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The direct problem

Solve a PDE on Ω ⊂ Rd :{
N [u] = 0 on Ω
u = ψ on ∂Ω

Example: N [u] = −∆u + cu − φ, for given functions c and φ

Main idea of PINNs [Raissi et al., 2019]: represent the
solution with a neural network uθ : Rd → R and minimize the
residual of the PDE.
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Architecture

MLP with dense layers
Periodic activation function: σ = sin [Sitzmann et al., 2020]
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Figure: Example of neural network architecture for a 2-dimensional PDE
direct problem, with 2 hidden layers of 5 neurons, and dense layers.
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Method

Formulation as a minimization problem:

min
θ

∫
Ω
N [uθ]

2︸ ︷︷ ︸
PDE residual

+

∫
∂Ω

(uθ − ψ)2︸ ︷︷ ︸
boundary conditions
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Method

Given sets of points xR , xM in Ω, xB in ∂Ω, we define the
following terms of the loss function:

LR(θ) =
1

nR
∥N [uθ](xR)∥2

LB(θ) =
1

nB
∥uθ(xB)− ψ(xB)∥2

LM(θ) =
1

nM
∥uθ(xM)− ū∥2

Use of auto-differentiation to compute the loss function.

The optimization problem is:

min
θ
λRLR(θ) + λBLB(θ)+λMLM(θ)︸ ︷︷ ︸

if measures
provided
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Overview of the method

Neural Network Auto-Differentiation

Optimization

Parameter update

= LR + LB + LM
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Example 1: heat equation

Figure: Resolution of the 1D heat equation ∂T
∂t + ∂2T

∂x2 = 0, from t = 0
(red) to t = 1 (yellow).
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Example 2: non-linear Schrödinger equation

Figure: Resolution of the 1D non-linear Schrödinger equation

i ∂u∂t +
1
2
∂2u
∂x2 + |u|2u = 0, from t = 0 (red for ℜ(u), dark blue for ℑ(u)) to

t = 1 (yellow for ℜ(u), light blue for ℑ(u)). Data from
[Rudy et al., 2017].
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Inverse problems

Parameter identification in PDEs. Example: recover c in the
following elliptical PDE from noisy measures ū of the solution
u:

−∆u + cu = φ.

Inverse problems are typically ill-posed

Well-posed problem:

existence
uniqueness
stability of the solution(s)
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Inverse PDE problem

Figure: Ill-posedness of the 1D elliptical inverse problem. These noise
terms are not even visible on this graph.

Physics Informed Neural Networks for PDE inverse problems Mattéo Clémot 11 / 33
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Architecture

Φθ : Rd → R2

x 7→ (uθ(x), cθ(x))

Ix →

Iy →

σ
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σ
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σ

+ → u(x , y)

+ → c(x , y)

Figure: Neural network architecture for the 2D elliptical inverse problem.
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Method

We use almost the same loss function:

LR(θ) =
1

nR
∥N [uθ, cθ](xR)∥2

where N [uθ, cθ] = −∆uθ + cθuθ − φ

LB(θ) =
1

nB
∥uθ(xB)− ψ(xB)∥2

LM(θ) =
1

nM
∥uθ(xM)− ū∥2

We minimize:

min
θ
λRLR(θ) + λBLB(θ) + λMLM(θ)
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2D example, no noise

Figure: Real c and estimated c in the 2-dimensional elliptical inverse
problem −∆u + cu = φ.
MSE=0.15
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2D example, noisy

Figure: Real c and estimated c in the 2-dimensional elliptical inverse
problem −∆u + cu = φ, with gaussian noise (σ = 2× 10−2) on ū.
MSE=1.26
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1D noisy example

Figure: 1D elliptical inverse problem, noiseless (top) and with noise
σ = 10−2 (bottom).
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Regularization

Need of regularization to deal with the noise, like in classical
approaches.

Do the use of neural networks already have some implicit
regularizing properties?

→ main aim of the internship
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Tikhonov regularization in a classical context

Tikhonov regularization

To solve an ill-conditioned system Ax = b, instead of minimizing
∥Ax− b∥2, minimize

∥Ax− b∥2 + λ∥x∥2

to prefer solutions with smaller norms.
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PINNs PINNs for inverse PDE problems Regularizations Regularizing trust region methods

Explicit regularizations

Inspired by Tikhonov regularization, add a regularizing 2-norm
term to the loss function. Several attempts:

on the output: λ∥cθ∥2
→ avoid high values solutions

on the output’s derivative: λ
∥∥∥∂cθ

∂x

∥∥∥2
→ avoid oscillating solutions

on (a subset of) the parameters: λ∥θ∥2 or λ∥θI∥2 (e.g. with I
the last layer)
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Penalization of the weights of the neural network

Figure: Histograms of the weights of the layers of two networks with 3
hidden layers of 32 neurons, one giving the right c, the other overfitted
on noise, for the 1D elliptic inverse problem.
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Implicit regularizations

Optimizing u and c together is regularizing

With too much iterations, overfitting of noise. Main difficulty:
find a reliable stopping criterion.

Figure: Too much iterations, leading to noise overfitting. 2D noisy
elliptical inverse problem.
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This is not enough

Hard to achieve satisfactory results with λ fixed

We want to update λ in an automatic way (i.e. use λk instead
of λ)
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Formulations

Two ways of formulating the problem:

unconstrained formulation:

minpde+measures

constrained formulation:

min pde
s.t. measures
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Trust region methods

A class of globally convergent iterative optimization methods

Choose a model ℓ (linear, quadratic...) of the objective
function L and minimize it in the trust region
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Linear model
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Quadratic model
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Trust-region update

Acceptance according to the ratio between the actual
reduction and the predicted reduction:

ρk =
L(xk)− L(xk+1)

ℓ(xk)− ℓ(xk+1)

If ρk too small, reject the step and reduce the trust-region

If ρk sufficiently big, increase the trust-region

With inverse problems, slow decrease of the size of the trust region
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Unconstrained formulation: least-squares

Nonlinear least-squares: given F : Rn → Rm, find

min
x

1

2
∥F (x)∥2.

For our problem:

F : Rp → Rm+r

θ 7→ (uθ(xM)− ū, N [uθ, cθ](xR))
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Unconstrained formulation: Levenberg-Marquardt method

Levenberg-Marquardt method: like Gauss-Newton, plus a
regularization term

min
p

mLM
k (p) =

1

2
∥F (xk) + J(xk)p∥2 +

λk
2
∥p∥2.

The minimizer pLMk (λk) of this model satisfies the following
equation:

(Bk + λk I )p
LM
k (λk) = −gk

where Bk = J(xk)
T J(xk) and gk = J(xk)

TF (xk).

Physics Informed Neural Networks for PDE inverse problems Mattéo Clémot 29 / 33
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Unconstrained formulation: Trust-region method

We modify this method into a trust-region method:

min
p

1
2∥F (xk) + J(xk)p∥2

s.t. ∥p∥ ≤ ∆k

(1)

Lemma

A vector p is a solution of the trust-region subproblem 1 if and
only if p is feasible and there exists a scalar λk ≥ 0 such that

(Bk + λk I )p = −gk

λk(∆k − ∥p∥) = 0.
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Constrained formulation

We want to solve a constrained problem

min
x

f (x)

s.t. g(x) ≤ δ

Typically we would take f = LR and g = LM (to avoid
overfitting of the noise)

We transform the constraint into a penalization term:

min
x

Φ(x) ≜ f (x) + νmax{g(x)− δ, 0}
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Constrained formulation: Sequential Linear Programming

We linearize the objective function to solve it sequentially
with a linear model:

min
dk

f (xk) +∇f (xk) · dk + νk max{g(xk) +∇g(xk) · dk − δ, 0}

s.t. ∥dk∥∞ ≤ ∆k

With a linear program:

min
dk ,t

f (xk) +∇f (xk) · dk + νkt

s.t. ∥dk∥∞ ≤ ∆k

t ≥ 0
t ≥ g(xk) +∇g(xk) · dk − δ

νk dynamically set with the Lagrange multipliers
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Thank you!
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Finding the good λk

First solve the Gauss-Newton solution Bkp = −gk .

if ∥pGNk ∥ < ∆k , it solve the TR subproblem

otherwise, find the λk such that ∥pLMk (λk)∥ = ∆k , i.e.
1

∥pLMk (λk )∥
− 1

∆k
= 0, iteratively solved with Newton’s method.
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Help from finite differences?

Introduce a new term:

LFD =
1

nM
∥(−L+ diag cθ(xM))ū − φ̄∥2

where L is the matrix of the discretized laplacian

Too much error introduced due to the discretization, even
without noise
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