ENS de Lyon TD8

Corrigé de l'exercice montrant que les extensions de M par Nsont classifiées par Ext(M, N)

1. Remark. This exercise remains valid if \mathbb{Z} is replaced by any principal ideal domain.

(i) We want to find a commutative diagram

i.e. we want to solve

$$\beta \circ \varphi_0 = p$$
$$\alpha \circ \varphi_1 = \varphi_0 \circ i.$$

We can find φ_0 since β is onto and $\mathbb{Z}^{(I)}$ is free. Given φ_0 , since $\beta \circ \varphi_0 \circ i = p \circ i = 0$, the image of $\varphi_0 \circ i$ is contained in ker $\beta = \text{im } \alpha$. Since α is injective, there is a unique φ_1 such that $\varphi_0 \circ i = \alpha \circ \varphi_1$.

Moreover, φ_0 is defined modulo a morphism $v : \mathbb{Z}^{(I)} \to \ker \beta = \operatorname{im} \alpha$. Since α is injective, $v = \alpha \circ u$ with $u \in \operatorname{Hom}(\mathbb{Z}^{(I)}, N)$. Thus φ_1 is defined modulo $u \circ i$, thus

$$e(N \to E \to M) := [\varphi_1] \in \operatorname{Hom}(\mathbb{Z}^{(J)}, N) / (\operatorname{Hom}(\mathbb{Z}^{(J)}, N) \circ i) = \operatorname{coker}(i_N^*) = \operatorname{Ext}(M, N)$$

is well-defined.

(ii) Clearly, an isomorphism between two extensions $N\to E\to M$ and $N\to E'\to M$ is a commutative diagram

$$N \xrightarrow{\alpha} E \xrightarrow{\beta} M$$

$$\varphi_1 \bigg| \approx \varphi_0 \bigg| \approx \bigg| \operatorname{Id}_M$$

$$N \xrightarrow{\alpha'} E' \xrightarrow{\beta'} M$$

(iii) The sum $(N \to E \to M) \oplus (N \to E' \to M)$ is $N \to \widetilde{E} \to M$ with $\widetilde{E} = \frac{\{(x, x') \in E \oplus E' \mid \beta(x) = \beta'(x') \\ (i \times (-i'))(N) \\ \widetilde{\alpha}(n) = [(\alpha(n), 0)] = [(0, \alpha'(n')] \\ \widetilde{\beta}([(x, x')]) = \beta(x) = \beta'(x').$ If $a \in \mathbb{Z}$, one defines $a(N \to E \to M) = (N \to \widetilde{E} \to M)$ with $\widetilde{E} = \frac{N \oplus E}{(a \times (-\alpha))(N)} \\ \widetilde{i}(n) = [an, 0] = [(0, \alpha(n))] \\ \widetilde{\beta}([(n, x)]) = \beta(x).$

One checks that we do obtain short exact sequences, that the sum is commutative and associative up to isomorphism, and that $a(b(N \to E \to M))$ is isomorphic to $(ab)(N \to E \to M)$.

Finally, the trivial extension $N \to N \oplus M \to M$ is neutral modulo isomorphism, and the inverse (or opposite) of $(N \to E \to M)$ up to isomorphism is $(-1)(N \to E \to M)$, or more simply $N \to E \to M$ with α replaced by $-\alpha$ and β unchanged. Thus we obtain a structure of \mathbb{Z} -module on $\mathcal{E}(M, N)$.

Remark. For the ring \mathbb{Z} , it is not necessary to define the multiplication by a scalar, since it follows from the addition and the inverse.

(iv) In the notations of (i), we want to prove that 1) $[\varphi_1]$ can be any element of Ext(M, N), and 2) $([\varphi_1] = 0 \Rightarrow E$ is trivial)

1) Let $\varphi \in \operatorname{Hom}(\mathbb{Z}^{(J)}, N)$. We define

$$E = \frac{N \oplus \mathbb{Z}^{(I)}}{(\varphi \times (-i))(N)}$$
$$\alpha(n) = [(\varphi_1(n), 0)] = [(0, i(n))]$$
$$\beta([n, x]) = p(x)$$
$$\varphi_1 = \varphi : \mathbb{Z}^{(J)} \to N$$
$$\varphi_0(x) = [x].$$

Then we have a commutative diagram in which the second line is a short exact sequence:

2) If $[\varphi_1] = 0$, there exists $u : \mathbb{Z}^{(I)} \to N$ such that $\varphi_1 = u \circ i$. If $m \in E$, m = p(x) for some $x \in \mathbb{Z}^{(I)}$, and $(\varphi_0 - \alpha \circ u)(x)$ depends only on m: if p(x) = 0, then x = i(y) thus

$$(\varphi_0 - \alpha \circ u)(x) = (\varphi_0 - \alpha \circ u) \circ i(y) = \alpha \circ (\varphi_1 - u \circ i)(y) = 0.$$

Thus $m \mapsto (\varphi_0 - \alpha \circ u)(x)$ gives a section of $N \to E \to M$, and thus extension is trivial.