ENS de Lyon

Master 1 – Algebraic Topology, TD8

Spring 2024

- 1. Let M be an abelian group. Let n and g be non-negative integers. Compute the (co)homology groups of the following spaces with coefficients in M.
 - (a) \mathbb{CP}^n .
 - (b) \mathbb{RP}^n .
 - (c) The orientable surface Σ_q of genus g.
 - (d) The non-orientable surface Σ'_q of genus g.

You can use the following facts without proving them.

- (a) If X is a CW complex, the complex $C^{CW}_*(X) \otimes_{\mathbb{Z}} M$ computes the homology groups of X with coefficients in M.
- (b) If X is a CW complex, the dual complex of the complex $C^{\text{CW}}_*(X)$ computes the cohomology groups of X with coefficients in M.
- **2.** Let X be a finite connected graph with v vertices and e edges.
 - (a) Show that $H_1(X;\mathbb{Z})$ is a free Abelian group of rank g = e v + 1. Its automorphism group is therefore $GL_g(\mathbb{Z})$.
 - (b) Let G be a finite group of homeomorphisms of X. Assuming that all vertices of X have degree > 1, show that the map

$$\Psi: \begin{cases} G \to \operatorname{GL}_g(\mathbb{Z}) \\ f \mapsto H_1(f) \end{cases}$$

is one to one. You may start with the case where X is a wedge sum of circles.

- (c) Show that this result still holds when \mathbb{Z} is replaced by $\mathbb{Z}/m\mathbb{Z}$ with m > 2. What happens if m = 2?
- **3.** Let X be a topological space. Deduce from the short exact sequence of complexes

$$0 \to C_*(X) \stackrel{\times n}{\to} C_*(X) \to C_*(X; \mathbb{Z}/n\mathbb{Z}) \to 0$$

a short exact sequence of abelian groups

$$0 \to H_i(X)/n \to H_i(X, \mathbb{Z}/n\mathbb{Z}) \to n - \operatorname{torsion}(H_{i-1}(X)) \to 0.$$

- **4.** Let X be a finite connected CW-complex and $\pi: \hat{X} \to X$ a Galois covering with group \mathbb{Z} .
 - (a) Show that $C^{CW}_*(\widehat{X})$ and $H_*(\widehat{X})$ (resp. $C^{CW}_*(\widehat{X}) \otimes_{\mathbb{Z}} \mathbb{Q}$ and $H_*(\widehat{X}, \mathbb{Q})$) have a natural structure of module over $\mathbb{Z}[t, t^{-1}]$ (resp. $\mathbb{Q}[t, t^{-1}]$).
 - (b) Show that $\mathbb{Q}[t, t^{-1}]$ is a principal ideal domain (PID).
 - (c) Show that $\dim_{\mathbb{Q}}(H_*(\widehat{X},\mathbb{Q}))$ is finite if and only if $H_*(\widehat{X},\mathbb{Q})$ is torsion over $\mathbb{Q}[t,t^{-1}]$.
 - (d) Study the example $X = (S^1 \times [0,1])/_{(z,1)\sim(z^2,0)} = (S^1 \times \mathbb{R})_{(z,t+1)\sim(z^2,t)}, \ \hat{X} = S^1 \times \mathbb{R}$. Show that (iii) does not hold if we replace \mathbb{Z} by \mathbb{Q} and $\dim_{\mathbb{Q}}$ by $\operatorname{rank}_{\mathbb{Z}}$.