Cellular Homology

Exercise 1. On the topology of CW complexes

- 1. Show that a subset of a CW complex is open (resp. closed) if and only if its intersection with the interior of any cell C is open (resp. closed) in the interior of C.
- 2. Show that a CW complex is compact if and only if it has finitely many cells.
- 3. Show that a CW complex is path connected if and only if its 1-skeleton is path connected.
- 4. Endow the product of two CW complexes with a CW complex structure.

Exercise 2. Computations of homology groups of classical spaces

Let g be a positive integer. Compute the homology groups of the following topological spaces:

- (a) The 3-dimensional torus.
- (b) The non-orientable surface Σ_g of genus g
- (c) The orientable surface Σ'_q of genus g.
- (d) The real projective space.

Exercise 3. Homology of singular spaces

Compute the homology groups of the following topological spaces.

- 1. The space obtained from the sphere S^2 by collapsing n points.
- 2. The space obtained from the sphere S^2 by identifying any point of the equator with its antipode.
- 3. The space obtained from the sphere S^3 by identifying any point of the equator with its antipode.

Exercise 4. Moore Spaces

Let M be an abelian group and let $n \ge 1$ be an integer. A Moore space with respect to (M, n) is a topological space X such that

$$\widetilde{H}_i(X) \cong \begin{cases} M & \text{if } i = n \\ 0 & \text{otherwise} \end{cases}$$

- 1. Construct a Moore space with respect to $(\mathbb{Z}/m\mathbb{Z}, n)$ for any integer m and any positive integer n.
- 2. Construct a Moore space with respect to (M, n) for any finitely generated abelian group M and any positive integer n.
- 3. Let $(M_n)_{n \ge 1}$ be a sequence of abelian groups. Construct a path-connected topological space X such that for all $n \ge 1$, we have $H_n(X) = M_n$.

Exercise 5. Product of spheres

Let m and n be positive integers. Compute the homology groups of the product of spheres $S^n \times S^m$ using cellular homology.

Exercise 6. Homology of Poincaré's hypercubic variety

Let V be the topological space obtained from the cube $C = [0,1]^3$ by gluing opposite faces after turning them of an angle of $\frac{\pi}{2}$. More precisely, we set

$$V = C / \sim$$

with $(0, y, z) \sim (1, -z, y)$, $(x, 0, z) \sim (z, 1, -x)$ and $(x, y, 0) \sim (-y, x, 1)$.

Compute the homology groups of V.