LC 9

CHIMIE MOLÉCULAIRE

(chimie organique, chimie inorganique moléculaire, relations structure-propriétés)

Sujets possibles:

CARBOCATIONS EN CHIMIE ORGANIQUE

- E.I. Réactivité des dérivés éthyléniques
 - I Substitutions nucléophiles
 - 1) SN1 et SN2

(pour les deux : mécanisme, profil réactionnel et stéréochimie)

- 2) Choix de l'un des mécanismes limite : rôle du carbocation
- II Addition nucléophile : de l'alcène à l'alcool
 - 1) Activation électrophile de l'alcène en milieu acide
 - 2) Addition nucléophile de l'eau
 - 2) Régiosélectivité (règle de Markovnikov)

CHIMIE ORGANIQUE

E.I. Activation de fonctions

- I Activation des alcools
 - 1) Activation nucléophile (alcoolates)
 - (a) Par action de bases fortes
 - (b) Par emploi d'un métal alcalin
 - 2) Activation électrophile
 - (a) Passage par R-OH₂⁺
 - (b) Passage par un ester sulfonique
- II Activation électrophile des carbonyles
 - 1) Activation par protonation in situ
 - 2) Application: l'acétalisation
 - 3) Optimisation du rendement : conditions expérimentales (Dean-Stark, etc...)

Complexes de métaux de transition

E.I. Géométrie des complexes

- I Vers une description de la structure électronique des complexes
 - 1) Théorie du champ cristallin
 - 2) Théorie du champ de ligand
- II OM sigma des complexes : application à la géométrie
 - 1) Complexes octaédriques
 - 2) Complexes tétraédriques

Construction du squelette carboné

- E.I. Réactivité en alpha des dérivés carbonylés et des dérivés d'acide
 - I Carbonyles, énols, énolates : structures et réactivité

(parler, en introduction de cette partie, de l'équilibre céto-énolique)

- 1) Obtention de l'énolate par déprotonation
- 2) Régiosélectivité (énolate cinétique ou thermodynamique)
- 3) Réactivité duale des énolates

(carbone nucléophile (i.e. contrôle orbitalaire) ou oxygène nucléophile (i.e. contrôle de charge))

- II Formation de liaisons C-C par utilisation d'énolates
 - 1) Réaction d'alkylation

- 2) Réaction d'aldolisation/crotonisation
- 3) Réaction de Michael

Relation structure/propriétés en chimie organique

E.I. Isomères

- I Isomérie
 - 1) Isomères de constitution
 - 2) Stéréoisomères
 - a) Diastéréoisomères
 - b) Enantiomères
- II Propriétés des énantiomères
 - 1) Propriétés physiques
 - 2) Propriétés chimiques
 - 3) Propriétés biologiques (e.q. récepteurs olfactifs ou thalidomide)
- III Propriétés des diastéréoisomères
 - 1) Propriétés physico-chimiques
 - 2) Exemple : acides fumarique et maléique

On peut éventuellement moduler par ajout d'une partie :

- III Stéréodescripteurs
 - 1) Stéréodescripteur R ou S
 - 2) Stéréodescripteur Z ou E

CHIMIE DES RADICAUX

E.I. Réactions en chaîne

- I Les radicaux : généralités
 - 1) Définition et types de radicaux (radicaux neutres, anions, cations, et di-radicaux)
 - 2) Stabilité et réactivité
- II Application en synthèse organique
 - 1) Réactions en chaîne (voir Bruckner p.33)
 - (a) Initiation
 - (b) Propagation
 - (c) Terminaison
 - 3) Un outil puissant (e.g. conditions de Birch, cf. Clayden p.628)
 - (a) Bilan de la réaction
 - (b) Contrôle de la régiosélectivité

On peut également aborder la réaction de Barton McCombie, l'isomérisation de l'acide fumarique/maléique ou la polymérisation radicalaire.

Composés organométalliques en chimie organique

E.I. Addition comparée sur un composé carbonylé α - β -insaturé

(Pour l'exemple voir Tec&Doc PC p.513)

- I Un cas simple : addition nucléophile d'un magnésien sur un composé carbonylé
 - 1) Description de la réactivité
 - 2) Addition nucléophile sur un composé carbonylé (aldéhyde, cétone, CO₂)
 - 3) Préparation in situ
- II Généralisation : réactivité de composés organométalliques sur des carbonyles α - β -insaturés
 - 1) Magnésiens
 - 2) Lithiens
 - 3) Cuprates

Conclusion: bilan comparatif

CONSTRUCTION DU SQUELETTE CARBONÉ

E.I. Cyclisation

I - La réaction de Diels-Alder

- 1) Présentation de la réaction
- 2) Conformation réactive du diène (cis)
- 3) Mécanisme (acte élémentaire!)
- II Aspects thermodynamiques et cinétiques
 - 1) Réversibilité de la réaction
 - 2) Contrôle cinétique et contrôle thermodynamique (contrôle cinétique orbitalaire)
 - 3) Exemple : réaction entre le butadiène et l'éthylène
- III Aspects stéréochimiques
 - 1) Stéréosélectivité
 - 2) Stéréospécificité (règle de l'endo)

Mentionner en ouverture ou en intro les autres types de cyclisation

Groupements protecteurs en chimie organique

E.I. Les diols

- I L'acétalisation
 - 1) Présentation
 - 2) Mécanisme

(expliciter le rôle particulier des diols qui favorisent la réaction car formation de liaisons intramoléculaires)

- 3) Déplacement de l'équilibre
- II Les éther-oxydes (benzyliques -OBn)
 - 1) Présentation
 - 2) Protection
 - 3) Déprotection
- III Les éthers silvlés
 - 1) Présentation
 - 2) Protection et sélectivité
 - 3) Déprotection et sélectivité

Utilisation de complexes de métaux de transition

E.I. Métathèse

- I Métathèse des alcènes (ou oléfines)
 - 1) Présentation générale et type de catalyseurs employés
 - 2) Métathèse croisée (cross metathesis)
 - 3) Métathèse par fermeture de cycle (ring closing metathesis)
- II Couplage croisés
 - 1) Concept général et exemples
 - 2) Étapes élémentaires
 - 3) Étude d'un cycle catalytique (au choix)

SÉLECTIVITÉ EN CHIMIE ORGANIQUE

E.I. Induction asymétrique

- I Cas de deux réactifs achiraux
 - 1) Utilisation d'auxiliaires chiraux
 - 2) Utilisation de catalyseurs chiraux
- II Cas d'un mélange racémique
 - 1) Résolution via le passage par des diastéréoisomères
 - 2) Résolution cinétique

Synthèse totale et analyse rétrosynthétique en chimie organique

E.I. Formalismes de l'analyse rétrosynthétique

- I De l'intérêt d'une chimie bio-mimétique
 - 1) S'inspirer du vivant
 - 2) S'inscire dans une démarche durable
 - (a) Les 12 principes de la chimie verte

- (a) Facteur E
- (b) Économie d'atomes
- II Stratégie synthétique
 - 1) Synthèses linéaires ou convergentes
 - 2) Synthons/chirons et équivalents synthétiques
 - 3) Biomimétisme : les réactions domino (ou cascade) (réactions "one-pot")

CHIMIE INORGANIQUE MOLÉCULAIRE

- E.I. Stratégies de synthèse de complexes de métaux de transition
 - I Constitution de l'édifice
 - 1) Le ligand (denticité, hapticité)
 - 2) Le métal
 - 3) La liaison métal-ligand (ligand σ -donneurs, π -donneur, π -accepteur)
 - II Stabilité et labilité du complexe
 - 1) Aspects thermodynamiques

(constantes de formation et de dissociation, effet des ligands macrocycliques ou polydentates)

2) Aspects cinétiques (effet trans notamment)