Poincaré Duality

1. Show that $\mathbb{C P}^{2}$ does not admit a homeomorphism reversing the orientation.
2. Let M be a connected topological manifold of dimension $n>0$. We define the orientation covering $\pi: \widehat{M} \rightarrow M$ by

$$
\widehat{M}=\left\{(x, \mu) \mid x \in M, \mu \text { generates } H_{n}(M, M \backslash\{x\})\right\}, \pi(x, \mu)=x
$$

(i) Define a topology on \widehat{M} such that π is a local homeomorphism, and show that π is a covering of degree two. Show that if M is differentiable, \widehat{M} has a unique differentiable structure such that π is smooth.
(ii) Show that the manifold \widehat{M} is orientable.
(iii) Show that M is orientable if and only if \widehat{M} is not connected and that in this case, the manifold \widehat{M} is homeomorphic to a disjoint union of two copies of M.
(iv) Deduce that simply connected manifolds (or more generally, manifolds whose fundamental group has no subgroup of index 2) are orientable.
(v) If $\gamma \in C\left(S^{1}, M\right)$, define $w(\gamma) \in \mathbb{Z} / 2 \mathbb{Z}$ as 0 if γ lifts to \widehat{M} and 1 otherwise. Show that it defines an element

$$
w_{1}(M) \in H^{1}(M, \mathbb{Z} / 2 \mathbb{Z}) \approx \operatorname{Hom}\left(\pi_{1}(M), \mathbb{Z} / 2 \mathbb{Z}\right)
$$

called the first Stiefel-Whitney class of M. Show that M is orientable if and only if $w_{1}(M)=0$.
3. Let M be a compact connected n-manifold for some $n>0$.
(i) Considering the short exact sequence

$$
0 \longrightarrow C_{*}(M) \xrightarrow{\times 2} C_{*}(M) \longrightarrow C_{*}(M, \mathbb{Z} / 2 \mathbb{Z}) \longrightarrow 0
$$

define the Bockstein homomorphism

$$
\beta_{i}: H_{i}(M, \mathbb{Z} / 2 \mathbb{Z}) \rightarrow H_{i-1}(M), 1 \leq i \leq n
$$

Show that $\operatorname{im}\left(\beta_{i}\right) \subset \operatorname{Tors}_{2}\left(H_{i-1}(M)\right)$, where $\operatorname{Tors}_{2}(E)=\{e \in E \mid 2 e=0\}$ for a \mathbb{Z}-module E.
(ii) Show that M is non-orientable if and only if $\beta_{n} \neq 0$. One needs to use: $H_{n}(M)=0$ if M is non-orientable. This follows from the method of proof of the course, which shows that the map $H_{n}(M) \rightarrow H_{n}(M, M \backslash\{x\})$ is always injective.
(iii) Define $\bar{\beta}_{n}=\beta_{n} \bmod 2: H_{n}(M, \mathbb{Z} / 2 \mathbb{Z}) \rightarrow H_{n-1}(M, \mathbb{Z} / 2 \mathbb{Z})$. Using the fact that Poincaré duality holds with $\mathbb{Z} / 2 \mathbb{Z}$ coefficients, show that $\bar{\beta}_{n}\left([M]_{\mathbb{Z} / 2 \mathbb{Z}}\right)$ is Poincaré dual to $w_{1}(M)$.
(iv) ${ }^{*}$ We admit that there exists a smooth map $\psi: M \rightarrow \mathbb{R} \mathbb{P}^{n}$ which is transversal to $\mathbb{R} \mathbb{P}^{n-1}$ and such that $\psi^{*}(t)=w_{1}(M)$ where t is the generator of $H^{1}\left(\mathbb{R} \mathbb{P}^{2 n+1}, \mathbb{Z} / 2 \mathbb{Z}\right)$ (in fact this is true for all classes in $H^{1}(M, \mathbb{Z} / 2 \mathbb{Z})$; one constructs f skeleton by skeleton, using obstruction theory, then perturbs it to obtain the transversality (Sard)).
Show that $N=\psi^{-1}\left(\mathbb{R} \mathbb{P}^{2 n}\right)$ is a compact oriented hypersurface in M, maybe non-connected, whose homology class $[N]=\sum\left[N_{i}\right] \in H_{n-1}(M, \mathbb{Z})$ is equal to $\beta_{n}\left([M]_{\mathbb{Z} / 2 \mathbb{Z}}\right)$. Show that one of the components of N is one sided.
(v) Conversely, if M admits a compact oriented hypersurface which is one-sided, show that M is non-orientable.
4. Let M be a compact connected n-manifold.
(i) If M is orientable, show that $H_{n-1}(M)$ is torsion-free.
(ii) Assume that M is a non-orientable. Show that

$$
H_{n}(M ; \mathbb{Z} / m \mathbb{Z})= \begin{cases}\mathbb{Z} / 2 \mathbb{Z} & \text { if } m=2 \\ 0 & \text { otherwise }\end{cases}
$$

Deduce that the torsion subgroup of $H_{n-1}(M)$ is $\mathbb{Z} / 2 \mathbb{Z}$.
5. Let M be a compact 3-manifold. Write $H_{1}(M)=\mathbb{Z}^{r} \oplus F$ with F a finite Abelian group.
(i) Assume that M is simply connected. Compute $H_{1}(M)$ and $H_{2}(M)$. Using Hurewicz-Whitehead, show that M is homotopy equivalent to S^{3} (by Perelman, M is homeomorphic (or diffeomorphic) to S^{3}).
(ii) Assume that M is orientable. Compute $H_{2}(M)$ in terms of r, F.

Now we assume that M is non-orientable.
(iii) Compute $H_{1}(M, \mathbb{Z} / 2 \mathbb{Z})$ and $H_{2}(M, \mathbb{Z} / 2 \mathbb{Z})$ in terms of r, F.
(iv) Deduce that $H_{2}(M)=\mathbb{Z}^{r-1} \oplus \mathbb{Z} / 2 \mathbb{Z}$ (in particular $r>0$).
(v) Deduce that the fundamental group of M is infinite.
(vi) ${ }^{*}$ Find an example where $\pi_{1}(M)=\mathbb{Z}$.
6. Let X be a compact oriented n-manifold, with fundamental class $[X] \in H_{n}(X)$, and let k be an integer between 1 and $n-1$.
(i) Show that the cup product $H^{k}(X) \times H^{n-k}(X) \rightarrow H^{n}(X)$ induces a bilinear form

$$
(a, b) \in H_{k}(X) \otimes H_{n-k}(X) \mapsto a . b \in \mathbb{Z},
$$

called the intersection product.
(ii) Let M be a compact oriented submanifold of X of dimension k. We still denote by $[M]$ the image of the fundamental class of M in $H_{k}(X)$. If N is another compact submanifold of X, of dimension $n-k$. We define the intersection number

$$
M . N:=[M] .[N] .
$$

Compute this number
i. if $X=M \times N$ with M identified to $M \times\{y\}$ and N identified to $\{x\} \times N$;
ii. if $X=T^{n}$ and M, N are subtori. A subtorus $M \subset T^{n}$ is $A .\left(T^{k} \times\{y\}\right)$ with $A \in \mathrm{GL}(n, \mathbb{Z})$ and $y \in T^{n-k}$.

