Cellular Homology

Exercise 1. On the topology of CW complexes

1. Show that a subset of a CW complex is open (resp. closed) if and only if its intersection with the interior of any cell C is open (resp. closed) in the interior of C.
2. Show that a CW complex is compact if and only if it has finitely many cells.
3. Show that a CW complex is path connected if and only if its 1 -skeleton is path connected.
4. Endow the product of two CW complexes with a CW complex structure.

Exercise 2. Computations of homology groups of classical spaces

Let g be a positive integer. Compute the homology groups of the follwing topological spaces:
(a) The 3-dimensional torus.
(b) The non-orientable surface Σ_{g} of genus g
(c) The orientable surface Σ_{g}^{\prime} of genus g.
(d) The real projective space.

Exercise 3. Homology of singular spaces

Compute the homology groups of the following topological spaces.

1. The space obtained from the sphere S^{2} by collapsing n points.
2. The space obtained from the sphere S^{2} by identifying any point of the equator with its antipode.
3. The space obtained from the sphere S^{3} by identifying any point of the equator with its antipode.

Exercise 4. Moore Spaces

Let M be an abelian group and let $n \geqslant 1$ be an integer. A Moore space with respect to (M, n) is a topological space X such that

$$
\widetilde{H}_{i}(X) \cong \begin{cases}M & \text { if } i=n \\ 0 & \text { otherwise }\end{cases}
$$

1. Construct a Moore space with respect to $(\mathbb{Z} / m \mathbb{Z}, n)$ for any integer m and any positive integer n.
2. Construct a Moore space with respect to (M, n) for any finitely generated abelian group M and any positive integer n.
3. Let $\left(M_{n}\right)_{n \geqslant 1}$ be a sequence of abelian groups. Construct a path-connected topological space X such that for all $n \geqslant 1$, we have $H_{n}(X)=M_{n}$.

Exercise 5. Product of spheres

Let m and n be positive integers. Compute the homology groups of the product of spheres $S^{n} \times S^{m}$ using cellular homology.

Exercise 6. Homology of Poincaré's hypercubic variety

Let V be the topological space obtained from the cube $C=[0,1]^{3}$ by gluing opposite faces after turning them of an angle of $\frac{\pi}{2}$. More precisely, we set

$$
V=C / \sim
$$

with $(0, y, z) \sim(1,-z, y),(x, 0, z) \sim(z, 1,-x)$ and $(x, y, 0) \sim(-y, x, 1)$.
Compute the homology groups of V.

