TD11 Géométrie Riemannienne

11 avril 2025

- 1. Soit (M,g) une variété riemannienne et soit $x\in M$. Supposons qu'il existe une isométrie f de M telle que $d_x f = -id_{T_x M}$. Soit X un champ parallèle le long d'une géodésique γ dans M, avec $\gamma(0) = x$. Montrer que $d_{\gamma(t)} f(X(\gamma(t))) = -X(\gamma(-t))$.
- 2. Soit (M,g) une variété riemannienne et N une sous-variété de M. $\overline{\nabla}$ et ∇ sont les connexions de Levi-Civita de M et N respectivement. N est dite sous-variété totalement géodésique si pour tout $p \in N$ et toute géodésique γ de M issue de p et tangente à N, γ est contenue dans N.
 - a) Montrer que N est totalement géodésique si et seulement si $\overline{\nabla}$ et ∇ coïncident sur N (la seconde forme fondamentale est nulle).
 - b) Déterminer les sous-variétés complètes et totalement géodésiques de l'espace hyperbolique \mathbb{H}^n .
 - c) Soit G un groupe de Lie muni d'une métrique riemannienne bi-invariante. Prouver que les sous-groupes de Lie de G sont des sous-variétés totalement géodésiques.
 - d) Prouver que la courbure sectionnelle de la variété riemannienne $\mathbb{S}^2 \times \mathbb{S}^2$ avec la métrique produit, est non négative, et trouver un tore plat totalement géodésique \mathbb{T}^2 plongé dans $\mathbb{S}^2 \times \mathbb{S}^2$.
 - e) Soit f une isométrie de (M,g). Prouver que l'ensemble des points fixes de f est une sous-variété totalement géodésique.
 - f) Soit X une variété et σ une involution de X, c'est-à-dire $\sigma^2=id$. Montrer que l'ensemble des points fixes de σ est une sous-variété de X.
- 3. Soit (M,g) une variété riemannienne et X un champ de Killing défini sur M.
 - a) Considérer une géodésique γ dans M. Vérifier que X est un champ de Jacobi le long de γ .
 - b) Supposer que X(p)=0 pour un certain $p\in M$ et que $\nabla_Y X(p)=0$ pour tout $Y\in T_pM$. Prouver que X=0.
- **4.** Soit $\gamma:[0,\infty[\to M]$ une géodésique dans un espace localement symétrique M et soit $v=\gamma'(0)$ sa vitesse au point $p=\gamma(0)$. Définir une transformation linéaire $K_v:T_pM\to T_pM$ par

$$K_v(x) = R(x, v)v, \quad x \in T_pM$$

- a) Prouver que K_v est auto-adjointe.
- b) Choisir une base orthonormée $\{e_1,...,e_n\}$ de T_pM qui diagonalise K_v , c'est-à-dire

$$K_v(e_i) = \lambda_i e_i$$

Étendre les e_i à des champs le long de γ par transport parallèle. Montrer que, pour tout t,

$$K_{\gamma'(t)}(e_i(t)) = \lambda_i e_i(t)$$

c) Soit $J(t)=\sum x_i(t)e_i(t)$ un champ de Jacobi le long de γ . Montrer que l'équation de Jacobi est équivalente au système

$$\frac{d^2x_i}{dt^2} + \lambda_i x_i = 0$$

d) Montrer que les points conjugués de p le long de γ sont donnés par $\gamma(\frac{\pi k}{\sqrt{\lambda_i}})$, où k est un entier positif et λ_i est une valeur propre positive de K_v .