
Internship report

Solving ill-posed inverse problems
involving partial differential

equations with neural networks

Mattéo Clémot

Supervisors :
Elisa Riccietti (ENS de Lyon, LIP, Team OCKHAM)

Stefania Bellavia (University of Florence)

October – December 2022

Contents
Introduction 1

1 Physics Informed Neural Networks 2
1.1 Framework . 2
1.2 Method . 2
1.3 Examples . 3

2 Inverse PDE problems 5
2.1 Ill-posedness of inverse problems . 5
2.2 Method without regularization . 6
2.3 Alternative architecture: three-output network . 7

3 Regularizations for ill-posed inverse problems 8
3.1 Optimizing u and c together is regularizing . 8
3.2 Explicit regularizations . 9
3.3 Early stopping . 9

4 Research directions: regularizing methods for inverse problems 10
4.1 A regularizing method for the unconstrained formulation 11

4.1.1 Levenberg-Marquardt method . 11
4.1.2 Trust-region Levenberg-Marquardt method 11
4.1.3 Application and results . 12

4.2 A regularizing method for a constrained formulation 13
4.2.1 Constrained formulation . 13
4.2.2 Sequential Linear Programming . 13
4.2.3 Application and results . 14

Conclusion 14

Introduction

Context
Partial Differential Equations (PDEs) are used in a wide variety of problems in different domains
like physics, biology or engineering. They can be numerically solved with several classical and
well-studied methods, like finite differences or finite elements. Recent works have proposed to use
neural networks to approximate solutions of PDEs. It led to the emergence in 2017 of Physics
Informed Neural Networks (PINNs), which use the knowledge of the underlying law of physics of
a system to reduce the size of the domain of admissible solutions. Some results similar to other
state-of-the-art methods for solving PDEs have been obtained with this framework. In addition, it
gives considerable advantages in high dimensional problems or problems with difficult geometries.

Objective
PINNs have mostly been studied for solving problems that are well-posed. Ill-posed problems, that
are problems whose solutions are unstable under data perturbation, are generally harder to solve.
For instance, given the following PDE:

∆u(x) + c(x)u(x) = f(x),

we would like to recover the functional parameter c(x) from the function f and noisy measurements
of the solution u. The aim of this internship is to solve such ill-posed inverse problems, using
regularizing training strategies. Indeed, due to the ill-posedness of the problem, we expect classical
training methods not to give a satisfying solution.

Plan
Section 1 introduces PINNs and how they are trained to approximate the solution of a PDE. It
also shows some results concerning several PDEs.

Section 2 introduces inverse PDE problems and the issues with their ill-posedness.
Section 3 presents the architecture used to solve such problems and some regularization tech-

niques to deal with their ill-posedness.
Section 4.1 is related to a regularizing optimization method for inverse problems: the trust-

region Levenberg-Marquardt method.
Section 4.2 is related to a regularizing optimization method for a constrained formulation of

PDE inverse problems, known as Sequential Linear Programming.

Implementation
All the code for the experiments was written in Python, with PyTorch.

1

1 Physics Informed Neural Networks
Physics Informed Neural Networks (PINNs) were introduced in [RPK19], aiming to solve numeri-
cally partial differential equations. The main idea is to optimize a neural network to represent the
solution, with a loss function taking into account both the measurements and the physics described
by the PDE.

1.1 Framework
Let N be a (possibly nonlinear) differential operator, Ω a subset of Rd and ∂Ω its frontier. We
want to find the solution u∗ : Rd → R to the following problem:{

N [u] = 0 on Ω
u = ψ on ∂Ω . (1)

For instance, in this work we will be particularly interested in the elliptical problem correspond-
ing to

N [u] = −a∆u+ cu− φ

where a ∈ R is a constant, ∆ is the Laplace operator, and c, φ : Rd → R functional parame-
ters. However, it is also possible to consider more complicated EDPs that can be nonlinear (see
Subsection 1.3).

1.2 Method
We consider a neural network with parameters θ, uθ : Rd → R, taking as input coordinates in Rd,
that we will optimize to make it approximate the solution u∗. In other words, we want to find the
parameter values θ∗ such that ∥uθ∗ − u∗∥ is as small as possible.

Architecture The considered architecture is the classical multi-layer perceptron (MLP), with
dense layers, as illustrated in Figure 1. Concerning the activation function, instead of making
the classical choice of ReLU, tanh or softplus, we choose a periodic function, namely sine. This
is justified by [SMB+20], which argues that such an activation function permits to improve both
convergence and stability of the optimization.

Loss To solve Problem 1, we can formulate the network optimization problem as the sum of a
fitting term and a term penalizing the solutions that do not respect the EDP:

min
θ

∫
Ω

N [uθ]
2 +

∫
∂Ω

(uθ − ψ)2

In practice, these losses will be only approximated. We consider the following point sets, which
in practice will be chosen as a d-dimensional grid over Ω = [0, 1]d:

• xR ∈ ΩnR are the points where we compute the PDE residual ;

• xB ∈ (∂Ω)nB are the points where we will test the value of u on the boundary ;

• xM ∈ ΩnM are the points where we are given a measure of u, as a "clue", if provided. We
write ū the vector of these measures.

We then define the following terms of the loss:

LR =
1

nR
∥N [uθ](xR)∥2 (2)

LB =
1

nB
∥uθ(xB)− ψ(xB)∥2 (3)

LM =
1

nM
∥uθ(xM)− ū∥2 (4)

2

Neural Network Auto-Differentiation

Optimization

Parameter update

= LR + LB + LM

Ix→

Iy →

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

+

∂u
∂x

∂u
∂y

∆u

L

∂L
∂θ

Figure 1: Example of neural network architecture for a 2-dimensional PDE direct problem, with
2 hidden layers of 5 neurons, and dense layers. In our work, we took σ = sin as the activation
function.

The optimization problem is thus rewritten:

min
θ
λRLR + λBLB +λMLM︸ ︷︷ ︸

if measures
provided

where λR, λB, λM > 0 are coefficients.
In practice, the derivatives (second-order in the case of the elliptical problem) in N [uθ](xR) are

computed thanks to auto-differentiation (with respect to the inputs of the network). The overall
method is summarized in Figure 1.

Optimization We mainly use and compare two optimization algorithms : Adam and L-BFGS,
with are first-order descent direction algorithms (the second one approximates the hessian with
first order informations). Both gives satisfying results.

1.3 Examples
Figures 2, 3, 4 show resolutions of several temporal, one-dimensional, classical PDEs:

• heat equation:
∂T

∂t
+
∂2T

∂x2
= 0

• inviscid Burgers’ equation:
∂u

∂t
+ u

∂u

∂x
= 0

3

Figure 2: Resolution of the 1D heat equation ∂T
∂t + ∂2T

∂x2 = 0, from t = 0 (red) to t = 1 (yellow).

Figure 3: Resolution of the 1D inviscid Burgers’ equation ∂u
∂t + u∂u

∂x = 0, from t = 0 (red) to t = 1
(yellow).

Figure 4: Resolution of the 1D non-linear Schrödinger equation i∂u∂t +
1
2
∂2u
∂x2 + |u|2u = 0, from t = 0

(red for ℜ(u), dark blue for ℑ(u)) to t = 1 (yellow for ℜ(u), light blue for ℑ(u)). Initial conditions
from [RBPK17].

4

For this equation and a sinusoidal initial condition, the solution tends to a discontinuity,
which is hard to represent with a neural network as its output is C∞.

• non-linear Schrödinger equation:

i
∂u

∂t
+

1

2

∂2u

∂x2
+ |u|2u = 0

This equation is for complex-valued functions, so the network used to solve it had two out-
put instead of only one. The initial and bounding conditions were those of the dataset of
[RBPK17], and the optimization process was able to reproduce the complex behaviour of the
solution. Note that, as expected, the error compared to the ground truth (from the same
dataset) tends to increase with t.

2 Inverse PDE problems
We now consider the PDE inverse problem : given (noisy) measures ū from the solution u, we
would like to find a functional parameter, for instance c in the above elliptical problem.

2.1 Ill-posedness of inverse problems
A well-posed problem in the sense of Hadamard verifies the three following properties:

• existence: a solution exists;

• unicity: the solution is unique;

• stability: the solution changes continuously with the parameters of the problem.

Inverse problems are typically ill-posed, often because of the third condition not being verified.
This makes them harder to solve, since a small change in the input may change radically the
computed solution. In particular, noise in the input is particularly difficult to deal with in inverse
problems.

We present below two examples of inverse problems involving PDEs.

1D benchmark problem We take Ω = [0, 1] and set the following constants and functions (see
Figure 5):

c(x) =
√
2 cos(2πx)

u(x) = cos(2πx) + 2 (we have Neumann boundary conditions u′|∂Ω = 0)
φ = −u′′ + cu

We aim to recover c from the knowledge of u (which is possibly given noisy) and φ. We can
consider this problem is ill-posed in the sense that the following application, which recovers c from
an input u

C2(Ω,R∗) → C2(Ω,R)
u 7→ φ+u′′

u

is not continuous relative to the ∥·∥∞ norm. Figure 5 illustrates the ill-posedness of this problem
by plotting a function u and lightly noisy variants, with their corresponding solutions c which differ
distinctly.

Remark. It is continuous relative to the "W 2,∞ Sobolev space" (with norm ∥u∥W 2,∞ = max{∥u∥∞+
∥u′∥∞ + ∥u′′∥∞}), but we are not supposed to have the knowledge of u′′ (nor u′) so this hypothesis
doesn’t seem to be reasonable.

5

Figure 5: Ill-posedness of the 1D benchmark inverse problem. The first noisy input has as noise
term 10−3 sin(10πx), the second one has as noise term 10−2 exp(−100(x− 1/2)2). These noise
terms are not even visible on this graph.

2D benchmark problem We take Ω = [0, 1]2 and set the following functions (see Figure 7):
c(x, y) = 1.5 sin(2πx) sin(3πy) + 3

((
x− 1

2

)2
+
(
y − 1

2

)2)
u(x, y) = 16x(1− x)y(y − 1) + 1 (we have Dirichlet boundary conditions u|∂Ω = 1)
φ = −∆u+ cu

2.2 Method without regularization
Let’s consider again PINNs to solve these problems. More precisely, we now consider a neural
network (see Figure 6, left)

Φθ : Rd → R2

x 7→ (uθ(x), cθ(x))

that we will try to optimize so that uθ fits the measures ū and that the PDE is verified (i.e. the
residual N [uθ, cθ] is as small as possible). We suppose we can access the following data :

• xR ∈ ΩnR are the points where we compute the PDE residual ;

• xB ∈ (∂Ω)nB are the points where we will test the value of u on the boundary ;

• xM ∈ ΩnM are the points where we are given a (possibly noisy) measure of u. We write ū
the vector of these measures, and φ̄ the values of φ on those points.

LR =
1

nR
∥N [uθ, cθ](xR)∥2 (5)

LB =
1

nB
∥uθ(xB)− ψ(xB)∥2 (6)

LM =
1

nM
∥uθ(xM)− ū∥2 (7)

Then the optimization process is similar to the previous Section. We minimize the following
loss function:

min
θ
λRLR + λBLB + λMLM.

6

Ix→

Iy →

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

+ → u(x, y)

+ → c(x, y)

Ix→

Iy →

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ + → u(x, y)

+ → c(x, y)

+ → ∆u(x, y)

Figure 6: Left: Neural network architecture for the 2D elliptical inverse problem, with 2 hidden
layers of 5 neurons. Right: 3-output neural network architecture for the 2D elliptical inverse
problem, with 2 hidden layers of 5 neurons. We have a third output that we want to give an
estimation of the Laplacian.

Figure 7: Left: ground truth c parameter in the 2D elliptical problem from above. Center:
estimated c with noiseless measures ū and ADAM optimizer. The MSE is 0.15. Right: estimated
c with a gaussian noise (σ = 2×10−2) on the measures ū and ADAM optimizer. The MSE is 1.26.

See Figures 7 and 8 for the results of this method on the to test problems from above. This
method seems able to deal with such inverse problem when there is no noise on the measures of
the solution. However, as soon as the measures are noisy, we do not achieve retrieving a good
estimation of c. In the next Sections, we have a look at different regularization method to deal
with this problem.

2.3 Alternative architecture: three-output network
In the experiments, we observed that while u is well-approximated, ∆u presents a high error. Thus,
being the error on ∆u the most critical, we explore the possibility to use a three-output network
(see Figure 6, right)

Φθ : Rd → R3

x 7→ (uθ(x), cθ(x), ℓθ(x))

such that Ψθ(x) ≃ (u(x), c(x),∆u(x)). Then, instead of using the Laplacian computed thanks
to auto-differentiation in the PDE residual, we use this third output. We also have to add a
"consistency" loss function forcing the third output to match the Laplacian computed from the
first output thanks to auto-differentiation. Thus, the loss function becomes

min
θ
λRL̃R + λBLB + λMLM.

with the following modified residual term:

L̃R =
1

nR

(
∥ℓθ(xR)−∆uθ(xR)∥2 + ∥N [uθ, cθ, ℓθ](xR)∥2

)
7

Figure 8: Left: Resolution of the 1D elliptical problem with no noise on the measures ū. Right:
Resolution of the 1D elliptical problem with noise (σ = 10−2) on the measures ū.

where, in the case of the elliptical inverse problem, N [uθ, cθ, ℓθ] = −ℓθ + cθuθ − φ.

Remark. We scale the Laplacian output by a factor 100, to put all three outputs in a similar
range.

3 Regularizations for ill-posed inverse problems
We have seen above that our problem is ill-posed, in the sense that the solution may be highly
sensitive to small changes in the input. In this section, we study regularization techniques to
prevent obtaining a wrong output, corresponding to the solution for input overfitted to noise.

• Explicit regularization: it consists to add an explicit term to the loss (for instance penalizing
the norm of the output like Tikhonov regularization);

• Implicit regularization: all other regularizations. For instance early stopping of the opti-
mization process, the choice of the model, the use of stochastic optimization, the use of
regularizing optimization...

3.1 Optimizing u and c together is regularizing
Because the error on u is much smaller that the error on c, we tried to use two separate networks
Φ and Ψ, one to approximate u with the measures ū (and the boundary conditions), the other to
approximate c thanks to the PDE. We first optimize Φ

argmin
θΦ

λM
N2

||RM (θΦ, xM)||2 + λB
B2

||RB(θΦ, xB)||2

so that Φ(θΦ, ·) ≃ u. Then we optimize Ψ to approximate c by minimizing the PDE residual using
this estimation of u:

argmin
θΨ

1

M2
||Ri(θΨ, xR)||2

where here Ri(θ, xR) = −∆xR
Φ(θΦ, xR) + Ψ(θΨ, xR)Φ(θΦ, xR)− φ(xR).

This method does not work. Indeed the first network approximates u with some error, that will
give a wrong ∆u. The second network, with the PDE residual as unique loss, will simply converge
towards ϕ+∆u

u which is not the correct c due to this error.
Learning u and c together seems to act like a kind of implicit regularization, which achieves to

(partially) cancel the error on ∆u, and thus c.

8

Figure 9: Histograms of the weights of the layers of two networks with 3 hidden layers of 32
neurons, one giving the right c, the other overfitted on noise, for the 1D elliptic inverse problem.
Except for the last layer, the Tikhonov regularization on the weights of the network seems not
extremely relevant.

3.2 Explicit regularizations
We tested the use of two different explicit regularization terms, both of Tikhonov type, which
is one of the most frequent regularization technique and consists to modify the loss by adding a
2-norm term.

In the first one we penalize using the square 2-norm of cθ: LTik = ∥cθ(xR)∥2. We have also
tested with the term ∥∇cθ(xR)∥2, with the idea that it may avoid oscillating outputs.

In the second one, we use the square 2-norm of the parameters θ. The analysis of the networks
obtained with and without noise on the input have shown that hidden layers have a very similar
distribution of weights, except for the last layer. More precisely, when the network has overfitted
the noise on the input, the weights of the last layer towards the output for the c estimation have
a wider distribution (see Figure 9). This a led us to try the following regularization term:

LTik′ = ∥θlast layer∥2.

Results None of these attempts have been really convincing. The main difficulty is to choose
the coefficient in front of the term. With a too small coefficient, it will have no effect, while with
a too big coefficient, it may worsen the estimation: for example, the ∥cθ∥2 term may make the c
estimation wrongly close to 0, while ∥∇cθ∥2 term may make it wrongly almost constant. As for
the norm of the parameters, it enabled to avoid oscillating estimation but not to obtain the right
solution.

3.3 Early stopping
Another classical – implicit – regularization constists to stop early the optimization process, with
the idea that it will avoid the overfitting of the noise in the input. Indeed when there is noise,

9

Figure 10: Too much iterations, leading to noise overfitting, in the 2D noisy elliptical inverse
problem. The real error on the estimation of c (in dotted black) is decreasing until approximately
5500 iterations, and then is increasing again even if the loss function continues to decrease.

the expected behavior of the true error is to first decrease and then increase (see Figure 10). The
difficulty is to find a reliable stopping criterion, which made us not investigate further this path.

4 Research directions: regularizing methods for inverse prob-
lems

We present below two research directions that are interesting for our problem but which have not
yet given convincing results. Both are based on trust-region methods, which is a class of globally
convergent iterative methods. They consist to take at each iteration a model (linear, quadratic...)
of the objective function, and to minimize it in the current trust region (see Figure 11). Then, the
step is accepted or rejected and the trust region updated according to the ratio between the actual
reduction and the reduction predicted by the model (see Equations 9, 14).

Figure 11: Illustration of trust region method steps, for a 2-variables optimization problem. The
employed model is a linear model on the left and a quadratic model on the right. The trust region
is an infinity-norm ball.

10

4.1 A regularizing method for the unconstrained formulation
In this subsection, we present a regularizing method for the same unconstrained formulation. This
is a trust-region variation of the Levenberg-Marquardt method. This section leans notably on
Sections 4.3 (trust-region methods) and 10.3 (Levenberg-Marquardt method) from [NW99], and
on [BMR16].

4.1.1 Levenberg-Marquardt method

Nonlinear least-squares problems The methods we introduce and discuss in this section are
intended to solve non-linear least-squares problems, i.e. given a nonlinear differentiable application
F : Rn → Rm:

min
x

1

2
∥F (x)∥2.

Gauss-Newton method The commonest method to solve nonlinear least-squares problems is
an iterative method known as Gauss-Newton. It consists, at each iteration, to approximate the
objective function F by a linear model.

min
p

1

2
∥F (xk) + J(xk)p∥2.

The minimizer pGN
k is then used to do the step and update x:

xk+1 = xk + pGN
k .

Levenberg-Marquardt method The Levenberg-Marquardt method is a modification of the
Gauss-Newton method, which consists to add an explicit regularization term depending on λk:

min
p

1

2
∥F (xk) + J(xk)p∥2 +

λk
2
∥p∥2.

Let Bk = J(xk)
TJ(xk) and gk = J(xk)

TF (xk). The minimizer pLM
k (λk) of this minimization

subproblem satisfies the equation:

(Bk + λkI)p
LM
k (λk) = −gk.

If J(xk) is numerically rank-deficient, λk has to be big enough so that this linear system has a
solution.

4.1.2 Trust-region Levenberg-Marquardt method

Trust-region method We can also build a trust-region optimization method from the Levenberg-
Marquardt method.

min
p

1
2∥F (xk) + J(xk)p∥2

s.t. ∥p∥ ≤ ∆k

(8)

Indeed, we have the following lemma:

Lemma (Lemma 10.2 of [NW99]). A vector p is a solution of the trust-region subproblem 8 if and
only if p is feasible and there exists a scalar λk ≥ 0 such that

(Bk + λkI)p = −gk
λk(∆k − ∥p∥) = 0.

This means that when the solution of the Gauss-Newton subproblem (pGN
k , or equivalently pLM

k (0)),
lies strictly in the trust region (i.e. ∥pGN

k ∥ < ∆k), it also solves the trust-region subproblem.
Otherwise there exists λk > 0 such that the Levenberg-Marquardt solution pLM

k (λk) solves the
trust-region subproblem and lies on the boundary (i.e. ∥pLM

k (λk)∥ = ∆k).

11

Therefore, when the Gauss-Newton solution is not in the trust-region, we need to find a λk > 0
such that ∥pLM

k (λk)∥ = ∆k. For that, we will solve for λk the following form with Newton’s
method and Cholesky decomposition (see Algorithm 1):

1

∥pLM
k (λk)∥

− 1

∆k
= 0.

Once this is done, to decide if we accept the step, we compute the ratio between the actual
reduction and the predicted reduction:

π(pLM
k (λk)) =

∥F (xk)∥2 − ∥F (xk + pLM
k (λk))∥2

∥F (xk)∥2 − ∥F (xk) + J(xk)pLM
k (λk)∥2

. (9)

If this ratio if below some positive threshold η (= 1/4 for example), the step is rejected and
the size of the trust-region is decreased by a factor γ (= 1/6 for example). Otherwise the step is
accepted: xk+1 = xk + pLM

k (λk). See Algorithm 2 for the complete algorithm.

Algorithm 1: Trust-region lambda subproblem. Algorithm 4.3 from [NW99]
Data: λ0, ∆k > 0
λ = λ0;
repeat

Apply Cholesky decomposition: B + λI = RTR where R is upper-triangular;
Solve for p: RTRp = −g;
Solve for q: RT q = p;

λ = λ+
(

∥p∥
∥q∥

)2 ∥p∥−∆
∆

until ∆k − ∥pLM
k (λ)∥ < ε;

return λ

Algorithm 2: Trust-region Levenberg-Marquardt step
Data: θk, µk, η = 1

4 , γ = 1
6 , ν = 1.1, q

Evaluate Bk = J(θk)
TJ(θk) and gk = J(θk)

T (F (θk));
∆k = µk∥F (θk)∥;
repeat

Solve for p: Bkp = −gk;
if ∥p∥ < ∆k then

pk = p;
else

With Algorithm 1, find λk > 0 and associated pk = pLM
k (λk) s.t. ∥pLM

k (λk)∥ = ∆k;

Compute πk(pk) with Equation 9;
if πk(pk) ≥ η then

∆k = γ∆k;
until πk(pk) < η;
Set θk+1 = θk + pk;
qk = ∥F (θk) + J(θk)pk∥/∥F (θk)∥;

µk+1 =

 µk/6 if qk < q
2µk if qk > νq
µk otherwise

;

4.1.3 Application and results

Application to our problem We get back to our inverse PDE problem. We optimize the p
parameters θ of our network Φθ : x 7→ (uθ(x), cθ(x)) with the previous trust-region Levenberg-

12

Marquardt method using the following objective function F .

F : Rp → Rm+r

θ 7→ (uθ(xM)− ū, N [uθ, cθ](xR))

Results We have not had the time to make this method work on our inverse PDE problem. How-
ever, we have implemented it and noticed that it was able to solve simple optimisation problems,
like fitting the output of a network to given measures.

4.2 A regularizing method for a constrained formulation
In this subsection, we propose to see our inverse problem as a constrained optimization formation
that we solve with a method kwown as Sequential Linear Programming (SLP). This section leans
notably on Sections 18.5 (Trust-Region SQP Methods) of [NW99] and on [RBS19].

4.2.1 Constrained formulation

For now, all our formulations of the inverse problem consisted to roughly:

• fit the estimated u with the measures ū;

• minimize the residual of the PDE.

But with noisy measures, the first point may be questioned. We could rather use a constraint
to say that the error on u must not be bigger than some threshold, namely the level of noise. In
other words, we would solve this following constrained optimization problem:

min
θ

LR(θ)

s.t. LM(θ) ≤ δ

where δ is the expected level of noise on the measures.

4.2.2 Sequential Linear Programming

We want to solve the following constrained minimization problem, using the Sequential Linear
Programming (SLP) framework.

min
θ

f(θ)

s.t. g(θ) ≤ δ
(10)

Penalization The first step consists to transform the constrained into a penalization term
weighted by ν:

min
θ

Φ(θ) ≜ f(θ) + νmax{g(θ)− δ, 0} (11)

Step and linearization The idea is to solve the problem iteratively, with steps of the form
θk+1 = θk + dk where dk is the minimizer in a trust-region of the following subproblem, corre-
sponding to a linear model ℓ of the objective function.

min
dk

ℓ(dk) ≜ f(θk) +∇f(θk) · dk + νk max{g(θk) +∇g(θk) · dk − δ, 0}
s.t. ∥dk∥∞ ≤ ∆k

(12)

with the infinite norm on dk to have linear constraints.

Remark. We can also take a more complicated model for the subproblem, as a quadratic model
(with requires to compute the hessian), leading to the method known as Sequential Quadratic Pro-
gramming (SQP).

13

We translate this into a true linear program by introducing a dummy variable t, that we solve
with a linear solver:

min
dk,t

f(θk) +∇f(θk) · dk + νkt

s.t. ∥dk∥∞ ≤ ∆k

t ≥ 0
t ≥ g(θk) +∇g(θk) · dk − δ

(13)

Step acceptance We accept the step according to the ratio between the actual reduction and
the predicted reduction:

ρk =
Φ(θk)− Φ(θk + dk)

ℓ(0)− ℓ(dk)
(14)

More precisely, if this ratio is too small, we shrink the trust region and do the step again. In
addition, if this ratio is sufficient big, we can even widen the trust region. See Algorithm 3.

Algorithm 3: SLP step
Data: θk,∆k, νk, 0 < ρbad < ρgood < 1
Evaluate ∇f(θk), ∇g(θk);
Solve linear sub-problem 13;
Compute the step evaluation parameter ρk 14;
if ρk ≤ ρbad then

∆k+1 = 1
2∆k

else if ρk ≥ ρgood then
∆k+1 = min{2∆k,∆max}

else
∆k+1 = ∆k

if ρk > ρbad then
accept the step: θk+1 = θk + dk

else
reject the step: θk+1 = θk

Remark. In the setting where there is no constraint, the sub-problem 13 can be easily solved
without a specific linear programming solver, by simply taking for each i

(dk)i =

{
−∆k if (∇f(θk))i > 0
+∆k otherwise

Remark. At each step, we put νk = max{λk, λk} where λk and λk are the Lagrange multipliers
of the constraints 13c and 13d in the linear sub-problem.

4.2.3 Application and results

Results Similarly to Section 4.1, we have not achieved to make this method work on our in-
verse PDE problem, but we have implemented it and tested it successfully on simpler non-inverse
problems.

Conclusion
This internship has been an opportunity to go into optimization in depth and to discover methods
I had never really studied, like trust-region methods. Although it has not led to very convincing
methods for the noisy inverse PDE problem, it has permitted to highlight some serious difficulties
and to identify some promising research trails. I have also produced Python / PyTorch codes –
implementing PINNs for inverse problems and custom optimizers based on trust-region methods –
that will be used in further works.

14

References
[BMR16] Stefania Bellavia, Benedetta Morini, and Elisa Riccietti. On an adaptive regularization

for ill-posed nonlinear systems and its trust-region implementation. Computational
Optimization and Applications, 64(1):1–30, 2016.

[NW99] Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

[RBPK17] Samuel H Rudy, Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Data-driven
discovery of partial differential equations. Science advances, 3(4):e1602614, 2017.

[RBS19] Elisa Riccietti, Stefania Bellavia, and Stefano Sello. Sequential linear programming
and particle swarm optimization for the optimization of energy districts. Engineering
Optimization, 51(1):84–100, 2019.

[RPK19] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural
networks: A deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations. Journal of Computational physics, 378:686–707,
2019.

[SMB+20] Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wet-
zstein. Implicit neural representations with periodic activation functions. Advances in
Neural Information Processing Systems, 33:7462–7473, 2020.

15

	Introduction
	Physics Informed Neural Networks
	Framework
	Method
	Examples

	Inverse PDE problems
	Ill-posedness of inverse problems
	Method without regularization
	Alternative architecture: three-output network

	Regularizations for ill-posed inverse problems
	Optimizing u and c together is regularizing
	Explicit regularizations
	Early stopping

	Research directions: regularizing methods for inverse problems
	A regularizing method for the unconstrained formulation
	Levenberg-Marquardt method
	Trust-region Levenberg-Marquardt method
	Application and results

	A regularizing method for a constrained formulation
	Constrained formulation
	Sequential Linear Programming
	Application and results

	Conclusion

