Differential Geometry · Alaa Boukholkhal, Marco Mazzucchelli

SOLUTIONS OF THE EXAM – April 24, 2025

Exercise 1. Are the following statements true or false? (No justification required).

- (a) In the Euclidean space (\mathbb{R}^4, g_0) , there exists an embedding $\iota : \mathbb{T}^2 \hookrightarrow \mathbb{R}^4$ such that $(\mathbb{T}^2, \iota^* g_0)$ is flat (i.e. the Riemann tensor of $\iota^* g_0$ vanish identically).
- (b) Every Riemannian submanifold of a flat Riemannian manifold is flat.
- (c) If (M, g) is a complete Riemannian manifold, and $x, y \in M$ are two sufficiently close points, there exists a unique geodesic $\gamma : [0, 1] \to M$ such that $\gamma(0) = x$ and $\gamma(1) = y$.
- (d) Let (M, g) be a Riemannian manifold such that, for some $x \in M$ and for some local coordinates around x, the Christoffel symbols of the Levi-Civita connection vanish at x. Then the Riemann tensor of (M, g) vanishes at x.
- (e) If $\gamma : [0,1] \hookrightarrow \mathbb{R}^n$ is a smooth embedded curve, then there exists a Riemannian metric g on \mathbb{R}^n for which γ is a geodesic.

Solution.

(a) True. The product of two flat Riemannian manifolds is flat, and every one-dimensional Riemannian manifold is flat. Hence, (T², ι*g₀) is flat for any embedding of the form ι = (ι₁, ι₂) : T² = S¹ × S¹ → ℝ⁴,

 $\iota = (\iota_1, \iota_2) : \mathbf{I} = S \times S \subseteq$

where $\iota_i: S^1 \hookrightarrow \mathbb{R}^2$ are embeddings.

- (b) False. For every $n \ge 2$, the unit sphere $S^n \subset \mathbb{R}^{n+1}$ has positive Gaussian curvature, while \mathbb{R}^{n+1} is flat. Moreover, by Nash's isometric embedding theorem, any Riemannian manifold can be isometrically embedded as a submanifold of some Euclidean space.
- (c) False. On the round sphere, geodesics are great circles. Any two points (not antipodal) are joined by two distinct geodesic segments.
- (d) False. In any Riemannian manifold (M, g) one can choose geodesic normal coordinates at x, in which the Christoffel symbols vanish at x, regardless of the value of the Riemann tensor there.
- (e) True. Since γ is embedded, it admits a compact tubular neighbourhood $U \subset \mathbb{R}^n$ and a diffeomorphism onto its image $\phi: U \to \phi(U) \subset \mathbb{R}^n$ such that $\phi \circ \gamma(t) = (t, 0)$. Then $\phi \circ \gamma$ is a geodesic for the Euclidean metric g, so γ is a geodesic for the pullback metric ϕ^*g on U. Finally, we can extend ϕ^*g to the whole \mathbb{R}^n .

Exercise 2. Let (M, g) be a Riemannian manifold with Riemann tensor R, and let $\lambda > 0$ be a constant. What is the relation between the sectional curvature of (M, g) and the one of $(M, \lambda g)$?

Solution. The manifolds (M, g) and $(M, \lambda g)$ share the same Levi–Civita connection, and hence the same (1,3)-tensor R. If $v, w \in T_x M$ are orthonormal with respect to g, then

$$K_{\lambda g}(\operatorname{span}\{v,w\}) = \frac{\lambda g(R(v,w)w,v)}{\|v\|_{\lambda g}^2 \|w\|_{\lambda g}^2 - \lambda^2 g(v,w)^2} = \frac{1}{\lambda} g(R(v,w)w,v) = \frac{1}{\lambda} K_g(\operatorname{span}\{v,w\}).$$

Exercise 3. Let (M, g) be a Riemannian manifold, and let $\gamma : [0, L] \to M$ be a geodesic such that $\|\dot{\gamma}\|_g \equiv 1$ and $d_g(\gamma(0), \gamma(L)) = L$. Is it possible that, for some $\ell \in (0, L)$, there exists a geodesic $\zeta : [0, \ell] \to M$ such that $\|\dot{\zeta}\|_g \equiv 1, \zeta(0) = \gamma(0), \zeta(\ell) = \gamma(\ell), \text{ and } \zeta \neq \gamma|_{[0, \ell]}$?

Solution. No. If such a ζ existed, then at $t = \ell$ we would have $\dot{\zeta}(\ell) \neq \dot{\gamma}(\ell)$, since two distinct geodesics cannot have the same tangent vector. Then the piecewise smooth path

$$\sigma(t) = \begin{cases} \zeta(t), & t \in [0, \ell], \\ \gamma(t), & t \in [\ell, L], \end{cases}$$

would join $\sigma(0)$ to $\sigma(L)$ with length $L = d_g(\gamma(0), \gamma(L))$. This is a contradiction, since σ is not a geodesic, whereas any length-minimizing segment must be a geodesic.

Exercise 4. Let (M, g) be a closed Riemannian manifold, where as usual closed means "compact without boundary". Fix a point $x \in M$, and define a function $f : M \setminus \{x\} \to (0, \infty)$ by $f(y) = d_g(x, y)$, where $d_g : M \times M \to [0, \infty)$ is the Riemannian distance. Can f be a C^1 function?

Solution. We show that f cannot be C^1 . Since M is compact, f attains a maximum at some point $y \in M \setminus \{x\}$, with L := f(y). Assume by contradiction that f is C^1 . In particular, y must be a critical point of f, meaning that df(y) = 0. However, let $\gamma : [0, L] \to M$ be a geodesic parametrized with unit speed $\|\dot{\gamma}\|_g \equiv 1$ joining $x = \gamma(0)$ and $y = \gamma(L)$. Notice that $f(\gamma(t)) = t$, and therefore

$$||df(y)||_g \ge df(y) \dot{\gamma}(L) = \frac{d}{dt}\Big|_{t=L} f(\gamma(t)) = 1,$$

which contradicts df(y) = 0.

Exercise 5. Let (M, g) be a Riemannian manifold, $N \subset M$ an embedded submanifold, and $x \in M \setminus N$. Let Ω be the space of smooth curves $\gamma : [0, 1] \to M$ such that $\gamma(0) = x$ and $\gamma(1) \in N$. Characterize the critical points of the energy functional

$$E: \Omega \to [0,\infty), \qquad E(\gamma) = \frac{1}{2} \int_0^1 g(\dot{\gamma}(t), \dot{\gamma}(t)) \, dt.$$

Namely, characterize the smooth curves $\gamma \in \Omega$ such that $\frac{d}{ds}\Big|_{s=0} E(\Gamma_s) = 0$ for all smooth homotopies

$$\Gamma: (-\epsilon, \epsilon) \times [0, 1] \to M, \qquad \Gamma(s, t) = \Gamma_s(t),$$

such that $\Gamma_0 = \gamma$ and $\Gamma_s \in \Omega$ for each $s \in (-\epsilon, \epsilon)$.

Solution. We denote by $Y := \partial_s \Gamma_s|_{s=0}$ the vector field along γ associated with the homotopy Γ . Notice that Y(0) = 0 and $Y(1) \in T_{\gamma(1)}N$. We compute the derivative

$$0 = \frac{d}{ds}\Big|_{s=0} E(\Gamma_s) = \int_0^1 g(\nabla_s \partial_t \Gamma_0(t)|_{s=0}, \dot{\gamma}(t)) \, dt = \int_0^1 g(\nabla_t Y, \dot{\gamma}(t)) \, dt$$

$$= \int_0^1 \left(\frac{d}{dt} g(Y(t), \dot{\gamma}(t)) - g(Y(t), \nabla_t \dot{\gamma})\right) \, dt = g(Y(1), \dot{\gamma}(1)) - \int_0^1 g(Y(t), \nabla_t \dot{\gamma}) \, dt.$$
(1)

This holds for all homotopies Γ with the properties stated in the exercise, and therefore for every vector field Y along γ such that Y(0) = 0 and $Y(1) \in T_{\gamma(1)}N$. In particular, since the equality holds for all such Y so that Y(1) = 0, we readily see that

$$\nabla_t \dot{\gamma} \equiv 0. \tag{2}$$

Therefore, equality (1) also implies that

$$g(w, \dot{\gamma}(1)) = 0, \qquad \forall w \in \mathcal{T}_{\gamma(1)}N.$$
(3)

Conversely, (2) and (3) readily imply equality (1). We conclude that the critical points of $E: \Omega \to [0, \infty)$ are precisely the geodesics $\gamma: [0, 1] \to M$ such that $\dot{\gamma}(1)$ is orthogonal to the submanifold N.

Exercise 6.

- (i) Let $u : \mathbb{R}^2 \to \mathbb{R}$ be a smooth function with a critical point at the origin, i.e. du(0) = 0. Consider the graph of u, which is the surface $\Gamma_u = \{(z, u(z)) \mid z \in \mathbb{R}^2\}$ embedded in the Euclidean space \mathbb{R}^3 . Compute the Gaussian curvature of Γ_u at the origin in terms of the function u.
- (ii) Let M be a closed surface embedded in \mathbb{R}^3 , and r > 0 the smallest radius such that the round ball $B_r = \{q \in \mathbb{R}^3 \mid ||q|| \leq r\}$ contains M. Provide a lower bound for the Gaussian curvature of M at any point $q \in M \cap \partial B_r$.

Solution.

(i) If $q = (z, u(z)) \in \Gamma_u$, the tangent space $T_q \Gamma_u$ is precisely the graph

$$\Gamma_{du(z)} = \left\{ (v, du(z)v) \mid v \in \mathbb{R}^2 \right\}.$$

The upward-pointing unit-normal vector field $N = (N_1, N_2, N_3) : \Gamma_u \to \mathbb{R}^3$ is uniquely defined by $N_3 > 0$, $||N|| \equiv 1$, and $N_1(q)v_1 + N_2(q)v_2 + N_3(q)du(q)v = 0$ for all $v = (v_1, v_2) \in \mathbb{R}^2$, which gives

$$N(q) = \left(-\frac{\nabla u(z)}{(1+\|\nabla u(z)\|^2)^{1/2}}, \frac{1}{(1+\|\nabla u(z)\|^2)^{1/2}},\right),$$

where ∇u denotes the gradient of u. Consider the diffeomorphism $\iota : \mathbb{R}^2 \to \Gamma_u$, $\iota(x,y) = (x, y, u(x,y))$. Since du(0) = 0, the matrix of $d(N \circ \iota)(0)$ is given by

$$d(N \circ \iota)(0) = \begin{pmatrix} -\partial_{xx}u(0) & -\partial_{xy}u(0) \\ -\partial_{yx}u(0) & -\partial_{yy}u(0) \\ 0 & 0 \end{pmatrix}$$

The curvature of Γ_u at the origin is given by the determinant of the Hessian of u at 0, i.e. $K_{\Gamma_u}(0) = \partial_{xx} u(0) \partial_{yy} u(0) - \partial_{xy} u(0)^2$.

(ii) We consider the round sphere $S_r := \partial B_r$. Since r > 0 is the smallest radius such that $M \subset B_r$, at every intersection point $q \in M \cap S_r$ we must have $T_q M = T_q S_r$. Let us fix one such intersection $q \in M \cap S_r$. Without loss of generality (up to applying an isometry of \mathbb{R}^3), we can assume that q = (0, 0, -r) is the south pole of S_r , so that $T_q M = T_q S_r = \operatorname{span}\{\partial_x, \partial_y\}$. On a neighborhood of the point q, the sphere S_r coincides with the graph Γ_u of the function

$$u(x,y) = -\sqrt{r^2 - x^2 - y^2},$$

whereas the surface M must coincide with the graph Γ_v of some function v such that v(q) = u(q) = -r and $v(p) \ge u(p)$ for all p on a neighborhood of the origin. We already know that the sphere S_r has constant curvature r^{-2} ; we can also reobtain this result at the point q by means of point (i): the Hessian matrix of u at the origin is given by

$$\left(\begin{array}{cc} r^{-1} & 0\\ 0 & r^{-1} \end{array}\right),$$

and the curvature is its determinant, i.e. $K_{S_r}(q) = r^{-2}$. Since v(0) = u(0) and dv(0) = du(0) = 0, we have

$$v(q) = \frac{1}{2}d^2v(0)[q,q] + o(|q|^2), \quad u(q) = \frac{1}{2}d^2u(0)[q,q] + o(|q|^2), \quad \text{as } q \to 0.$$

Since $v \ge u$, we must have

$$d^{2}v(0)[q,q] \ge d^{2}u(0)[q,q] = r^{-1} ||q||^{2}.$$
(4)

Let H be the Hessian matrix of v at 0, i.e. the symmetric 2×2 matrix defined by $\langle H \cdot, \cdot \rangle = d^2 v(0)$. Equation (4) implies that both the eigenvalues λ_1 and λ_2 of H are larger than or equal to r^{-1} , and therefore

$$K_M(q) = \det H = \lambda_1 \lambda_2 \ge r^{-2}.$$