Besse and Zoll manifolds \cdot Marco Mazzucchelli

SOLUTIONS OF THE EXAM – March 27, 2020

Exercise 1. Indicate whether the following statements are true or false (a justification is not required).

- (a) If M is a non-orientable manifold, its tangent bundle TM is non-orientable as well.
- (b) The 1-form $\lambda = \sum_{i=1}^{n} (x_i dy_i y_i dx_i)$ on \mathbb{R}^{2n} restricts to a contact form on the convex sphere $Y = \{(x, y) \in \mathbb{R}^{2n} \mid \sum_{i=1}^{n} (|x_i 1|^2 + |y_i|^2) = 1\}.$
- (c) If z_0 is a point in a symplectic manifold (M, ω) , there exists a Hamiltonian H: $M \to \mathbb{R}$ and a neighborhood $U \subseteq M$ of z_0 with the following property: for each neighborhood $V \subseteq M$ of z_0 there exists $\tau > 0$ such that $\phi_H^t(z) \in V$ for all $z \in U$ and $t \ge \tau$.

Solution.

- (a) False. The tangent bundle TM always admits a symplectic form ω , and therefore ω^n is a volume form for $n = \dim(M) = \dim(\mathrm{T}M)/2$.
- (b) False. Indeed, λ vanishes at $0 \in Y$, whereas a contact form is nowhere vanishing.
- (c) False. If such H and U existed, we could choose the open neighborhood $V \subset M$ of z_0 to be relatively compact and such that $\overline{V} \subset U$. Since ϕ_H^{τ} is symplectic, it preserves the symplectic volume form ω^n , where $2n = \dim(M)$. Therefore, if $\phi_H^{\tau}(U) \subset V$, we would have

$$\operatorname{Vol}(U,\omega) = \int_U \omega^n = \int_{\phi_H^{\tau}(U)} \omega^n \leq \int_V \omega^n = \operatorname{Vol}(V,\omega).$$

However, since \overline{V} is relatively compact and contained in U, the volume Vol (V, ω) is finite and strictly smaller than Vol (U, ω) .

Exercise 2. Let (Y, α) be a contact manifold with Reeb flow ϕ_{α}^{t} . Assume that there exists a connected open subset $U \subseteq Y$ and a smooth function $\tau : U \to (0, \infty)$ such that

$$\phi_{\alpha}^{\tau(z)}(z) = z, \qquad \forall z \in U.$$

Is τ necessarily a constant function? Prove it, or provide a counterexample.

Solution. We define

$$\mathcal{U} := \{ \gamma_z \in C^{\infty}(\mathbb{R}/\mathbb{Z}, Y) \mid z \in U \},\$$

where $\gamma_z(t) = \phi_\alpha^{\tau(z)t}(z)$. Since U is connected, \mathcal{U} is connected as well. Each $\gamma_z \in \mathcal{U}$ is the reparametrization of a closed Reeb orbit, and therefore it is a critical point of the action functional

$$\mathcal{A}: C^{\infty}(\mathbb{R}/\mathbb{Z}, Y) \to \mathbb{R}, \qquad \mathcal{A}(\gamma) = \int_{\gamma} \alpha.$$

In particular, \mathcal{A} is constant on \mathcal{U} . Since $\tau(z) = \mathcal{A}(\gamma_z)$, we conclude that τ is constant.

Exercise 3. Let Y be a closed manifold of dimension 2n + 1 equipped with two contact forms α_0 and α_1 defining the same Reeb vector field $R := R_{\alpha_0} = R_{\alpha_1}$. Compute the difference of the contact volumes $\operatorname{Vol}(Y, \alpha_1) - \operatorname{Vol}(Y, \alpha_0)$, where

$$\operatorname{Vol}(Y, \alpha_i) = \int_Y \alpha_i \wedge (\mathrm{d}\alpha_i)^n.$$

Hint. Consider the 1-forms $\beta := \alpha_1 - \alpha_0$ and $\alpha_s := (1-s)\alpha_0 + s\alpha_1$ for $s \in [0,1]$. Compute $\alpha_s(R)$, $d\alpha_s(R, \cdot)$, $\beta(R)$, $d\beta(R, \cdot)$, $\beta \wedge (d\alpha_s)^n$, and finally

$$\frac{\mathrm{d}}{\mathrm{d}s}\int_Y \alpha_s \wedge (\mathrm{d}\alpha_s)^n.$$

Solution. We consider the 1-forms $\alpha_s := (1 - s)\alpha_0 + s\alpha_1$ and $\beta := \frac{d}{ds}\alpha_s = \alpha_1 - \alpha_0$, and compute

$$\frac{\mathrm{d}}{\mathrm{d}s} \int_{Y} \alpha_{s} \wedge (\mathrm{d}\alpha_{s})^{n} = \int_{Y} \beta \wedge (\mathrm{d}\alpha_{s})^{n} + n \int_{Y} \alpha_{s} \wedge \mathrm{d}\beta \wedge (\mathrm{d}\alpha_{s})^{n-1} \\ = \underbrace{\int_{Y} \beta \wedge (\mathrm{d}\alpha_{s})^{n}}_{(*)} - n \underbrace{\int_{Y} \mathrm{d}(\alpha_{s} \wedge \beta \wedge (\mathrm{d}\alpha_{s})^{n-1})}_{(**)} + n \underbrace{\int_{Y} \mathrm{d}\alpha_{s} \wedge \beta \wedge (\mathrm{d}\alpha_{s})^{n-1}}_{=(***)}$$

Notice that $\alpha_s(R) = 1$ and $d\alpha_s(R, \cdot) = 0$, and therefore $\beta(R) = 0$ and $d\beta(R, \cdot) = 0$. This implies that $R \sqcup (\beta \land (d\alpha_s)^n) = 0$. Since $\beta \land (d\alpha_s)^n = d\alpha_s \land \beta \land (d\alpha_s)^{n-1}$ is a form of top degree 2n + 1, it must vanish, and in particular

$$(*) = (* * *) = 0.$$

Finally, (**) vanishes by Stokes Theorem, since Y is closed. In particular, we proved that $Vol(Y, \alpha_0) = Vol(Y, \alpha_1)$.

Exercise 4. Let $(W, d\lambda)$ be a symplectic manifold, and $H : W \to \mathbb{R}$ a smooth Hamiltonian whose associated Hamiltonian vector field X_H on W is defined as usual by $d\lambda(X_H, \cdot) = dH$. Consider the functional

$$\mathcal{A}: C^{\infty}(\mathbb{R}/\mathbb{Z}, W) \times (0, \infty) \to \mathbb{R}, \qquad \mathcal{A}(\gamma, \tau) = \int_{\gamma} \lambda + \tau \int_{\mathbb{R}/\mathbb{Z}} H(\gamma(t)) \, \mathrm{d}t.$$

Compute the differential $d\mathcal{A}(\gamma, \tau)$, and characterize the critical points of \mathcal{A} in terms of the flow of the Hamiltonian vector field X_H .

Hint. Any pair $(\gamma, \tau) \in C^{\infty}(\mathbb{R}/\mathbb{Z}, W) \times (0, \infty)$ can be identified with the τ -periodic curve $\Gamma : \mathbb{R}/\tau\mathbb{Z} \to W$, $\Gamma(t) = \gamma(t/\tau)$.

Solution. Consider a 1-periodic vector field ζ along γ , and $\sigma \in \mathbb{R}$. For each $s \in \mathbb{R}$ close to 0, we define

$$\gamma_s \in C^{\infty}(\mathbb{R}/\mathbb{Z}, W), \qquad \gamma_s(t) = \exp_{\gamma(t)}(s\zeta(t)),$$

and compute

$$d\mathcal{A}(\gamma,\tau)(\zeta,\sigma) = \frac{d}{ds}\Big|_{s=0} \mathcal{A}(\gamma_s,\tau+s\sigma)$$

$$= \int_{\mathbb{R}/\mathbb{Z}} \frac{d}{ds}\Big|_{s=0} \gamma_s^* \lambda + \tau \int_{\mathbb{R}/\mathbb{Z}} dH(\gamma(t))\zeta(t) dt + \sigma \int_{\mathbb{R}/\mathbb{Z}} H(\gamma(t)) dt$$

$$= \int_{\mathbb{R}/\mathbb{Z}} \gamma^* \mathcal{L}_{\zeta} \lambda + \tau \int_{\mathbb{R}/\mathbb{Z}} dH(\gamma(t))\zeta(t) dt + \sigma \int_{\mathbb{R}/\mathbb{Z}} H(\gamma(t)) dt$$

$$= \int_{\mathbb{R}/\mathbb{Z}} \left(d\lambda(\zeta(t),\dot{\gamma}(t)) + \tau d\lambda(X_H(\gamma(t)),\zeta(t)) \right) dt + \sigma \int_{\mathbb{R}/\mathbb{Z}} H(\gamma(t)) dt$$

$$= \int_{\mathbb{R}/\mathbb{Z}} \left(d\lambda(\underbrace{-\dot{\gamma}(t) + \tau X_H(\gamma(t))}_{(*)},\zeta(t)) \right) dt + \sigma \underbrace{\int_{\mathbb{R}/\mathbb{Z}} H(\gamma(t)) dt}_{(**)}.$$

This readily implies that (γ, τ) is a critical point of \mathcal{A} if and only if $(*) \equiv 0$ and (**) = 0. The equation $(*) \equiv 0$ can be rewritten for the τ -periodic curve $\Gamma(t) = \gamma(t/\tau)$ as

$$\Gamma(t) = X_H(\Gamma(t))$$

Namely, $(*) \equiv 0$ if and only if Γ is a τ -periodic orbit; in this case, the function $t \mapsto H(\Gamma(t))$ is constant, and therefore the equation (**) = 0 can be rewritten as

$$H \circ \Gamma \equiv 0.$$

Summing up, we showed that (γ, τ) is a critical point of \mathcal{A} if and only if $\Gamma(t) = \gamma(t/\tau)$ is a τ -periodic orbit of X_H on the energy hypersurface $H^{-1}(0)$.

Exercise 5. Let $S^3 \subset \mathbb{C}^2$ be the unit 3-sphere, and $L(p,q) = S^3 / \sim$ the (p,q)-lens space, which is defined as the quotient of S^3 under the equivalence relation

$$(z_1, z_2) \sim (e^{i2\pi/p} z_1, e^{i2\pi q/p} z_2), \quad \forall z_1, z_2 \in \mathbb{C}.$$

Can you find some integers p, q > 0 and a Riemannian metric on L(p, q) that is Besse but not Zoll?

Solution. Yes: if we choose p, q > 0 to be relatively prime integers, the Euclidean metric on S^3 induces a metric g to the quotient L(p,q) that is Besse but not Zoll. Indeed, the unit speed geodesics of (L(p,q),g) have the form

$$\gamma(t) = [\cos(t)\boldsymbol{z} + \sin(t)\boldsymbol{w}],$$

where $\boldsymbol{z} = (z_1, z_2)$ and $\boldsymbol{w} = (w_1, w_2)$ are orthogonal points in S^3 . In particular, every unitspeed geodesic has period 2π . If $\boldsymbol{w} = i\boldsymbol{z}$, the geodesic γ can be expressed as $\gamma(t) = [e^{it}\boldsymbol{z}]$; if $\boldsymbol{z} = (z_1, z_2)$ with $z_1 \neq 0$ and $z_2 \neq 0$, then γ has minimal period 2π , whereas if $z_2 = 0$ then γ has minimal period $2\pi/p$. **Exercise 6.** Consider the 2-torus $\mathbb{T}^2 = S^1 \times S^1$, its space of unparametrized embedded circles $\Pi = \text{Emb}(S^1, \mathbb{T}^2)/\text{Diff}(S^1)$, and the connected component $\mathcal{C} \subset \Pi$ containing the meridian $[\gamma_0]$, where $\gamma_0(t) = (t, 0)$. Find a lower bound for the number of simple closed geodesics of (\mathbb{T}^2, g) contained in \mathcal{C} . Is the lower bound that you found sharp?

Hint. You can assume, without providing a proof, the following two facts:

• The fundamental group $\pi_1(\mathcal{C})$ is isomorphic to \mathbb{Z} , with generator $\Gamma : S^1 \to \mathcal{C}$, $\Gamma(s) = [\gamma_s]$, where $\gamma_s(t) = (t, s)$.

• Consider the open subset $\mathcal{U}(\ell, \epsilon) = \{\zeta \in \mathcal{C} \mid L(\zeta) \in [\ell - \epsilon^2, \ell + \epsilon^2], \max |\kappa_{\zeta}| < \epsilon\}$, where L is the g-length functional

$$L(\zeta) = \int_{S^1} \|\dot{\zeta}(t)\|_g \,\mathrm{d}t,$$

and κ_{ζ} is the *g*-curvature of ζ . If there is a unique closed geodesic $\gamma \in \mathcal{C}$ of length $L(\gamma) = \ell$, then there exists $\epsilon > 0$ and a contractible open subset $\mathcal{W} \subset \mathcal{C}$ such that $\mathcal{U}(\ell, \epsilon) \subset \mathcal{W}$.

Solution. For every homology class $h \in H_*(\mathcal{C}; \mathbb{Z}_2)$, the min-max

$$c(h) = \inf_{[\sigma]=h} \max_{\sigma} L$$

is the length of a simple closed geodesic $[\zeta] \in \mathcal{C}$ of (\mathbb{T}^2, g) . In particular, the shortest $[\zeta] \in \mathcal{C}$ is a simple closed geodesic of (\mathbb{T}^2, g) . Indeed, if 1 is the generator of $H_0(\mathcal{C}; \mathbb{Z}_2)$, we have $\ell := \inf L|_{\mathcal{C}} = c(1)$. Since $\pi_1(\mathcal{C}) \cong \mathbb{Z}$, we have $H_1(\mathcal{C}; \mathbb{Z}_2) \cong H^1(\mathcal{C}; \mathbb{Z}_2) \cong \mathbb{Z}_2$, and the generators $h \in H_1(\mathcal{C}; \mathbb{Z}_2)$ and $w \in H^1(\mathcal{C}; \mathbb{Z}_2)$ satisfy $h \frown w = w(h) = 1$. By Lusternik-Schnirelmann's Theorem, we have c(1) = c(h) if and only if $w|_{\mathcal{U}(\ell,\epsilon)} \neq 0$ in $H^1(\mathcal{U}(\ell,\epsilon); \mathbb{Z}_2)$ for all $\epsilon > 0$.

We claim that there are always at least two simple closed geodesics in \mathcal{C} . Indeed, assume by contradiction that there is only one, which must have length c(1). Then c(1) = c(h), and if we choose $\epsilon > 0$ small enough, $\mathcal{U}(\ell, \epsilon)$ is contained in a contractible open subset $\mathcal{W} \subset \mathcal{U}$. In particular $w|_{\mathcal{W}} \neq 0$ in $H^1(\mathcal{W})$, and therefore $w|_{\mathcal{U}(\ell,\epsilon)} = (w|_{\mathcal{W}})|_{\mathcal{U}(\ell,\epsilon)} = 0$ as well, contradicting Lusternik-Schnirelmann's Theorem.

The lower bound of two simple closed geodesics in C is sharp: by Clairaut's relation, the following torus of revolution (in which the boundary curves α are glued together) has only two simple closed geodesics in C, that is, α and β .

