Neural skeleton: implicit neural representation away from the surface Shape Modeling International 2023

Mattéo Clémot, Julie Digne

July 14, 2023

Skeletonization

Applications

Shape segmentation, shape matching...

▶ Mean Curvature Skeleton [Tagliasacchi 2012]

Tagliasacchi 2016

- ▶ Mean Curvature Skeleton [Tagliasacchi 2012]
- ► *L*₁-Medial Skeleton [Huang 2013]

- ▶ Mean Curvature Skeleton [Tagliasacchi 2012]
- ► L₁-Medial Skeleton [Huang 2013]
- ► Voxel Cores [Yan 2018]

- ▶ Mean Curvature Skeleton [Tagliasacchi 2012]
- ► L₁-Medial Skeleton [Huang 2013]
- ► Voxel Cores [Yan 2018]
- ► Coverage Axis [Dou 2022]

- Mean Curvature Skeleton [Tagliasacchi 2012]
- ► *L*₁-Medial Skeleton [Huang 2013]
- ► Voxel Cores [Yan 2018]
- Coverage Axis [Dou 2022]
- ▶ Point2Skeleton [Lin 2021] (needs a database; beyond our scope)

Medial axis

Medial axis med(Ω): points **x** of \mathbb{R}^d such that $d(\mathbf{x}, \partial \Omega)$ is reached at least two times.

Lemma

The signed-distance function $u_{\Omega}(\mathbf{x}) = \begin{cases} -d(\mathbf{x}, \partial \Omega) & \text{if } \mathbf{x} \in \Omega \\ d(\mathbf{x}, \partial \Omega) & \text{if } \mathbf{x} \in \overline{\Omega}^C \end{cases}$ is differentiable almost everywhere, verifies the eikonal equation $\|\nabla u_{\Omega}\| = 1$ where this is the case, and the medial axis med(Ω) is exactly the points of non-differentiability.

Medial axis properties

• Ω and med (Ω) have the same homotopy type [Lieutier2004]

Medial axis properties

Ω and med(Ω) have the same homotopy type [Lieutier2004]
 med(Ω) is unstable

About implicit neural representations

INR

Train a neural network to encode a shape into its parameters.

$$\theta : \mathbb{R}^3 \to \mathbb{R} (x, y, z) \mapsto \mathrm{SDF}_{\Omega}(x, y, z)$$

- DeepSDF [Park 2019], Occupancy Networks [Mescheder 2019]...
- Optimization per shape / on a database
- Focus on surface reconstruction and visualization

Can we use INRs to extract a skeleton?

 \rightarrow Leverage neural priors to get robustness.

Overview

INR general principle

- Input: point cloud with normals $(\mathbf{x}_i, \mathbf{n}_i)$
- Look for u such that:

$$\left\{ \begin{array}{rl} \|\nabla u\| &=1\\ u_{|\partial\Omega} &=0\\ \nabla u_{|\partial\Omega} &=\mathbf{n} \end{array} \right.$$

► Loss function from [Gropp 2020]:

$$\ell(\theta) = \frac{1}{|I|} \sum_{i \in I} \left(|u_{\theta}(\mathbf{x}_i)| + \tau \|\nabla u_{\theta}(\mathbf{x}_i) - \mathbf{n}_i\| \right) + \lambda \mathbb{E}_{\mathbf{x}}[(\|\nabla u_{\theta}(\mathbf{x})\| - 1)^2]$$

Which neural network architecture, which activation function?

The INR we are using

Architecture based on SIREN [Sitzmann 2020]

- MLP (6 layers, 64 neurons per layer, pretrained on a sphere SDF)
- Periodic activation function: $\sigma = \sin$

Now:

- Looking for a smooth approximation of the SDF
- $\blacktriangleright \text{ Non-differentiabilities} \longleftrightarrow \text{ low gradient's norm}$

Far from the surface

- ► Infinite number of a.e. differentiable solutions to $\begin{cases} ||\nabla u|| = 1 \\ u_{|\partial\Omega} = 0 \\ \nabla u_{|\partial\Omega} = \mathbf{n} \end{cases}$

Blobs can appear

Viscosity solution theory can help theoretically, but not practical

$$\|\nabla u_{\varepsilon}\| + \varepsilon \Delta u_{\varepsilon} = 1 \qquad u = \lim_{\varepsilon \to 0^+} u_{\varepsilon}$$

TV regularization

Add a gradient's norm total variation regularization term in the loss function:

$$\mathcal{L}_{\mathrm{TV}} = \int_{\mathbb{R}^3} \|\nabla\|\nabla u\|(p)\|\mathrm{d}p\|$$

▶ Initial idea: minimize the measure of discontinuities / where $\|\nabla u\| < 1$...but wrong

 Works with anchor points in the ambient space with coarse distance estimate

Loss function

► Surface loss:

$$\mathcal{L}_{s}(\theta) = \int_{\partial\Omega} u_{\theta}(p)^{2} dp + \tau \int_{\partial\Omega} 1 - \frac{\mathbf{n}(p) \cdot \nabla u_{\theta}(p)}{\|\mathbf{n}(p)\| \|\nabla u_{\theta}(p)\|} dp$$

Eikonal loss:

$$\mathcal{L}_{\mathrm{e}}(\theta) = \int_{\mathbb{R}^3} \left(1 - \|\nabla u_{\theta}(p)\|\right)^2 \mathrm{d}p$$

Learning points loss:

$$\mathcal{L}_1(heta) = rac{1}{|\mathcal{P}|} \sum_{p \in \mathcal{P}} (u_ heta(p) - d(p))^2$$

► TV regularization loss:

$$\mathcal{L}_{\mathrm{TV}}(\theta) = \int_{\mathbb{R}^3} \|\nabla\|\nabla u_{\theta}\|(p)\|\mathrm{d}p$$

Final loss function

$$\mathcal{L} = \lambda_{\mathrm{e}} \mathcal{L}_{\mathrm{e}}(\theta) + \lambda_{\mathrm{s}} \mathcal{L}_{\mathrm{s}}(\theta) + \lambda_{\mathrm{l}} \mathcal{L}_{\mathrm{l}}(\theta) + \lambda_{\mathrm{TV}} \mathcal{L}_{\mathrm{TV}}(\theta)$$

Comparison

Comparison – SDF slices

Comparison $- \|\nabla u\|$ slices

Uniform surface sampling

Uniform surface sampling method from [Yifan 2021]1. Projection on the surface with Newton's method

$$p \leftarrow p - \frac{\nabla u(p)}{\|\nabla u(p)\|^2}u(p)$$

2. Uniformization with repulsion steps in the tangent plane using the k-nearest neighbors

Lemma

Let $x \in \partial \Omega$. There exists t > 0 such that

$$x - t \nabla u_{\Omega}(x) \in \mathsf{med}(\Omega).$$

1. compute rays from the surface sample in the directions $-\nabla u$

Lemma

Let $x \in \partial \Omega$. There exists t > 0 such that

$$x - t \nabla u_{\Omega}(x) \in \operatorname{med}(\Omega).$$

- 1. compute rays from the surface sample in the directions $-\nabla u$
- 2. find where they intersect the surface

Lemma

Let $x \in \partial \Omega$. There exists t > 0 such that

```
x - t \nabla u_{\Omega}(x) \in \operatorname{med}(\Omega).
```

- 1. compute rays from the surface sample in the directions $-\nabla u$
- 2. find where they intersect the surface
- **3.** sample them and find the smallest $\|\nabla u\|$

Lemma

Let $x \in \partial \Omega$. There exists t > 0 such that

```
x - t \nabla u_{\Omega}(x) \in \operatorname{med}(\Omega).
```

- 1. compute rays from the surface sample in the directions $-\nabla u$
- 2. find where they intersect the surface
- **3.** sample them and find the smallest $\|\nabla u\|$

Skeletal points selection

Set cover formulation from Coverage Axis [Dou 2022]
N surface points (p_i), M skeletal points (s_j), N × M coverage matrix D:

$$\mathbf{D}_{ij} = \begin{cases} 1 & \text{if } \|p_i - s_j\| \le r_j + \delta \\ 0 & \text{otherwise} \end{cases}$$

Set cover formulation (mixed-integer linear problem):

$$\begin{array}{ll} \min & \| \mathbf{v} \|_1 \\ \text{s.t.} & \mathbf{D} \mathbf{v} \succcurlyeq 1 \\ & \mathbf{v} \in \{0,1\}^M \end{array}$$

Skeletal points meshing

Final step: mesh the selected skeletal points

 Weighted Delaunay triangulation of selected skeletal points and the surface samples

$$\mathsf{RT}(\{(s_j, r_j), s_j \in S \mid v_j = 1\} \cup \{(p_i, \delta), p_i \in P\})$$

 Keep the edges and triangles between selected skeletal points appearing in this triangulation

Results

Results

Results

Noise robustness

Noise robustness

Noise robustness

Missing data robustness

Ablation study table

Shape	Ours	No TV	ReLU	SoftPlus	SoftPlus	No uniform	No learn-
			No TV		No TV	resampling	ing loss
Noise 0.003	0.011	0.017	0.24	0.038	0.038	0.01	0.79
Noise 0.005	0.015	0.019	0.24	0.028	0.037	0.014	0.70
Noise 0.01	0.021	0.18	0.25	0.035	0.045	0.021	0.79
Noise 0.03	0.25	0.27	0.28	0.27	0.095	0.25	0.72
Truncated 1	0.13	0.30	0.28	0.15	0.15	0.29	0.72
Truncated 2	0.11	0.38	0.41	0.13	0.13	0.12	0.71
Truncated 3	0.12	0.27	0.27	0.18	0.14	0.12	0.72

Table: Ablation study on a torus with added noise and cropped parts (Hausdorff distance).

► Time: 2 minutes (laptop with Nvidia RTX 3050)

- ► Time: 2 minutes (laptop with Nvidia RTX 3050)
- Structure of the output

- ▶ Time: 2 minutes (laptop with Nvidia RTX 3050)
- Structure of the output
- No topological guarantees

- ▶ Time: 2 minutes (laptop with Nvidia RTX 3050)
- Structure of the output
- No topological guarantees
- ► Adaptation to latent shape space (DeepSDF [Park 2019])

Conclusion

- ▶ TV regularization term to enable skeleton extraction from an INR
- Code: https://github.com/MClemot/SkeletonLearning (Replicability Stamp)

 Funding: Agence Nationale de la Recherche, grant ANR-19-CE45-0015 (TOPACS)

Thank you!

Ablation

Comparison table

Shape	Ours	SIREN	IGR	MCS	Voxel Cores
clean	0.42	7.9	1.2	2.4	0.41
crop1	1.04	1.1	1.4	2.5	1.3
crop2	1.9	2.0	1.5	2.6	2.0
crop3	0.77	7.9	1.2	2.6	1.15
crop4	0.46	1.5	2.7	2.5	1.5
sub 25%	0.35	8.3	0.86	2.6	0.42
sub 50%	0.38	8.1	1.2	2.5	0.37
var 0.05%	0.46	8.3	1.3	2.5	0.40
var 0.1%	0.45	7.9	1.1	2.6	0.39
var 1%	0.49	0.79	1.9	2	0.67
var 2%	0.57	0.97	3	0.84	1.3

Table: Quantitative comparisons on a synthetic sphere-mesh shape, cropped or degraded with increasing noise (Hausdorff distance). Percentage values for the noise correspond to the noise variance (percentage of the diagonal).

Comparison $- \|\nabla\|\nabla u\|\|$ slices

