Besse and Zoll manifolds/ - Marco Mazzucchelli

SOLUTIONS OF THE EXAM - March 27, 2020

Exercise 1. Indicate whether the following statements are true or false (a justification is
not required).

(a) If M is a non-orientable manifold, its tangent bundle TM is non-orientable as well.
(b) The 1-form A = Y. (x;dy; — y;dx;) on R?" restricts to a contact form on the

i=1
convex sphere Y = {(z,y) € R* | Y0 (|zi — 1> + |v:]?) = 1}.

(c) If zy is a point in a symplectic manifold (M,w), there exists a Hamiltonian H :
M — R and a neighborhood U C M of 2z, with the following property: for each
neighborhood V' C M of zy there exists 7 > 0 such that ¢, (z) € V for all z € U
and t > 7.

Solution.
(a) False. The tangent bundle TM always admits a symplectic form w, and therefore
w™ is a volume form for n = dim(M) = dim(TM)/2.
(b) False. Indeed, A vanishes at 0 € Y, whereas a contact form is nowhere vanishing.
(c) False. If such H and U existed, we could choose the open neighborhood V- C M
of zg to be relatively compact and such that V' C U. Since ¢}, is symplectic,

it preserves the symplectic volume form w”, where 2n = dim(M). Therefore, if
¢ (U) C V, we would have

Vol(U, w) = / w" :/ w" < / w" = Vol(V,w).
U $7,(U) v

However, since V is relatively compact and contained in U, the volume Vol(V, w) is
finite and strictly smaller than Vol(U,w).
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Exercise 2. Let (Y, «) be a contact manifold with Reeb flow ¢f. Assume that there exists
a connected open subset U C Y and a smooth function 7 : U — (0, 00) such that

¢T(2) = 2, Vz e U.

Is 7 necessarily a constant function? Prove it, or provide a counterexample.

Solution. We define

U:={y, € C®R/Z)Y)|zeU},
where 7, (t) = Z(Z)t(z). Since U is connected, U is connected as well. Each v, € U is the
reparametrization of a closed Reeb orbit, and therefore it is a critical point of the action
functional

A C¥(R/Z,Y) = R, Am_/a.

In particular, A is constant on Y. Since 7(z) = A(7,), we conclude that 7 is constant.



Exercise 3. Let Y be a closed manifold of dimension 2n + 1 equipped with two contact
forms oy and «; defining the same Reeb vector field R := R,, = R,,. Compute the
difference of the contact volumes Vol(Y, o) — Vol(Y, ap), where

Vol(Y, o) = / a; A (dag)™.

Y

Hint. Consider the 1-forms 8 := a1 —ag and a5 := (1—s)ag+sa; for s € [0,1]. Compute as(R), das(R,-),
B(R), dB(R, "), B A (das)™, and finally

g s d s n'

P Ya A (das)
Solution. We consider the 1-forms g := (1 — s)ag + sy and 3 = %as = a1 — Qp, and
compute

© /. A (da)" / B A (day)™ +n/yas AdB A (dag)"™

/ﬂ/\ (dorg)" —n/ d(as A B A (dag)™™ 1)+n/d048/\ﬁ/\(das)”_l
JY

J/

-

(**) =(xx%)
Notice that ags(R) = 1 and das(R, ) = 0, and therefore B(R) = 0 and d5(R,-) = 0. This
implies that R 1 (8 A (das)™) = 0. Since 8 A (dag)™ = dag A B A (dag)" ! is a form of top
degree 2n + 1, it must vanish, and in particular
(%) = (x %) = 0.

Finally, (%) vanishes by Stokes Theorem, since Y is closed. In particular, we proved that
Vol(Y, o) = Vol(Y, o).



Exercise 4. Let (W, d\) be a symplectic manifold, and H : W — R a smooth Hamiltonian
whose associated Hamiltonian vector field Xz on W is defined as usual by d\(Xp, -) = dH.
Consider the functional

A C%(R/Z, W) x (0,00) = R, A(%T):/HT [ o)

Compute the differential d.A(y, 7), and characterize the critical points of A in terms of the
flow of the Hamiltonian vector field Xy.

Hint. Any pair (v,7) € C*(R/Z, W) x (0, 00) can be identified with the 7-periodic curve I' : R/7Z — W,
L(t) =~(t/7).

Solution. Consider a 1-periodic vector field  along v, and ¢ € R. For each s € R close to
0, we define

vs € C*(R/Z, W), Vs(t) = eXpV(t)(SC(t)),
and compute

dA(y,7)(¢0) = L o Alys, T+ 50)

— [ gl [ amb@x@ e [ Ho®)d
R/Z R/

R/Z

:/ y*cgwrf/ dH(y(1))¢(t) dt + o H(v(1))dt
R/Z R/Z k/Z

-/ |, (@A) + T X0, C0)) e+ | H((0)

R/Z

= [ (=50 + Xl 0)ce)) o [ @)
R/Z N —_— . JR/Z,
(*) (+%)
This readily implies that (v, 7) is a critical point of A if and only if (%) = 0 and () = 0.
The equation (x) = 0 can be rewritten for the T-periodic curve I'(t) = v(t/7) as

J/

L(t) = Xu(L()).
Namely, () = 0 if and only if I is a 7-periodic orbit; in this case, the function ¢t — H(I'(t))
is constant, and therefore the equation (%) = 0 can be rewritten as

Hol'=0.

Summing up, we showed that (v, 7) is a critical point of A if and only if I'(¢) = ~(¢/7) is
a 7-periodic orbit of Xz on the energy hypersurface H~1(0).



Exercise 5. Let S C C? be the unit 3-sphere, and L(p,q) = S®/ ~ the (p, q)-lens space,
which is defined as the quotient of S® under the equivalence relation

(z1,22) ~ (eﬂﬂ/pzl, ei%q/sz), V21,29 € C.

Can you find some integers p,q > 0 and a Riemannian metric on L(p, q) that is Besse but
not Zoll?

Solution. Yes: if we choose p,q > 0 to be relatively prime integers, the Euclidean metric
on S3 induces a metric g to the quotient L(p,q) that is Besse but not Zoll. Indeed, the
unit speed geodesics of (L(p, q), g) have the form

v(t) = [cos(t)z + sin(t)w],

where z = (21, 23) and w = (wy, w,) are orthogonal points in S3. In particular, every unit-
speed geodesic has period 27. If w = iz, the geodesic v can be expressed as () = [e"2];
if z = (21,22) with 23 # 0 and 25 # 0, then  has minimal period 27, whereas if zo = 0
then ~ has minimal period 27 /p.



Exercise 6. Consider the 2-torus T? = S! x S!, its space of unparametrized embedded
circles IT = Emb(S?, T?)/Diff(S'), and the connected component C C II containing the
meridian ||, where v (t) = (¢,0). Find a lower bound for the number of simple closed
geodesics of (T?, g) contained in C. Is the lower bound that you found sharp?

Hint. You can assume, without providing a proof, the following two facts:

e The fundamental group 71(C) is isomorphic to Z, with generator I' : S — C, T'(s) = [ys], where
Vs(t) = (¢, 5).

s

e Consider the open subset U((,€) = {¢ € C | L(¢) € [ — €*,£ + €°], max|r¢| < €}, where L is the
g-length functional

5O = [ 16wl a

and k¢ is the g-curvature of (. If there is a unique closed geodesic v € C of length L(y) = ¢, then
there exists € > 0 and a contractible open subset W C C such that U(¢,¢) C W.

Solution. For every homology class h € H,.(C;Zs), the min-max

¢(h) = inf max L
ol=h o

is the length of a simple closed geodesic [(] € C of (T?, g). In particular, the shortest
[(] € C is a simple closed geodesic of (T?, g). Indeed, if 1 is the generator of Hy(C;Zs,), we
have ¢ := inf L|c = ¢(1). Since 7;(C) & Z, we have H,(C;Zs) = H'(C;Zs) = Zs, and the
generators h € Hy(C;Zs) and w € H'(C;Zs) satisfy h ~ w = w(h) = 1. By Lusternik-
Schnirelmann’s Theorem, we have ¢(1) = ¢(h) if and only if wyee) # 0 in H (UL, €); Z)
for all € > 0.

We claim that there are always at least two simple closed geodesics in C. Indeed, assume
by contradiction that there is only one, which must have length ¢(1). Then ¢(1) = ¢(h),
and if we choose € > 0 small enough, U(¢, €) is contained in a contractible open subset
W C U. In particular wly # 0 in H*(W), and therefore wy o) = (w|w)|u@.o = 0 as well,
contradicting Lusternik-Schnirelmann’s Theorem.

The lower bound of two simple closed geodesics in C is sharp: by Clairaut’s relation, the
following torus of revolution (in which the boundary curves « are glued together) has only
two simple closed geodesics in C, that is, o and f.



