Corrigé de l'exercice montrant que les extensions de M par N sont classifiées par $\operatorname{Ext}(M, N)$

1. Remark. This exercise remains valid if \mathbb{Z} is replaced by any principal ideal domain.
(i) We want to find a commutative diagram

i.e. we want to solve

$$
\begin{aligned}
& \beta \circ \varphi_{0}=p \\
& \alpha \circ \varphi_{1}=\varphi_{0} \circ i .
\end{aligned}
$$

We can find φ_{0} since β is onto and $\mathbb{Z}^{(I)}$ is free. Given φ_{0}, since $\beta \circ \varphi_{0} \circ i=p \circ i=0$, the image of $\varphi_{0} \circ i$ is contained in $\operatorname{ker} \beta=\operatorname{im} \alpha$. Since α is injective, there is a unique φ_{1} such that $\varphi_{0} \circ i=\alpha \circ \varphi_{1}$.
Moreover, φ_{0} is defined modulo a morphism $v: \mathbb{Z}^{(I)} \rightarrow \operatorname{ker} \beta=\operatorname{im} \alpha$. Since α is injective, $v=\alpha \circ u$ with $u \in \operatorname{Hom}\left(\mathbb{Z}^{(I)}, N\right)$. Thus φ_{1} is defined modulo $u \circ i$, thus

$$
e(N \rightarrow E \rightarrow M):=\left[\varphi_{1}\right] \in \operatorname{Hom}\left(\mathbb{Z}^{(J)}, N\right) /\left(\operatorname{Hom}\left(\mathbb{Z}^{(J)}, N\right) \circ i\right)=\operatorname{coker}\left(i_{N}^{*}\right)=\operatorname{Ext}(M, N)
$$

is well-defined.
(ii) Clearly, an isomorphism between two extensions $N \rightarrow E \rightarrow M$ and $N \rightarrow E^{\prime} \rightarrow M$ is a commutative diagram

(iii) The sum $(N \rightarrow E \rightarrow M) \oplus\left(N \rightarrow E^{\prime} \rightarrow M\right)$ is $N \rightarrow \widetilde{E} \rightarrow M$ with

$$
\begin{aligned}
\widetilde{E} & =\frac{\left\{\left(x, x^{\prime}\right) \in E \oplus E^{\prime} \mid \beta(x)=\beta^{\prime}\left(x^{\prime}\right)\right.}{\left(i \times\left(-i^{\prime}\right)\right)(N)} \\
\widetilde{\alpha}(n) & =[(\alpha(n), 0)]=\left[\left(0, \alpha^{\prime}\left(n^{\prime}\right)\right]\right. \\
\widetilde{\beta}\left(\left[\left(x, x^{\prime}\right)\right]\right) & =\beta(x)=\beta^{\prime}\left(x^{\prime}\right) .
\end{aligned}
$$

If $a \in \mathbb{Z}$, one defines $a(N \rightarrow E \rightarrow M)=(N \rightarrow \widetilde{E} \rightarrow M)$ with

$$
\begin{aligned}
\widetilde{E} & =\frac{N \oplus E}{(a \times(-\alpha))(N)} \\
\widetilde{i}(n) & =[a n, 0)]=[(0, \alpha(n))] \\
\widetilde{\beta}([(n, x)]) & =\beta(x) .
\end{aligned}
$$

One checks that we do obtain short exact sequences, that the sum is commutative and associative up to isomorphism, and that $a(b(N \rightarrow E \rightarrow M)$) is isomorphic to $(a b)(N \rightarrow E \rightarrow M)$.
Finally, the trivial extension $N \rightarrow N \oplus M \rightarrow M$ is neutral modulo isomorphism, and the inverse (or opposite) of ($N \rightarrow E \rightarrow M$) up to isomorphism is (-1) ($N \rightarrow E \rightarrow M$), or more simply $N \rightarrow E \rightarrow M$ with α replaced by $-\alpha$ and β unchanged. Thus we obtain a structure of \mathbb{Z}-module on $\mathcal{E}(M, N)$.
Remark. For the ring \mathbb{Z}, it is not necessary to define the multiplication by a scalar, since it follows from the addition and the inverse.
(iv) In the notations of (i), we want to prove that 1) $\left[\varphi_{1}\right]$ can be any element of $\operatorname{Ext}(M, N)$, and 2) $\left(\left[\varphi_{1}\right]=0 \Rightarrow E\right.$ is trivial $)$

1) Let $\varphi \in \operatorname{Hom}\left(\mathbb{Z}^{(J)}, N\right)$. We define

$$
\begin{aligned}
E & =\frac{N \oplus \mathbb{Z}^{(I)}}{(\varphi \times(-i))(N)} \\
\alpha(n) & =\left[\left(\varphi_{1}(n), 0\right)\right]=[(0, i(n))] \\
\beta([n, x]) & =p(x) \\
\varphi_{1} & =\varphi: \mathbb{Z}^{(J)} \rightarrow N \\
\varphi_{0}(x) & =[x] .
\end{aligned}
$$

Then we have a commutative diagram in which the second line is a short exact sequence:

2) If $\left[\varphi_{1}\right]=0$, there exists $u: \mathbb{Z}^{(I)} \rightarrow N$ such that $\varphi_{1}=u \circ i$. If $m \in E, m=p(x)$ for some $x \in \mathbb{Z}^{(I)}$, and $\left(\varphi_{0}-\alpha \circ u\right)(x)$ depends only on m : if $p(x)=0$, then $x=i(y)$ thus

$$
\left(\varphi_{0}-\alpha \circ u\right)(x)=\left(\varphi_{0}-\alpha \circ u\right) \circ i(y)=\alpha \circ\left(\varphi_{1}-u \circ i\right)(y)=0 .
$$

Thus $m \mapsto\left(\varphi_{0}-\alpha \circ u\right)(x)$ gives a section of $N \rightarrow E \rightarrow M$, and thus extension is trivial.

