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Applications

Shape segmentation, shape matching...
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A long standing problem

▶ Mean Curvature Skeleton [Tagliasacchi 2012]

▶ L1-Medial Skeleton [Huang 2013]

▶ Voxel Cores [Yan 2018]

▶ Coverage Axis [Dou 2022]

▶ Point2Skeleton [Lin 2021] (needs a database; beyond our scope)
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Medial axis

Medial axis med(Ω): points x of Rd such that d(x, ∂Ω) is reached at
least two times.

Lemma

The signed-distance function uΩ(x) =

{
−d(x, ∂Ω) if x ∈ Ω

d(x, ∂Ω) if x ∈ Ω
C is

differentiable almost everywhere, verifies the eikonal equation ∥∇uΩ∥ = 1
where this is the case, and the medial axis med(Ω) is exactly the points of
non-differentiability.

SDF uΩ Direction of ∇uΩ Medial axis med(Ω)
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Medial axis properties

▶ Ω and med(Ω) have the same homotopy type [Lieutier2004]

▶ med(Ω) is unstable
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About implicit neural representations

INR

Train a neural network to encode a shape into its parameters.

uθ : R3 → R
(x , y , z) 7→ SDFΩ(x , y , z)

▶ DeepSDF [Park 2019], Occupancy
Networks [Mescheder 2019]...

▶ Optimization per shape / on a database

▶ Focus on surface reconstruction and
visualization [P
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Can we use INRs to extract a skeleton?
→ Leverage neural priors to get robustness.
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Overview

Skeletal points

Uniform
surface points

Point set with
oriented normals

Skeletal complex

Implicit Neural
Representation

Newton's
method

INR
training

Line search

MILP solving
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INR general principle

▶ Input: point cloud with normals (xi ,ni )

▶ Look for u such that: 
∥∇u∥ = 1
u|∂Ω = 0
∇u|∂Ω = n

▶ Loss function from [Gropp 2020]:

ℓ(θ) =
1

|I |
∑
i∈I

(|uθ(xi )|+ τ∥∇uθ(xi )− ni∥) + λEx[(∥∇uθ(x)∥ − 1)2]

Which neural network architecture, which activation function?
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The INR we are using

Skeletal points

Uniform
surface points

Point set
with normals

Skeletal
complex

Implicit Neural
Representation

Architecture based on SIREN [Sitzmann 2020]

▶ MLP (6 layers, 64 neurons per layer, pretrained on a
sphere SDF)

▶ Periodic activation function: σ = sin

Now:

▶ Looking for a smooth approximation of the SDF

▶ Non-differentiabilities ←→ low gradient’s norm

y →

x →

z →

→ u(x , y)
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Far from the surface

▶ Infinite number of a.e. differentiable solutions to


∥∇u∥ = 1
u|∂Ω = 0
∇u|∂Ω = n

▶ Blobs can appear

▶ Viscosity solution theory can help theoretically, but not practical

∥∇uε∥+ ε∆uε = 1 u = lim
ε→0+

uε
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TV regularization

▶ Add a gradient’s norm total variation regularization term in the loss
function:

LTV =

∫
R3

∥∇∥∇u∥(p)∥dp

▶ Initial idea: minimize the measure of discontinuities / where
∥∇u∥ < 1 ...but wrong

▶ Works with anchor points in the ambient space with coarse distance
estimate
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Loss function
▶ Surface loss:

Ls(θ) =
∫
∂Ω

uθ(p)
2dp + τ

∫
∂Ω

1− n(p) · ∇uθ(p)
∥n(p)∥ ∥∇uθ(p)∥

dp

▶ Eikonal loss:

Le(θ) =
∫
R3

(1− ∥∇uθ(p)∥)2 dp

▶ Learning points loss:

Ll(θ) =
1

|P|
∑
p∈P

(uθ(p)− d(p))2

▶ TV regularization loss:

LTV(θ) =

∫
R3

∥∇∥∇uθ∥(p)∥dp

Final loss function

L = λeLe(θ) + λsLs(θ) + λlLl(θ) + λTVLTV(θ)
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Comparison
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Comparison – SDF slices
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Comparison – ∥∇u∥ slices
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Uniform surface sampling

Skeletal points

Uniform
surface points

Point set
with normals

Skeletal
complex

Implicit Neural
Representation Uniform surface sampling method from [Yifan 2021]

1. Projection on the surface with Newton’s method

p ← p − ∇u(p)
∥∇u(p)∥2

u(p)

2. Uniformization with repulsion steps in the tangent
plane using the k-nearest neighbors
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Skeleton sampling

Skeletal points

Uniform
surface points

Point set
with normals

Skeletal
complex

Implicit Neural
Representation

Lemma

Let x ∈ ∂Ω. There exists t > 0 such that

x − t∇uΩ(x) ∈ med(Ω).

1. compute rays from the surface sample in the
directions −∇u

2. find where they intersect the surface

3. sample them and find the smallest ∥∇u∥
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Skeletal points selection

Skeletal points

Uniform
surface points

Point set
with normals

Skeletal
complex

Implicit Neural
Representation

Set cover formulation from Coverage Axis [Dou 2022]

▶ N surface points (pi ), M skeletal points (sj),
N ×M coverage matrix D:

Dij =

{
1 if ∥pi − sj∥ ≤ rj + δ
0 otherwise

▶ Set cover formulation (mixed-integer linear problem):

min ∥v∥1
s.t. Dv ≽ 1

v ∈ {0, 1}M
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Skeletal points meshing

Skeletal points

Uniform
surface points

Point set
with normals

Skeletal
complex

Implicit Neural
Representation

Final step: mesh the selected skeletal points

▶ Weighted Delaunay triangulation of selected skeletal
points and the surface samples

RT({(sj , rj), sj ∈ S | vj = 1} ∪ {(pi , δ), pi ∈ P})

▶ Keep the edges and triangles between selected
skeletal points appearing in this triangulation
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Results
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Results

Ours Coverage L1-medial Voxel Cores
Axis skeleton
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Results

Ours Coverage Voxel Cores
Axis
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Noise robustness
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Noise robustness
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Noise robustness
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Missing data robustness
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Ablation study table

Shape Ours No TV ReLU SoftPlus SoftPlus No uniform No learn-
No TV No TV resampling ing loss

Noise 0.003 0.011 0.017 0.24 0.038 0.038 0.01 0.79
Noise 0.005 0.015 0.019 0.24 0.028 0.037 0.014 0.70
Noise 0.01 0.021 0.18 0.25 0.035 0.045 0.021 0.79
Noise 0.03 0.25 0.27 0.28 0.27 0.095 0.25 0.72
Truncated 1 0.13 0.30 0.28 0.15 0.15 0.29 0.72
Truncated 2 0.11 0.38 0.41 0.13 0.13 0.12 0.71
Truncated 3 0.12 0.27 0.27 0.18 0.14 0.12 0.72

Table: Ablation study on a torus with added noise and cropped parts (Hausdorff
distance).
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Limitations & future work

▶ Time: 2 minutes (laptop with Nvidia RTX 3050)

▶ Structure of the output

▶ No topological guarantees

▶ Adaptation to latent shape space (DeepSDF [Park 2019])
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Conclusion

▶ TV regularization term to enable skeleton extraction from an INR

▶ Code: https://github.com/MClemot/SkeletonLearning
(Replicability Stamp)

▶ Funding: Agence Nationale de la Recherche, grant
ANR-19-CE45-0015 (TOPACS)

Thank you!
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Ablation
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Comparison table

Shape Ours SIREN IGR MCS Voxel Cores
clean 0.42 7.9 1.2 2.4 0.41
crop1 1.04 1.1 1.4 2.5 1.3
crop2 1.9 2.0 1.5 2.6 2.0
crop3 0.77 7.9 1.2 2.6 1.15
crop4 0.46 1.5 2.7 2.5 1.5
sub 25% 0.35 8.3 0.86 2.6 0.42
sub 50% 0.38 8.1 1.2 2.5 0.37
var 0.05% 0.46 8.3 1.3 2.5 0.40
var 0.1% 0.45 7.9 1.1 2.6 0.39
var 1% 0.49 0.79 1.9 2 0.67
var 2% 0.57 0.97 3 0.84 1.3

Table: Quantitative comparisons on a synthetic sphere-mesh shape, cropped or
degraded with increasing noise (Hausdorff distance). Percentage values for the
noise correspond to the noise variance (percentage of the diagonal).
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Comparison – ∥∇∥∇u∥∥ slices
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