ENS de Lyon TD10

Master 1 – Algebraic topology Spring 2024

Künneth Formula-Orientability

- 1. Let n, m, g and h be positive integers and let R be a commutative ring. Compute the cohomology rings (with multiplication given by the cup product), with coefficients in R, of the following topological spaces.
 - (i) $S^n \times S^m$.
 - (ii) The *n*-dimensional torus \mathbb{T}^n .
 - (iii) Σ_g , the compact orientable surface of genus g.
- **2.** Show that if M is a differentiable manifold, both notions of orientability defined in the lecture coincide.
- **3.** Show that the surface Σ'_g is not orientable. Show that if n is an even integer, the space \mathbb{RP}^n is not orientable.
- **4.** Let n and g be positive integers. Show that the following manifolds are orientable.
 - (i) Σ_g .
 - (ii) S^n .
 - (iii) \mathbb{CP}^n .
 - (iv) \mathbb{RP}^{2n+1} .
 - (v) Every Lie group.
 - (vi) Every complex manifold, i.e. admitting an atlas with holomorphic transition maps.
 - (vii) TM for any manifold. *Hint*. It is easier to prove it for T^*M .
- 5. If X is any space, we denote $H^*(X)_2 = H^*(X, \mathbb{Z}/2\mathbb{Z})$. Let n be a positive integer. We denote $\mathbb{P}^n = \mathbb{RP}^n$, the real projective space of dimension n. We know that $H^i(\mathbb{P}^n)_2 = \mathbb{Z}/2\mathbb{Z}$ for all $i = 0, \dots, n$, and 0 for all other values of i. Thus we have a group isomorphism to a truncated polynomial algebra:

$$H^*(\mathbb{RP}^n)_2 \simeq (\mathbb{Z}/2\mathbb{Z})[t]/(t^{n+1}).$$

We want to prove that this is in fact an isomorphism of rings (or of $\mathbb{Z}/2\mathbb{Z}$ -algebras). In other words, denoting by $\alpha_{n,i}$ the generator of $H^i(\mathbb{P}^n)_2$ for $0 \leq i \leq n$, we want to prove that $\alpha_{n,1}^n$ generates $H^n(\mathbb{P}^n)_2$. [Equivalently, $\alpha_{n,1}^n \neq 0$; but this would not extend to the case of \mathbb{CP}^n].

(i) We put on \mathbb{P}^2 a degenerate simplicial structure, more precisely a structure of Δ -complex in the sense of Hatcher, as follows: one glues, along corresponding oriented sides e_1, e_2, e , two triangles f^+ , f^- each of which has already two vertices v_2 identified:

Let $C_*(\mathbb{P}^2)$ be the associated simplicial chain complex. Show that the simplicial cochain $a = C_2(\mathbb{P}^2) \to \mathbb{Z}/2\mathbb{Z}$ defined by

$$a(e) = a(e_1) = 1, a(e_2) = 0$$

is a cocycle in $C^*(\mathbb{P}^2, \mathbb{Z}/2\mathbb{Z})$, and that the $\mathbb{Z}/2\mathbb{Z}$ -chain $f^+ - f^-$ is a cycle in $C_*(\mathbb{P}^2) \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z}$. Compute $(a \cup a)(f^+ + f^-)$ and deduce the result for n = 2.

- (ii) Show that the inclusion $\mathbb{P}^{n-1} \to \mathbb{P}^n$ induces an isomorphism on H^i if $i \leq n-1$ and that this isomorphism respects the cup product.
- (iii) Deduce that it suffices to show that

(*)
$$1 \le i, j \le n \text{ and } i+j=n \Rightarrow \alpha_{n,i} \cup \alpha_{n,j} \text{ generates } H^n(\mathbb{P}^n)_2.$$

(iv) Recall that the points of \mathbb{P}^n can be given by homogenous coordinates $[x_0 : \cdots : x_n]$. We define two copies of \mathbb{P}^i and \mathbb{P}^j in \mathbb{P}^n , which meet at a unique point p:

$$\Pi^{i} = \{ [x_{0}:\dots:x_{i}:0:\dots:0] \mid (x_{0},\dots,x_{i}) \in \mathbb{R}^{i+1} \setminus \{(0,0)\} \\ \Pi^{\prime j} = \{ [0:\dots:x_{i}:\dots:x_{n}] \mid (x_{i},\dots,x_{n}) \in \mathbb{R}^{j+1} \setminus \{(0,\dots,0)\} \\ p_{i} = [0:\dots:1_{i}:0:\dots:0].$$

(v) Show that the following diagram is well defined (in particular, precise the meaning of v_1, v_2 and j) and commutes.

Show that the bottom horizontal arrow is an isomorphism. Deduce that to prove (*) it suffices to show that all vertical arrows are isomorphisms.

- (vi) Show that v_1^* , v_2^* and v^* are isomorphisms.
- (vii) Show that $\mathbb{P}^n \setminus \Pi'^j$ and $\Pi^i \setminus \{p_i\}$ deformation retract onto Π^{i-1} . Considering the following diagram, deduce that u_1^* is an isomorphism:

$$\begin{array}{ccc} H^{i}(\mathbb{P}^{n},\mathbb{P}^{n}\setminus\Pi'^{j})_{2} & \stackrel{u_{1}^{*}}{\longrightarrow} & H^{i}(\mathbb{P}^{n})_{2} \\ & \downarrow & \downarrow \\ H^{i}(\Pi^{i},\Pi^{i}\setminus\{p_{i}\})_{2} & \longrightarrow & H^{i}(\Pi^{i})_{2}. \end{array}$$

(viii) Show that u_2^\ast is an isomorphism and conclude.

6. Sketch the proof that $H^*(\mathbb{CP}^n; \mathbb{Z}/2\mathbb{Z})$ is isomorphic as a ring to $\mathbb{Z}[t]/(t^{n+1})$.