Künneth Formula-Orientability

1. Let n, m, g and h be positive integers and let R be a commutative ring. Compute the cohomology rings (with multiplication given by the cup product), with coefficients in R, of the following topological spaces.
(i) $S^{n} \times S^{m}$.
(ii) The n-dimensional torus \mathbb{T}^{n}.
(iii) Σ_{g}, the compact orientable surface of genus g.
2. Show that if M is a differentiable manifold, both notions of orientability defined in the lecture coincide.
3. Show that the surface Σ_{g}^{\prime} is not orientable. Show that if n is an even integer, the space $\mathbb{R} \mathbb{P}^{n}$ is not orientable.
4. Let n and g be positive integers. Show that the following manifolds are orientable.
(i) Σ_{g}.
(ii) S^{n}.
(iii) $\mathbb{C P}^{n}$.
(iv) $\mathbb{R P}^{2 n+1}$.
(v) Every Lie group.
(vi) Every complex manifold, i.e. admitting an atlas with holomorphic transition maps.
(vii) $T M$ for any manifold. Hint. It is easier to prove it for $T^{*} M$.
5. If X is any space, we denote $H^{*}(X)_{2}=H^{*}(X, \mathbb{Z} / 2 \mathbb{Z})$. Let n be a positive integer. We denote $\mathbb{P}^{n}=\mathbb{R P}^{n}$, the real projective space of dimension n. We know that $H^{i}\left(\mathbb{P}^{n}\right)_{2}=\mathbb{Z} / 2 \mathbb{Z}$ for all $i=0, \cdots, n$, and 0 for all other values of i. Thus we have a group isomorphism to a truncated polynomial algebra:

$$
H^{*}\left(\mathbb{R} \mathbb{P}^{n}\right)_{2} \simeq(\mathbb{Z} / 2 \mathbb{Z})[t] /\left(t^{n+1}\right)
$$

We want to prove that this is in fact an isomorphism of rings (or of $\mathbb{Z} / 2 \mathbb{Z}$-algebras). In other words, denoting by $\alpha_{n, i}$ the generator of $H^{i}\left(\mathbb{P}^{n}\right)_{2}$ for $0 \leq i \leq n$, we want to prove that $\alpha_{n, 1}^{n}$ generates $H^{n}\left(\mathbb{P}^{n}\right)_{2}$. [Equivalently, $\alpha_{n, 1}^{n} \neq 0$; but this would not extend to the case of $\left.\mathbb{C P}^{n}\right]$.
(i) We put on \mathbb{P}^{2} a degenerate simplicial structure, more precisely a structure of Δ-complex in the sense of Hatcher, as follows: one glues, along corresponding oriented sides e_{1}, e_{2}, e, two triangles f^{+}, f^{-}each of which has already two vertices v_{2} identified:

Let $C_{*}\left(\mathbb{P}^{2}\right)$ be the associated simplicial chain complex. Show that the simplicial cochain $a=C_{2}\left(\mathbb{P}^{2}\right) \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ defined by

$$
a(e)=a\left(e_{1}\right)=1, a\left(e_{2}\right)=0
$$

is a cocycle in $C^{*}\left(\mathbb{P}^{2}, \mathbb{Z} / 2 \mathbb{Z}\right)$, and that the $\mathbb{Z} / 2 \mathbb{Z}$-chain $f^{+}-f^{-}$is a cycle in $C_{*}\left(\mathbb{P}^{2}\right) \otimes_{\mathbb{Z}} \mathbb{Z} / 2 \mathbb{Z}$. Compute $(a \cup a)\left(f^{+}+f^{-}\right)$and deduce the result for $n=2$.
(ii) Show that the inclusion $\mathbb{P}^{n-1} \rightarrow \mathbb{P}^{n}$ induces an isomorphism on H^{i} if $i \leq n-1$ and that this isomorphism respects the cup product.
(iii) Deduce that it suffices to show that

$$
\begin{equation*}
1 \leq i, j \leq n \text { and } i+j=n \Rightarrow \alpha_{n, i} \cup \alpha_{n, j} \text { generates } H^{n}\left(\mathbb{P}^{n}\right)_{2} . \tag{*}
\end{equation*}
$$

(iv) Recall that the points of \mathbb{P}^{n} can be given by homogenous coordinates $\left[x_{0}: \cdots: x_{n}\right]$. We define two copies of \mathbb{P}^{i} and \mathbb{P}^{j} in \mathbb{P}^{n}, which meet at a unique point p :

$$
\begin{aligned}
\Pi^{i} & =\left\{\left[x_{0}: \cdots: x_{i}: 0: \cdots: 0\right] \mid\left(x_{0}, \cdots, x_{i}\right) \in \mathbb{R}^{i+1} \backslash\{(0,0)\}\right. \\
\Pi^{j} & =\left\{\left[0: \cdots: x_{i}: \cdots: x_{n}\right] \mid\left(x_{i}, \cdots, x_{n}\right) \in \mathbb{R}^{j+1} \backslash\{(0, \cdots, 0)\}\right. \\
p_{i} & =\left[0: \cdots: 1_{i}: 0: \cdots: 0\right] .
\end{aligned}
$$

(v) Show that the following diagram is well defined (in particular, precise the meaning of v_{1}, v_{2} and j) and commutes.

$$
\begin{gathered}
H^{i}\left(\mathbb{P}^{n}\right)_{2} \times H^{j}\left(\mathbb{P}^{n}\right)_{2} \xrightarrow[c]{c} H^{n}\left(\mathbb{P}^{n}\right)_{2} \\
u_{1}^{*} \times u_{2}^{*} \uparrow \\
H^{i}\left(\mathbb{P}^{n}, \mathbb{P}^{n} \backslash \Pi^{\prime j}\right)_{2} \times H^{j}\left(\mathbb{P}^{n}, \mathbb{P}^{n} \backslash \Pi^{i}\right)_{2} \xrightarrow[c_{1}]{\smile} H^{n}\left(\mathbb{P}^{n}, \mathbb{P}^{n} \backslash\left\{p_{i}\right\}\right)_{2} \\
v_{1}^{*} \times v_{2}^{*} \downarrow
\end{gathered}
$$

Show that the bottom horizontal arrow is an isomorphism. Deduce that to prove ($*$) it suffices to show that all vertical arrows are isomorphisms.
(vi) Show that v_{1}^{*}, v_{2}^{*} and v^{*} are isomorphisms.
(vii) Show that $\mathbb{P}^{n} \backslash \Pi^{\prime j}$ and $\Pi^{i} \backslash\left\{p_{i}\right\}$ deformation retract onto Π^{i-1}. Considering the following diagram, deduce that u_{1}^{*} is an isomorphism:

(viii) Show that u_{2}^{*} is an isomorphism and conclude.
6. Sketch the proof that $H^{*}\left(\mathbb{C P}^{n} ; \mathbb{Z} / 2 \mathbb{Z}\right)$ is isomorphic as a ring to $\mathbb{Z}[t] /\left(t^{n+1}\right)$.

