induces a metric g to the quotient L(p, q) that is Besse but not Zoll. Indeed, the
unit speed geodesics of (L(p, q), g) have the form

γ(t) = [cos(t)z + sin(t)w],

where z = (z1, z2) and w = (w1, w2) are orthogonal points in S3. In particular, every unit-
speed geodesic has period 2π. If w = iz, the geodesic γ can be expressed as γ(t) = [eitz];
if z = (z1, z2) with z1 6= 0 and z2 6= 0, then γ has minimal period 2π, whereas if z2 = 0
then γ has minimal period 2π/p.
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Exercise 6. Consider the 2-torus T2 = S1 × S1, its space of unparametrized embedded
circles Π = Emb(S1,T2)/Diff(S1), and the connected component C ⊂ Π containing the
meridian [γ0], where γ0(t) = (t, 0). Find a lower bound for the number of simple closed
geodesics of (T2, g) contained in C. Is the lower bound that you found sharp?

Hint. You can assume, without providing a proof, the following two facts:

• The fundamental group π1(C) is isomorphic to Z, with generator Γ : S1 → C, Γ(s) = [γs], where
γs(t) = (t, s).

γ0

γs
s

• Consider the open subset U(`, ε) =
{
ζ ∈ C

∣∣ L(ζ) ∈ [`− ε2, `+ ε2], max |κζ | < ε
}

, where L is the
g-length functional

L(ζ) =

∫
S1

‖ζ̇(t)‖g dt,

and κζ is the g-curvature of ζ. If there is a unique closed geodesic γ ∈ C of length L(γ) = `, then
there exists ε > 0 and a contractible open subset W ⊂ C such that U(`, ε) ⊂ W.

Solution. For every homology class h ∈ H∗(C;Z2), the min-max

c(h) = inf
[σ]=h

max
σ

L

is the length of a simple closed geodesic [ζ] ∈ C of (T2, g). In particular, the shortest
[ζ] ∈ C is a simple closed geodesic of (T2, g). Indeed, if 1 is the generator of H0(C;Z2), we
have ` := inf L|C = c(1). Since π1(C) ∼= Z, we have H1(C;Z2) ∼= H1(C;Z2) ∼= Z2, and the
generators h ∈ H1(C;Z2) and w ∈ H1(C;Z2) satisfy h _ w = w(h) = 1. By Lusternik-
Schnirelmann’s Theorem, we have c(1) = c(h) if and only if w|U(`,ε) 6= 0 in H1(U(`, ε);Z2)
for all ε > 0.

We claim that there are always at least two simple closed geodesics in C. Indeed, assume
by contradiction that there is only one, which must have length c(1). Then c(1) = c(h),
and if we choose ε > 0 small enough, U(`, ε) is contained in a contractible open subset
W ⊂ U . In particular w|W 6= 0 in H1(W), and therefore w|U(`,ε) = (w|W)|U(`,ε) = 0 as well,
contradicting Lusternik-Schnirelmann’s Theorem.

The lower bound of two simple closed geodesics in C is sharp: by Clairaut’s relation, the
following torus of revolution (in which the boundary curves α are glued together) has only
two simple closed geodesics in C, that is, α and β.

α α
β
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