Homotopy, fundamental group

Exercise 1. Generalities.

Let X and Y be topological spaces, $f, g: X \rightarrow Y$ be continuous and $n \geqslant 1$ be an integer.

1. Suppose that X is path connected and that f and g are homotopic. Show that $f(X)$ and $g(X)$ are contained in the same path connected component of Y.
2. Suppose that X is contractible. Show that f and g are homotopic.
3. Suppose that $Y=\mathbb{R}^{n} \backslash\{0\}$ and that for any $x \in X,\|f(x)-g(x)\|<\|f(x)\|$. Show that f and g are homotopic.
4. Suppose that $Y=\mathbb{S}^{n}$ and that f is non-surjective. Show that f is homotopic to a constant map.
5. Suppose that $Y=\mathbb{S}^{n}$ and that for any $x \in X,\|f(x)-g(x)\|<2$. Show that f and g are homotopic. Deduce that any continuous map $f: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n}$ with no fixed point is homotopic to the map $x \mapsto-x$.

Exercise 2. Show that \mathbb{R} and \mathbb{R}^{2} are not homeomorphic.
Exercise 3. Let $\left(X_{i}, x_{i}\right)_{i \in I}$ be a family of pointed topological spaces. If $i_{0} \in I$, let $p_{i_{0}}: \prod_{i \in I} X_{i} \rightarrow X_{i_{0}}$ be the canonical projection. Show that the map

$$
\prod_{i \in I}\left(p_{i}\right)_{*}: \pi_{1}\left(\prod_{i \in I} X_{i},\left(x_{i}\right)_{i \in I}\right) \rightarrow \prod_{i \in I} \pi_{1}\left(X_{i}, x_{i}\right)
$$

is a group isomorphism.

Exercise 4. Homotopy equivalences.

1. The Möbius strip is the quotient space M of $[0,1]^{2}$ under the equivalence relation $(x, 0) \sim(1-x, 1)$. Draw M. Show that it is homotopy equivalent to \mathbb{S}^{1}.
2. Let X, X^{\prime} (resp. Y, Y^{\prime}) be homotopy equivalent topological spaces. Show that $X \times Y$ and $X^{\prime} \times Y^{\prime}$ are homotopy equivalent.
3. Let X and C be topological spaces. Assume thatd C is contractible. Show that $X \times C$ and X are homotopy equivalent.

Exercise 5. Homotopy type of a complement. Let $n \geqslant 1$ be an integer.

1. Let E be a linear subspace of dimension $k<n$ of \mathbb{R}^{n}. Show that $\mathbb{R}^{n} \backslash E$ and \mathbb{S}^{n-k-1} have the same homotopy type.
2. Let C be a bounded convex subset of \mathbb{R}^{n}. Show that $\mathbb{R}^{n} \backslash C$ has the same homotopy type as \S^{n-1}.
3. Let X be a topological space and A, B be subspaces of X. Assume that A and B have the same homotopy type. Do $X \backslash A$ and $X \backslash B$ still have the same homotopy type ?
4. Show that the once-punctured torus and the wedge sum of two circles have the same homotopy type.

Exercise 6. Fundamental group of \mathbb{S}^{1}. The aim of this exercise is to compute the fundamental group of \mathbb{S}^{1}. As a model of \mathbb{S}^{1}, we chose the unit circle inside the complex plane.

1. Let $\gamma: I \rightarrow \mathbb{S}^{1}$ be a loop with base point 1 . Show that there is an integer $n>0$ such that for all $0 \leqslant i<n$, we have either $\gamma\left(\left[\frac{i}{n}, \frac{i+1}{n}\right]\right) \subseteq \mathbb{S}^{1} \backslash\{i\}$ or $\gamma\left(\left[\frac{i}{n}, \frac{i+1}{n}\right]\right) \subseteq \mathbb{S}^{1} \backslash\{-i\}$.
2. Let $e: \mathbb{R} \rightarrow \mathbb{S}^{1}$ be the map $x \mapsto e^{2 i \pi x}$. Let $m \in \mathbb{Z}$. Show that there is a unique map $\widetilde{\gamma}:\left[0, \frac{1}{n}\right] \rightarrow \mathbb{R}$ such that $\widetilde{\gamma}(0)=m$ and such that the diagram

commutes. We call such a map a lifting of γ.
3. Show that there is a unique map $\widetilde{\gamma}: I \rightarrow \mathbb{R}$ such that $\widetilde{\gamma}(0)=m$ and such that the diagram

commutes.
4. Show that the integer $\widetilde{\gamma}(1)-\widetilde{\gamma}(0)$ does not depend on m. We call that integer the degree of γ and denote it by $\operatorname{deg}(\gamma)$.
5. Let $H: I^{2} \rightarrow \mathbb{S}^{1}$ be an homotopy between two loops χ and γ^{\prime}. Show that H lifts to a map $\widetilde{H}: I^{2} \rightarrow \mathbb{R}$. Show that \widetilde{H} is an homotopy between $\widetilde{\gamma}$ and $\widetilde{\gamma}^{\prime}$. Deduce that the degree defines a map

$$
\operatorname{deg}: \pi_{1}\left(\mathbb{S}^{1}, 1\right) \rightarrow \mathbb{Z}
$$

6. Show that the map deg is a group isomorphism.

Exercise 7. Sphere-filling loops Let $n \geqslant 1$ be an integer.

1. Let γ be a loop on \mathbb{S}^{n}. Assume that the image of γ is not \mathbb{S}^{n} itself. Show that γ is homotopic to the constant loop.
2. There are loops on the sphere \mathbb{S}^{n} whose image is \mathbb{S}^{n} itself (we do not ask to prove this). Show that there is a sphere-filling loop which is homotopic to the constant loop.
3. Assume $n \geqslant 2$. Let $\gamma: I \rightarrow \mathbb{S}^{n}$ be a path. Show that there is an integer $m>0$ such that for all $0 \leqslant i<m$, the path $\left.\gamma\right|_{\left[\frac{i}{m}, \frac{i+1}{m}\right]}$ is homotopic relative to the subset $\left\{\frac{i}{m}, \frac{i+1}{m}\right\}$ to a path which is nowhere dense in \mathbb{S}^{n}.
4. Deduce that the fundamental group of \mathbb{S}^{n} is trivial if $n \geqslant 2$.

Exercise 8. Fundamental group of a topological group

1. Eckmann-Hilton principle. Let X be a set. Assume that X is endowed with two compatible products i.e. with two maps $*: X \times X \rightarrow X$ and $: X \times X \rightarrow X$ such that:

- Each binary operation $*$ and \cdot has a unit (denoted by 1_{*} and 1.).
- For all $x, x^{\prime}, y, y^{\prime} \in X$, we have:

$$
0\left(x \cdot x^{\prime}\right) *\left(y \cdot y^{\prime}\right)=(x * y) \cdot\left(x^{\prime} * y^{\prime}\right)
$$

Show that those binary operations are equal and define a commutative monoid structure on X.
2. Show that the fundamental group of a topological group is commutative.

