ENS de Lyon

Recall (?) a theorem of Hurewicz+Whitehead: if X and Y are simply connected CW-complexes and $f \in C(X, Y)$ inducing an isomorphism $f_* : H_*(X, \mathbb{Z}) \to H_*(Y, \mathbb{Z})$, then f is a homotopy equivalence.

- **1.** Complements on Moore spaces. Let n > 1, G be an Abelian group. A simply connected Moore space M(G, n) is a simply connected CW-complex X such that $\widetilde{H}_i(X, \mathbb{Z}) = 0$ for $i \neq n$ and $\widetilde{H}_n(X, \mathbb{Z}) \approx G$.
 - (i) Show that G admits a free presentation $\mathbb{Z}^{(J)} \xrightarrow{\alpha} \mathbb{Z}^{(I)} \xrightarrow{\pi} G$ with α injective.
 - (ii) Define M to be a CW-complex of dimension $\leq n+1$ such that $M^{(n)} = \bigvee_{i \in I} S_i^n$ and there are Jn+1-cells σ_j , attached by maps $a_j : S^n \to M$ such that the map $H_n(\bigvee_{j \in J} S_j^n) \to M^{(n)}$ is α . Show that M is a simply connected Moore space M(G, n).
 - (iii) If X is a simply connected Moore space M(G, n), construct a map $M \to X$ which is a homotopy equivalence.
- 2. Complement on Poincaré's hypercubic variety. Recall that this is

$$V = [0,1]^3/_{(0,y,z)\sim(1,-z,y),(x,0,z)\sim(z,1,-x),(x,y,0)\sim(-y,x,1)}.$$

- (i) Compute the integer homology of V (if it has not already been done).
- (ii) Compute $\pi_1(V)$ and compare it to $H_1(V, \mathbb{Z})$.
- (iii) * Show that V is a topological manifold, which admits a structure of differentiable manifold.
- **3.** Let $X = S^1 \vee S^n$ for some n > 1.
 - (i) What is the universal covering \tilde{X} ?
 - (ii) Lifting a CW structure on X, show that $H_n(\widetilde{X}, \mathbb{Z}) \approx \mathbb{Z}^{(\mathbb{Z})}$.

Remark. Since $H_n(\widetilde{X}, \mathbb{Z}) = \pi_n(X)$, this shows that the higher homotopy groups of a finite complex need not be finitely generated.

- (iii) * Show that $H_n(\tilde{X}, \mathbb{Z})$ has a natural structure of module over $R = \mathbb{Z}[t, t^{-1}]$ (Laurent polynomials), and that it is isomorphic to R as an R-module.
- 4. Let $C_n \xrightarrow{\partial_n} C_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_1} C_0$ be a free and finite complex of \mathbb{Z} -modules (or \mathbb{Z} -complex), for instance the chain complex of a finite CW-complex. Denote

$$Z_i = \ker \partial_i , \ B_i = \partial_{i+1}C_i , \ H_i = H_i(C) = Z_i/B_i.$$

$$h_i = \operatorname{rank}_{\mathbb{Z}}(H_i(C)) = \dim_{\mathbb{R}}(H_i \otimes \mathbb{R}).$$

(i) Considering the short exact sequences $B_i \to Z_i \to H_i$ and $Z_i \to C_i \to B_{i-1}$, show the Morse *inequalities* (plus Euler characteristic identity)

$$(\forall i = 0, 1, \cdots, n) \sum_{j=0}^{i} (-1)^{j} c_{i-j} \ge \sum_{j=0}^{i} (-1)^{j} h_{i-j}$$

or $c_{i} - c_{i-1} + \dots + (-1)^{i} c_{0} \ge h_{i} - h_{i-1} + \dots + (-1)^{i} h_{0}.$

What happens when i = n?

(ii) Recall that if A is a finitely generated \mathbb{Z} -module, it is isomorphic to $\mathbb{Z}^r \oplus \bigoplus_{i=1}^{k} \mathbb{Z}/e_i\mathbb{Z}$, with $e_i|e_{i+1}$. Denote by r(A) the minimal number of generators of A. Show that

$$k = r(\operatorname{Tors}(A)) \text{ where } \operatorname{Tors}(A) = \{a \in A \mid (\exists m \in \mathbb{N}^*) \ ma = 0\}$$
$$r + k = r(A).$$

(iii) If $A \to B \to C$ is a short exact sequence of finitely generated Z-modules, show that r(B) = r(A) + r(C). Deduce that, if we set $t_i = r(\text{Tors}(H_i(C)))$, we have

$$(\forall i=0,\cdots,n) \ c_i \ge h_i + t_i + t_{i-1}.$$

(iv) We want to find a free and finite \mathbb{Z} -complex \widetilde{C}_* such that $(\forall i)$ $\widetilde{c}_i = h_i + t_i + t_{i+1}$ and

$$C_* \approx \widetilde{C}_* \oplus \bigoplus_{j=1}^r T_*^j,$$

where T_*^j is a "trivial" complex, meaning that it is localized in degrees i, i-1 for some i and that the map $\partial_{i(i)}^j : T_i^j \to T_{i-1}^j$ being an isomorphism.

For this, assuming that $C_n \neq 0$, show that there is a \mathbb{Z} -module decomposition $C_{n-1} = C'_{n-1} \oplus C''_{n-1}$ where $C'_{n-1} = \mathbb{Q}\partial_n C_n \cap C_{n-1}$. Consider the decomposition of \mathbb{Z} -complexes,

$$C_* = (C_n \to C'_{n-1} \to 0 \dots \to 0) \oplus (C''_{n-1} \to C_{n-2} \to \dots \to C_0 \to 0)$$

and make an induction on $N(C_*) = n + c_n + \dots + c_0$.

5. Let X be a simply connected CW-complex with $H_n(X, \mathbb{Z})$ is finitely generated for all n. We want to prove that X is homotopy equivalent to a complex Y with finite skeleta.

For this, we first construct an increasing sequence of finite CW-complexes and maps

$$K_0 \subset K_1 \subset K_2 \subset \cdots$$
, dim $K_n \le n$, $f_n \in C(K_n, X)$

such that $(\forall n \in \mathbb{N})$ f_n is *n*-connected, i.e. it induces an isomorphism on H_i for i < n and a surjection for i = n.

- (i) Construct K_0, K_1 and f_0, f_1 .
- (ii) Assume that (K_n, f_n) has been constructed for some $n \ge 2$. Let $a_i : (D^{n+1}, S^n) \to (X^{(n+1}, X^{(n)}), i \in I_n$, be the (n+1)-cells of X_n , and $[a_i]$ be their images in $H_{n+1}(X_n^{(n+1)}, X_n^{(n)})$. Show that one can find a finite number of (n+1)-cells a_1, \dots, a_k such that $\partial[a_1], \dots, \partial[a_k]$ generate
 - $H_n(X_n^{(n)}, X_n^{(n-1)}).$
- (iii) Show that one can take K_{n+1} obtained from K_n by attaching the (n + 1)-cells a_1, \dots, a_k , then by induction the (n + k + 1) cells of X_n whose boundary lands in $X_{n+1}^{(n+k)}$ for $k = 1, 2, \dots$.
- (iv) Find the desired complex Y.

Remark. The methods of exercises (i) and (ii) can be combine to prove that if X is a simply connected CW-complex with $H_n(X,\mathbb{Z})$ finitely generated for all n, it is homotopy equivalent to a CW-complex Y with $h_n + t_n + t_{n-1}$ cells of each dimension n. In particular, if $H_*(X,\mathbb{Z})$ is finitely generated, then Y is finite.