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Preface

Starting with my PhD thesis [Mio12a] in 2012, the main focus on my research
in the last 12 years has been the design and investigation of formal methods
for reasoning about quantities, mostly in the form of probabilities. Within
this general topic, my contributions can be roughly classified into three main
groups:

1. modal and temporal logics with a real-valued semantics: e.g., [Mio12b,
Mio12c, MS13, Mio14, MS17, MFM17, Mio18, LM19, LM21, LM22],

2. quantitative and numerical aspects of automata theory, mostly over
infinite trees: e.g., [MM15, GMMS17, MSM18],

3. quantitative equational logic, quantitative algebras and monads in cat-
egories of metric spaces: e.g., [MV20, MSV21, MSV22, MSV23].

Of course, all three topics above are deeply correlated. For example, a
question originating from (Topic 1) the game semantics of a real-valued logic
[Mio12c] motivated the (Topic 2) study of measure-theoretic properties of
regular languages of infinite tress [GMMS17]. The (Topic 1) real-valued logi-
cal characterisation of bisimulation for probabilistic nondeterministic system
of [Mio13] is closely related to (Topic 3) the quantitative–equational pre-
sentation of the monad (in the category of metric spaces) of convex sets of
probability distributions [MV20]. Etcetera.

This document presents some recent results regarding Topic 3: quantita-
tive equational logic, quantitative algebras and monads. These have emerged
in a series of joint works, starting around 2019, with my colleague Valeria
Vignudelli (CNRS and ENS-Lyon) and my PhD student Ralph Sarkis (ENS-
Lyon): [MV20, MSV21, MSV22]. An extended version of this document is
available as [MSV23].
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1 Introduction

Equational reasoning and algebraic methods are widespread in all areas
of computer science, and in particular in program semantics. Indeed, ini-
tial algebra semantics and monads are cornerstones of the modern theory
of functional programming and are used to reason about inductive defini-
tions, computational e↵ects and specifications in a formal way (see, e.g.,
[PP03, RT93, Mog91, HP07]).

In the last few decades, with the growth of quantitative methods in com-
puting (e.g., from artificial intelligence, probabilistic programming, cyber-
physical systems, etc.) it has become evident that traditional program equa-
tions:

P = Q , the programs P and Q have the same behavior

are not always adequate to reason about the behaviour of programs that
are similar, in a certain quantitative sense, but that, strictly speaking, have
di↵erent behavior. Examples include programs that di↵er only by small per-
turbations in some of their numeric constants such as probabilities, values
measured from noisy sensors, scalars in a neural network, etc. The intu-
itive notion of “similar in a quantitative sense”, has been formally captured
in many works by means of program distances d(P,Q) 2 [0,1] express-
ing numerically the divergence in behavior. See [GJS90, DGJP99, DJGP02,
DEP02, vBW01b, vBW01a, vBW05] for a selection of seminal papers.

In a recent work [MPP16], Mardare, Panangaden and Plotkin introduced
a novel abstract mathematical “framework”, called Quantitative Algebra,
which extends ordinary Universal Algebra (see., e.g., [BS81, Wec92]) and is
designed to reason about distances that are metrics.2 The standard equality
judgment (s = t) of Universal Algebra is replaced by quantitative equations
(s =✏ t), intuitively expressing that d(s, t)  ✏. In the program semantics
context, we thus have:

P =✏ Q , the di↵erence in behavior between P and Q is at most ✏.

The usual notion from Universal Algebra of algebra (A, {opA}op2⌃) for a
signature ⌃, that is a carrier set A together with interpretations opA for all
function symbols op 2 ⌃, is replaced by that of quantitative algebra:

�
(A, dA) , {opA}op2⌃

�

2Precisely, they consider extended metrics, which are distances d : X2
! [0,1] satis-

fying the following constraints for all x, y, z 2 X: d(x, y) = 0 , x = y, d(x, y) = d(y, x)
and d(x, z)  d(x, y) + d(y, z).
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where the carrier is a metric space (A, dA) and the interpretations opA, for
all op 2 ⌃, are nonexpansive maps3.

A number of recent works have built on top of the results of the seminal
[MPP16]. For a non-exhaustive list, see, e.g., [MPP17, BMPP18, MV20,
MSV22, MSV21, MPP21, FMS21, BMPP21, MSV22, Adá22, DLHLP22,
ADV23, GF23]. Key theoretical results in quantitative algebra include:
sound and complete deductive systems, existence of free quantitative algebras
generated by metric spaces, monads and composition techniques for monads
in the category Met of metric spaces and nonexpansive maps, completion
results, variety “HSP-type” theorems, etc. Applications of this framework
can be found in the identification of useful monads in Met as “free quanti-
tative algebra” monads (see, e.g., [MPP16, MV20, MSV21, MSV22]) and in
the quantitative axiomatisation of behavioral metrics [BMPP18, BBLM18b,
BBLM18a, MSV21].

Furthermore, some works have proposed extensions or modifications of
the framework of [MPP16]. For instance, [MSV22] has considered quantita-
tive algebras

�
(A, dA) , {opA}op2⌃

�
where (A, dA) is not necessarily a metric

space but, more generally, a generalised metric space4 (e.g., pseudometrics,
quasimetrics [Wil31a], ultrametrics [BvBR98], semimetrics [Wil31b], di↵use
metrics [HS00, CKPR21], rectangular metrics [Bra00], b-metrics [Cze93]).
In [FMS21] this type of generalisation is pushed even further, allowing the
carrier to be an arbitrary relational structure. In a di↵erent direction, in
[MSV22] (see also [BBLM18b] and, in the di↵erent context of ordered al-
gebras, [ADV22] and [AFMS21]) the authors have considered quantitative
algebras where the interpretations opA, of all op 2 ⌃, are not necessarily
nonexpansive maps. This extends considerably the application of the the-
ory, as witnessed by interesting examples (e.g., from concurrency theory in
[BBLM18b] and artificial intelligence in [MSV22]).

1.1 Contributions

The main goal of this document is to present a generalisation of the frame-
work of [MPP16] in a self-contained and coherent way and to prove some
of the fundamental results. An extended version, containing all proofs, is
available as [MSV23].

3More precisely, the interpretation opA : (An, dnA) ! (A, dA) of op 2 ⌃ is nonexpansive,
where dnA is the (categorical) product metric on An. See [MPP16] and Section 9 for a
detailed discussion.

4The terminology “generalised metric space” has already appeared in the literature
(see, e.g., [BvBR98]) with a slightly di↵erent meaning. Our notion is more general, and
subsumes that of [BvBR98]. See Remark 2.33 in Section 2.3.
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Following and further developing ideas from a previous paper [MSV22],
we extend [MPP16] along two orthogonal lines, by considering quantitative
algebras

�
(A, dA) , {opA}op2⌃

�
where:

(1st line): the carrier (A, dA) is an arbitrary fuzzy relation space [Zad71],
that is, a set A together with an arbitrary map dA : A2

! [0, 1],

(2nd line): the interpretations opA, for op 2 ⌃, are arbitrary set-
theoretic functions, and not required to be nonexpansive.

Regarding the first line of extension, the choice of considering fuzzy relations
dA : A2

! [0, 1] allows us to have a concrete notion of numeric distance,
while still being general enough to include, e.g., all the generalised metric
spaces listed above. Regarding the second line of extension, allowing opA

to be an arbitrary set-theoretic function results in greater generality in the
definition.

From a logical point of view, since we work with arbitrary fuzzy relations
(for which the property x = y , d(x, y) = 0 might not hold), we have to
decouple the notion of equality from that of distance. As a result, our theory
of quantitative algebras deals with two types of formal judgments: equations
and quantitative equations, respectively of the form:

8(X, dX).s = t 8(X, dX).s =✏ t

where ✏ 2 [0, 1] and s, t 2 Terms⌃(X) are terms built from a set of variablesX
which is endowed with a fuzzy relation dX : X2

! [0, 1]. We have followed
the Universal Algebra textbook [Wec92] in using the “8” symbol, in the
formal judgments, to explicitly remind that the stated equality (equation) or
bound on distance (quantitative equation) is universally quantified over all
interpretations ⌧ : X ! A of the variables in X.

Crucially, as the set of variables is endowed with a fuzzy relation dX , an
interpretation is required to be a nonexpansive map of type ⌧ : (X, dX) !
(A, dA). The idea of restricting attention to interpretations that “preserve
structure” has already appeared in literature (e.g., in [AFMS21] in the study
of ordered algebras) but appears to be new in the literature about quantita-
tive algebras. This has important consequences. Consider for example the
following “gap” property:

For all x, y, if the distance between x and y is 
1

2
, then the distance is 

1

4
.

In the seminal paper [MPP16] and most subsequent works, to express the
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above property one needs to consider Horn implications5 between quantita-
tive equations:

x = 1
2
y ) x = 1

4
y

and indeed the syntactic deductive apparatus presented in [MPP16] is de-
signed to manipulate Horn implications between quantitative equations, and
not just quantitative equations. In our setting, instead, the “gap” property
is directly expressed by the quantitative equation:

8({x, y}, dX).x = 1
4
y

where the fuzzy relation dX on the set {x, y} of variables assigns value 1
2 to

(x, y):

dX(x, x) = 1, dX(x, y) =
1
2 , dX(y, x) = 1, dX(y, x) = 1.

Requiring interpretations to be nonexpansive then corresponds precisely to
requiring that the premise of the Horn implication is satisfied. As a conse-
quence, we are able to work just with equations and quantitative equations,
thus avoiding higher-level logical concepts such as Horn implications. This
is a novelty with respect to both [MPP16] and [MSV22]. See Section 9 for a
detailed comparison with [MPP16].

In this new setting, we can recover the framework of Mardare, Panan-
gaden and Plotkin as a specific “quantitative equationally” defined subclass
of quantitative algebras. For instance, we can now define, by means of equa-
tions and quantitative equations, the subclass of quantitative algebras whose
dA satisfy the constraints of a chosen generalised metric (including, e.g., the
standard conditions of metrics, as in Footnote 2), in the same way that, in
Universal Algebra, the subclass of abelian groups can be defined equationally
from groups. At the same time, it is possible to define by means of equations
and quantitative equations the subclass of quantitative algebras whose opA

is nonexpansive or, more generally, Lipschitz with constant ↵ > 1, or other
useful notions.

The following is a list of our main results (Item 1–Item 5) concerning the
generalised quantitative algebra theory presented in this work:

1. We present a sound and complete “Birkho↵-style” deductive system to
derive valid equations and quantitative equations. The novelty of such
proof system is that it only manipulates equations and quantitative
equations, rather than Horn implications.6

5In [MPP16] such implications are referred to as “quantitative inferences” and denoted
by x = 1

2
y ` x = 1

4
y.

6We expand the discussion on the novelties of our system with full technical details in
Section 9.
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2. We show that, for any class of quantitative algebras defined by equa-
tions and quantitative equations, the free quantitative algebra gener-
ated by a fuzzy relation space (A, dA) always exists in the class, and
we give an explicit construction.

3. We prove that the adjunction induced by the free construction above is
strictly monadic. Strict monadicity is a key property in the context of
Universal Algebra, and the fact that it holds in our theory of quanti-
tative algebras suggests that we have indeed identified an “equational”
(in a categorical sense) quantitative setting.

4. We show that all monads on FRel which are liftings of finitary Set

monads, i.e., Set monads with an equational presentation, can be pre-
sented by a given set of equations and quantitative equations. This in-
cludes most examples from the literature on quantitative algebras, e.g,
the finite powerset monad with the Hausdor↵ metric and the probabil-
ity distributions monad with the Kantorovich metric [MPP16], among
others (see, e.g., [MV20, MSV21, MSV22]).

5. We prove that all the results above, stated for the category FRel of
fuzzy relation spaces, can be restricted to any chosen categoryGMet of
generalised metric spaces (including, for example, the familiar category
Met of metric spaces).

1.2 Organisation of the Document

The rest of the document is organised as follows.
In Section 2 we provide the necessary technical background regarding

Universal Algebra, Category Theory and some basic notions regarding fuzzy
relations. This section is relatively lengthy as we have included all notions
required to make this article self-contained.

In Section 3 we formally introduce our theory of quantitative algebras
with all its key definitions: quantitative algebras, equations and quantitative
equations, their semantics, quantitative theories, and so on. In Section 3.1 we
enumerate our key results, which will be proved in the subsequent sections.

Our main results (Item 1–Item 5) are formally stated and proved in Sec-
tions Section 4, Section 5, Section 6, Section 7 and Section 8, respectively.

After having developed all our technical results, in Section 9 we give a
formal comparison of our theory of quantitative algebras and the original one
of Mardare, Panangaden and Plotkin [MPP16].

Finally, we conclude in Section 10 suggesting possible lines of future work.
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2 Technical Background

In this section we provide the mathematical background needed to formally
state our results and to verify the proofs. In Section 2.1 we cover mate-
rial from Universal Algebra. In Section 2.2 from Category theory. And in
Section 2.3 we give the necessary definitions regarding fuzzy relations and
generalised metric spaces.

2.1 Universal Algebra

We recall in this section some basic definitions of Universal Algebra. We
refer the reader to [BS81] and [Wec92] as standard references, the latter is
specifically intended for computer scientists.

A signature ⌃ is a (possibly infinite) set of function symbols op 2 ⌃ each
having a finite arity ar(op) 2 N. Operations of arity 0 are referred to as
constants.

Definition 2.1 (⌃-algebra). Given a signature ⌃ = {opi}i2I , a ⌃-algebra A
is a pair of the form A = (A, {opA}op2⌃), where:

1. A is a (possibly empty) set,

2. {opA}op2⌃ is a collection of interpretations of the operations containing,
for each function symbol in ⌃, a function of type: opA : Aar(op)

! A.

Remark 2.2. Some authors (see, e.g., the literature on universal algebra
[BS81, Wec92] referenced above) consider only algebras having nonempty
carriers A 6= ;. In contrast, in this paper we admit algebras with empty
carriers, following standard references in category theory such as [Mac88].
While there is no substantial di↵erence between such approaches, the latter
is more general and it allows us to state results in a more uniform way. For
example, by including the algebra with empty carrier we have that all cate-
gories of algebras have an initial object (i.e., the free object generated by ;,
see Definition 2.18).

Definition 2.3 (Homomorphism). Given two ⌃-algebras (A, {opA}op2⌃) and
(B, {opB}op2⌃), a function f : A ! B is a homomorphism if:

f(opA(a1, . . . , an)) = opB(f(a1), . . . , f(an))

for all a1, . . . , an 2 A and n-ary op 2 ⌃.

We denote with Alg(⌃) the collection (a proper class) of all ⌃-algebras.

9



Definition 2.4 (Terms over ⌃). Given a signature ⌃ and a set A, we de-
note with Terms⌃(A) the collection of all ⌃-terms built from A, i.e., the set
inductively defined as follows:

a 2 Terms⌃(A) t1, . . . , tn 2 Terms⌃(A) =) op(t1, . . . , tn) 2 Terms⌃(A)

for all a 2 A and n-ary op 2 ⌃.

The following definition follows the notational approach of [Wec92], de-
noting equations by “8A.s = t”, where “8A.” explicitly indicates the set A
of variables involved.

Definition 2.5 (Equations). Given a signature ⌃, a ⌃-equation is a triple
(A, s, t) where A is a set and s, t 2 Terms⌃(A). We write such triple as:

8A.s = t

and we denote with Eq(⌃) the class of all ⌃-equations.

In the rest of the paper, the signature ⌃ will often be clear from the
context and we will just talk about “equations” rather than ⌃-equations.
We use the letters �, to range over equations, and �, to range over
classes of equations.

Definition 2.6 (Interpretation). Given a ⌃-algebra A = (A, {opA}op2⌃) and
a set B, an interpretation of B in A is a function ⌧ : B ! A. The inter-
pretation ⌧ extends to a function of type J KA

⌧
: Terms⌃(B) ! A defined

inductively as:

JbKA
⌧
= ⌧(b) Jop(t1, . . . , tn)KA⌧ = opA(Jt1KA⌧ , . . . , JtnKA⌧ ).

The following definition gives semantics to equations and motivates the
“8( ).” syntactical notation we adopted, which hints at the universal quan-
tification over interpretations of the variables.

Definition 2.7 (Semantics of Equations). Given a ⌃-algebra A and an equa-
tion � of the form 8B.s = t, we say that A satisfies � (written A |= �) if, for
all interpretations ⌧ : B ! A, it holds that JsKA

⌧
= JtKA

⌧
.

Definition 2.8 (Equational Theory of a Class of Models). Let K ✓ Alg(⌃)
be a class of ⌃-algebras. The equational theory of K is defined as the class
of equations satisfied by all ⌃-algebras in K, formally:

Th⌃(K) = {� 2 Eq(⌃) | 8A 2 K,A |= �}.
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Definition 2.9 (Models and Equationally defined classes). Let � ✓ Eq(⌃)
be a class of ⌃-equations. The models of � are the ⌃-algebras that satisfy
all equations in �, formally:

Mod⌃(�) = {A 2 Alg(⌃) | 8� 2 �,A |= �}

A class K ✓ Alg(⌃) of ⌃-algebras is said to be equationally defined by � if
K = Mod⌃(�).

Definition 2.10 (Model Theoretic Entailment Relation). We define a binary
relation7 �Set ✓ P(Eq(⌃)) ⇥ Eq(⌃) that describes how an equation � can
be a consequence of a class of equations � ✓ Eq(⌃). It is defined by

� �Set � () � 2 Th⌃(Mod⌃(�)).

Therefore, the meaning of � �Set � is that any ⌃-algebra that satisfies �
(i.e., all the equations in �) necessarily also satisfies the equation �.

A fundamental result of Birkho↵ establishes that �Set coincides with the
derivability relation � `Set � of the deductive system of “equational logic”
(the relation `Set is inductively defined, see, e.g., [Wec92, §3.2.4, Definition
8]). Thus, this celebrated result is a logical axiomatisation of the entailment
relation �Set.

2.2 Category Theory

We assume basic knowledge of category theory. In this section we recall only
some main definitions and results used in the rest of the paper. We refer to
[Mac88] and [Awo10] as standard references.

For a given signature ⌃, with some abuse of notation, we denote with
Alg(⌃) both the class of ⌃-algebras and the category having as objects
⌃-algebras and as arrows the homomorphisms of ⌃-algebras. Similarly,
Mod⌃(�) denotes both the class of ⌃-algebras satisfying � and the full
subcategory of Alg(⌃) whose objects are in Mod⌃(�). In other words,
Mod⌃(�) is the category having as objects ⌃-algebras A such that A |= �,
for all � 2 �, and as morphisms all their homomorphisms of ⌃-algebras.

There is a forgetful functor:

UMod⌃(�)!Set : Mod⌃(�) ! Set

7
P(Eq(⌃)) denotes the collection of all classes of ⌃-equations, i.e. all subclasses of

Eq(⌃). Therefore, it is a conglomerate in the sense of [AHS06, 2.3], and so is �Set.
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mapping an algebra in Mod⌃(�) to its carrier, and acting as identity on
morphisms:

UMod⌃(�)!Set(A, {op
A
}op2⌃) = A

UMod⌃(�)!Set(f) = f

We often just write U when no confusion arises.

2.2.1 Monads and Adjunctions

Definition 2.11 (Monad). Given a category C, a monad on C is a triple
(M, ⌘, µ) composed of a functor M : C ! C together with two natural trans-
formations: a unit ⌘ : idC ) M , where idC is the identity functor on C,
and a multiplication µ : M2

) M , satisfying µ � ⌘M = µ � M⌘ = idM and
µ �Mµ = µ � µM .

We often denote a monad (M, ⌘, µ) simply with its underlying functor M .

Example 2.12. For any class � ✓ Eq(⌃) of ⌃-equations, we have an associated
monad (T Set

⌃,� , ⌘, µ) on Set, defined as follows:

• The functor T Set
⌃,� maps a set A to the set Terms⌃(A)/⌘ of terms over A

quotiented by the relation ⌘ defined as follows, for all s, t 2 Terms⌃(A):

s ⌘ t () � �Set 8A.s = t

and maps a function f : A ! B to the homomorphism

T Set
⌃,�(f) : Terms⌃(A)/⌘ ! Terms⌃(B)/⌘

specified8 as follows:

T Set
⌃,�(f)([a]⌘) = [f(a)]⌘

T Set
⌃,�(f)([op(t1, ..., tn)]⌘) = opF (A)(T Set

⌃,�(f)([t1]⌘), ..., T
Set
⌃,�(f)([tn]⌘))

where opF (A) is defined as opF (A)([t1]⌘, ..., [tn]⌘) = [op(t1, ..., tn)]⌘ (the
reason why we denote the interpretation of operations by opF (A) will
become clear in Example 2.19).

• For each set A, the unit ⌘A : A ! Terms⌃(A)/⌘ is defined as:

a 7! [a]⌘.
8It can be verified that this is a good definition, i.e., it does not depend on the choice

of representatives for the equivalence classes.
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• For each set A, the multiplication

µA : Terms⌃(Terms⌃(A)/⌘)/⌘ ! Terms⌃(A)/⌘

is defined by the following “flattening” operation:

[s([t1]⌘, . . . , [tn]⌘)]⌘ 7! [s{t1/[t1]⌘, . . . , tn/[tn]⌘}]⌘

where s([t1]⌘, . . . , [tn]⌘) denotes that [t1]⌘, . . . , [tn]⌘ are all and only
the elements of Terms⌃(A)/⌘ appearing in the term s, and the term
s{t1/[t1]⌘, . . . , tn/[tn]⌘} denotes the simultaneous substitution in s of
each of these equivalence classes with one representative.

It can be shown that, indeed, the above definitions do not depend on specific
choices of representatives of the ⌘-equivalence classes.

A monad M has an associated category of M -algebras.

Definition 2.13 (Eilenberg–Moore algebras for a monad). Let (M, ⌘, µ) be
a monad on C. An algebra for M (or M-algebra) is a pair (A,↵) where A 2 C

is an object and ↵ : M(A) ! A is a morphism such that (1) ↵�⌘A = idA and
(2) ↵�M↵ = ↵�µA hold. An M-algebra morphism between two M -algebras
(A,↵) and (A0,↵0) is a morphism f : A ! A0 in C such that f �↵ = ↵0

�M(f).
The category of M -algebras and their morphisms, denoted by EM(M), is
called the Eilenberg–Moore category for M . There is a forgetful functor
EM(M) ! C that forgets the algebra structures.

Definition 2.14 (Monad morphisms). Let (M, ⌘, µ) and (M 0, ⌘0, µ0) be two
monads on C. A monad morphism from M to M 0 is a natural transformation
� : M ) M 0 such that (1) � � ⌘M = ⌘M

0
and (2) � � µM = µM

0
� �M 0

�M�.
It is a monad isomorphism whenever each component �X : MX ! M 0X is
an isomorphism in C.

The following result is well known, e.g., it is a simple corollary of [BW05,
Theorem 6.3].

Proposition 2.15. Let (M, ⌘, µ) and (M 0, ⌘0, µ0) be two monads on a cat-
egory C. There is a monad isomorphism M ⇠= M 0 if and only if there is
an isomorphism of categories EM(M) ⇠= EM(M 0) that commutes with the
forgetful functors to C.

Monads can be defined as arising from adjunctions.9

9See, e.g., [Awo10, Chapter 9] for several equivalent definitions.
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Definition 2.16 (Adjunction). Let U : D ! C, F : C ! D be functors. F
is a left adjoint of U (notation: F a U) if there is a natural transformation
⌘ : idC ) U � F such that for any C-object X, any D-object Y and C-
morphism f : X ! U(Y ) there is an unique D-morphism g : F (X) ! Y
such that f = U(g) � ⌘X . Diagrammatically:

F (X) Y

U(F (X)) U(Y )

X

U(g)

g

⌘X
f

The natural transformation ⌘ is called the unit of the adjunction. Given
an adjunction F a U , we also have a natural transformation " : F �U ) idD,
which is called the counit of the adjunction and which satisfies the following
identities:10

U" � ⌘U = idU "F � F⌘ = idF .

Proposition 2.17. [Awo10, Proposition 10.3] Every adjunction F : C !

D a U : D ! C defines a monad (M, ⌘, µ) where:

• M is the functor U � F

• the unit ⌘ : idC ) M of the monad is the unit of the adjunction

• the multiplication µ : M2
) M is given by

µX = U("F (X))

where " : F � U ! idD is the counit of the adjunction.

As we discuss in the following section, the monad of quotiented terms from
Example 2.12 arises from the adjunction between the forgetful functor U :
Mod⌃(�) ! Set and the functor mapping sets to free objects in Mod⌃(�).

2.2.2 Free Objects

Definition 2.18 (Free object). Let U : D ! C be a functor, X 2 C, Y 2 D

and ↵ : X ! U(Y ). We say that Y is a U -free object generated by X with
respect to ↵ if the following UMP (Universal Mapping Property) holds: for

10See, e.g., [Awo10, Proposition 10.1].
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every B 2 D and every C-morphism f : X ! U(B), there exists a unique
D-morphism g : Y ! B such that f = U(g)�↵, as indicated in the following
diagram.

Y B

U(Y ) U(B)

X

U(g)

g

↵

f

We say that the category D has U -free objects if for every X 2 C there exist:

1. an object DX 2 D, and

2. a function ↵X : X ! U(DX)

such that DX is a U -free object generated by X with respect to ↵X .

If the functor U and the map ↵X are clear from the context, we just refer
to “the free object in D generated by X” instead of “U -free object generated
by X with respect to ↵X”.

Free objects, when they exist, are unique up to isomorphism.

Example 2.19. It is a standard result in universal algebra that the forgetful
functor U : Mod⌃(�) ! Set has U -free objects. Concretely, for any set A,
take the algebra F (A) = (Terms⌃(A)/⌘, {opF (A)

}op2⌃), where Terms⌃(A)/⌘
and opF (A) are defined as in Example 2.12. Then F (A) is the U -free object
generated by A with respect to the function ↵ : A ! F (A) that sends every
a 2 A to ↵(a) = [a]⌘.

The following proposition states that if U : D ! C is a functor such that
D has U -free objects, then there is a functor F , called the free functor, which
assigns to objects of C the U -free object they generate, and which gives an
adjunction F a U .

Proposition 2.20. [Mac88, §IV.1, Theorem 2.(ii)] Let U : D ! C be a
functor such that free U-objects exist in D, i.e., such that for every X 2 C

there exist an object DX 2 D and a function ↵X : X ! U(DX) such that
DX is the U-free object generated by X with respect to ↵X . Then U : D ! C

has a left adjoint F : C ! D

F a U

with F the functor mapping an object X to the U-free object DX and mapping
a morphism f : X ! Y to the unique D-morphism F (f) : F (X) ! F (Y )
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that makes the following diagram commute:

F (X) F (Y )

U(F (X)) U(F (Y ))

X

U(F (f))

F (f)

↵X

↵Y �f

From this adjunction, we can then build the monad of U -free objects, as
explained in Proposition 2.17.

Example 2.21. In Example 2.19 we have identified U -free objects, for U :
Mod⌃(�) ! Set. As explained in Proposition 2.20, we can then define a
functor F such that we obtain an adjunction F a U . By Proposition 2.17,
we have a monad with underlying functor U �F , which is exactly the monad
of quotiented terms T Set

⌃,� from Example 2.12.

2.2.3 Strict Monadicity

Proposition 2.22 (Existence of the comparison functor). Let F : C ! D a

U : D ! C be an adjunction, and let UF be the induced monad. Then there
exists a functor

K : D ! EM(UF )

called the (canonical) comparison functor.11

There are interesting cases in which this comparison functor is an isomor-
phism. In such cases, we say that the functor is strictly monadic.

Definition 2.23 (Strictly Monadic Adjunction, Strictly Monadic Functor).
Let F : C ! D a U : D ! C be an adjunction. We say that the adjunction
is strictly monadic if the comparison functor is an isomorphism. Given a
functor U : D ! C, we say that U is strictly monadic if it has a left adjoint
F such that the adjunction is strictly monadic.

The next theorem, due to Beck, gives useful equivalent characterisations
of strict monadicity relying on coequalizers.

Definition 2.24 (Coequalizer). Let A,B be two objects and f, g : A ! B
be two morphisms in C. A coequalizer of f and g is a morphism e : B ! C
satisfying e � f = e � g with the following universal property: for any other
morphism o : B ! O satisfying o � f = o � g, there is a unique morphism
! : D ! O such that ! � e = o.

11See, e.g., [Mac88, §VI.3, Theorem 1] for the construction of the comparison functor.
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Proposition 2.25. [Beck’s monadicity theorem]
Let F : C ! D a U : D ! C be an adjunction. The following are equivalent:

1. U is strictly monadic

2. U : D ! C strictly creates coequalizers for all D-arrows f, g such that
U(f), U(g) has an absolute coequalizer (in C).

3. U : D ! C strictly creates coequalizers for all D-arrows f, g such that
U(f), U(g) has a split coequalizer (in C).

where:

• an absolute coequalizer (in C) of C-arrows f, g : A ! B is a C-arrow e :
B ! C such that for all functors F , F (e) is a coequalizer of F (f), F (g).

• a split coequalizer (in C) of C-arrows f, g : A ! B is a C-arrow e : B !

C such that e � f = e � g and such that there exist arrows s : C ! B
and t : B ! A such that e � s = idC, f � t = idB and g � t = s � e.

• U : D ! C strictly creates coequalizers for the D-arrows f, g if for any
coequalizer e : U(B) ! C of U(f), U(g) (in C), there are unique D
and u : B ! D (in D) such that U(D) = C, U(u) = e and u is a
coequalizer of f, g.

For a proof of Proposition 2.25, see, e.g., [Mac88, §VI.7, Theorem 1].12

The following result is well known and its proof, which indeed relies on
the characterisations of strict monadicity given by Beck’s theorem (Proposi-
tion 2.25), can be found in [Mac88, §VI.8, Theorem 1].

Proposition 2.26. For any signature ⌃ and class � of equations over ⌃,
the functor U : Mod⌃(�) ! Set is strictly monadic.

As recalled in Example 2.21, the monad T Set
⌃,� arises from the adjunction

F a U , where U : Mod⌃(�) ! Set and F is the functor mapping sets
to U -free objects. Hence, Proposition 2.26 allows us to conclude that the
category EM(T Set

⌃,�) of Eilenberg-Moore algebras for T Set
⌃,� is isomorphic to

the category Mod⌃(�) of models of �.

Definition 2.27 (Set presentation). A presentation of a monad (M, ⌘, µ)
on Set is a class of equations � ✓ Eq(⌃) along with a monad isomorphism
T Set
⌃,�

⇠= M .

12Our Definition 2.23 of strict monadicity coincides with that used in [Mac88, p. 143],
where however it is just called monadicity. We chose to use the adjective strict as it
has become standard terminology in recent literature, where monadicity has a di↵erent
meaning (see e.g. [Rie17, p. 167]).
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Thanks to Proposition 2.15 and Proposition 2.26, when a monad M
on Set is presented by � ✓ Eq(⌃), there is an isomorphism EM(M) ⇠=
Mod⌃(�), hence, we can view M -algebras as the models of �.

2.3 Fuzzy Relations and Generalised Metric Spaces

We define here fuzzy relation spaces, which are sets equipped with a [0, 1]-
valued function (see, e.g., [Zad71]).

Definition 2.28. A fuzzy relation on a set A is a map d : A⇥A ! [0, 1]. The
pair (A, dA) is called a fuzzy relation space (often, we directly call (A, dA)
a fuzzy relation as well). A morphism between two fuzzy relation spaces
(A, dA) and (B, dB) is a map f : A ! B which is nonexpansive, namely,

8a, a0 2 A, dB(f(a), f(a
0))  dA(a, a

0).

We denote by FRel the category of fuzzy relation spaces and nonexpansive
maps.

Note that FRel has the empty fuzzy relation space (;, d;) as initial object,
where d; : ; ⇥ ; ! [0, 1] is the only map of this type (as ; ⇥ ; ⇠= ; is initial
in Set).

We denote with UFRel!Set : FRel ! Set the forgetful functor defined as
expected, and with U when no confusion arises.

We denote with DSet!FRel : Set ! FRel (or just with D if clear from
the context) the discrete functor mapping a set A 2 Set to the discrete fuzzy
relation (A, dA

?
) defined as:

8a, a0 2 A, dA
?
(a, a0) = 1

and acting as identity on morphisms f : A ! B 2 Set. We indeed note that
D(f) : (A, dA

?
) ! (B, dB

?
) is always nonexpansive, given the definition of dA

?
.

Proposition 2.29. The functor D is left adjoint to U , that is, D a U .

We will also be interested in full subcategories of FRel obtained by
restricting to fuzzy relations that satisfy certain constraints, expressed by
means of universally quantified logical implications (Horn formulas) in the
language of first-order logic.

Definition 2.30 (L -implications). Let L be the language of first-order
logic with the equality binary predicate ( = ) and with, for each ✏ 2 [0, 1],
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the binary predicate (d( , )  ✏). We call L -implications all closed formulas
H of this language that have the following shape:

H = 8x1, . . . , xn,
⇣� ^

1ik

Gi

�
) F

⌘

where the subformulas Gi and F are atomic, i.e., Gi and F are either of the
form (x = x0) or (d(x, x0)  ✏), for some ✏ 2 [0, 1] and for x, x0

2 {x1, ..., xn}.

Such formulas are interpreted on fuzzy relations (A, dA) as in standard
first-order logic, with equality ( = ) being the identity relation on A, and
the binary predicate d( , )  ✏ holding true whenever dA assigns distance
less than or equal to ✏.

Definition 2.31 (Semantics of L -implications). Given a fuzzy relation (A, dA)
and an L -implication H of the form described in Definition 2.30, we say
that (A, dA) satisfies H (notation: (A, dA) |=L H) if for all functions ◆ :
{x1, ..., xn} ! A,

if (A, dA) |=
L
◆

Gi for all 1  i  k, then (A, dA) |=
L
◆

F

where (A, dA) |=L
◆

x = x0 holds if ◆(x) = ◆(x0), and (A, dA) |=L
◆

d(x, x0)  ✏
holds if dA(◆(x), ◆(x0))  ✏.

Given a (possibly infinite) set H of L -implications, we say that (A, dA)
satisfies H, written (A, dA) |=L

H, if for all H 2 H, (A, dA) satisfies H.

Consider, for example, the following useful L -implications H:

8x, x = x =) d(x, x)  0 (1)

8x, y, d(x, y)  0 =) x = y (2)

8x, y, d(x, y)  ✏ =) d(y, x)  ✏ (3)

8x, y, z, d(x, y)  ✏ ^ d(y, z)  � =) d(x, z)  � (where � = ✏+ �)
(4)

and the setHMet consisting of all instances (for all values of ✏, � and � = ✏+�)
of these L -implications:

HMet = {Equation (1), Equation (2), Equation (3), Equation (4)}

It is easy to see that (A, dA) |=L
HMet if and only if the fuzzy relation dA

is a metric. Indeed (1) expresses that each point is at distance zero from
itself, (2) states that points at distance zero must be equal, (3) expresses
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symmetry (dA(a, b) = dA(b, a)) of the fuzzy relation and (4) expresses the
triangular inequality property. Similarly, the subset:

HPseudoMet = {Equation (1), Equation (3), Equation (4)}

is satisfied exactly by the fuzzy relations (A, dA) such that dA is a pseudo-
metric [BvBR98]. In the literature, many other generalisations of metrics
are defined as fuzzy relations satisfying a list of axioms expressible with
L -implications. Important examples include: quasimetrics [Wil31a], ul-
trametrics [BvBR98], semimetrics [Wil31b], dislocated metrics [HS00] also
called di↵use metrics in [CKPR21], rectangular metrics [Bra00] and b-metrics
[Cze93].

Definition 2.32 (GMet categories). Given a collectionH of L -implications,
we denote with GMetH (or just GMet if H is clear from the context or ab-
stracted away) the full subcategory of FRel whose objects are fuzzy relations
(A, dA) such that (A, dA) |=L

H and whose morphisms are all the nonexpan-
sive maps between them. We call objects of GMet generalised metric spaces.

Note that, in accordance with the above definition, we have that FRel =
GMet;, i.e., FRel is the special case of H being empty. Given its impor-
tance, we reserve the symbol Met for the category of metric spaces and
nonexpansive maps, i.e., Met = GMetHMet .

Given any GMet category, we denote with UGMet!Set : GMet ! Set

the forgetful functor defined as the restriction of UFRel!Set to GMet, which
we simply denote by U when no confusion arises.

Remark 2.33. The terminology “generalised metric space” has appeared in
the literature with di↵erent meanings. For instance, in [BvBR98], generalised
metric spaces are fuzzy relations satisfying reflexivity (1) and triangular in-
equality (4). Our definition is thereby a further generalisation, which also
covers as special cases the spaces considered in [BvBR98].

3 Presentation of the Framework and Results

In this section we present our framework of Universal Quantitative Alge-
bra. We will introduce it following the same pattern as in the background
Section 2.1 on Universal Algebra. We begin with the central notion of this
section, the concept of quantitative algebra.

Definition 3.1 (Quantitative Algebra). Given a signature ⌃, an FRel quan-
titative ⌃-algebra A, or just a quantitative algebra for short, is a triple
A = (A, dA, {opA}op2⌃) where:
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• (A, dA) is an FRel space, i.e., A is a set and

dA : A2
! [0, 1]

is an arbitrary map,

• (A, {opA}op2⌃) is a ⌃-algebra, i.e.,

opA : Aar(op)
! A

is an interpretation of all the operation symbols in ⌃.

Remark 3.2. Note that, in contrast with the definition in [MPP16] (and
with much subsequent literature [BMPP21, MV20, MPP17, MPP21]), under
our definition the distance dA is not required to satisfy the axioms of metric
spaces, as it can be an arbitrary fuzzy relation, and the interpretations opA of
the operations in ⌃ are not required to be nonexpansive and can be arbitrary
set-theoretical functions. See Section 9 for a more detailed comparison.

Definition 3.3 (Homomorphisms). Given a signature ⌃ and quantitative
algebras A and B,

A = (A, dA, {op
A
}op2⌃) B = (B, dB, {op

B
}op2⌃)

a homomorphism (of quantitative algebras) is a function f : A ! B such
that:

• f : (A, dA) ! (B, dB) is nonexpansive, i.e.,

dB(f(a1), f(a2))  dA(a1, a2)

for all a1, a2 2 A, and

• f is a homomorphism between the ⌃-algebras A = (A, {opA}op2⌃) and
B = (B, {opB}op2⌃), i.e.,

f(opA(a1, . . . , an)) = opB(f(a1), . . . , f(an))

for all a1, . . . , an 2 A and op 2 ⌃.

We denote with QAlg
FRel(⌃), or often just QAlg(⌃), the category of

FRel quantitative ⌃-algebras and their homomorphisms.
We denote with UQAlg(⌃)!FRel and UQAlg(⌃)!Alg(⌃) the forgetful func-

tors defined as expected, which make the following diagram (where, without
ambiguity, we denote all functors involved just by U) commute:
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QAlg(⌃) FRel

Alg(⌃) Set

U

U

U

U

Definition 3.4 (Equations and quantitative equations). An FRel ⌃-equation,
or just an equation for short, is a judgment of the form:

8(A, dA).s = t

where (A, dA) is an FRel space and s, t 2 Terms⌃(A). An FRel quantitative
⌃-equation, or just a quantitative equation for short, is a judgment of the
form:

8(A, dA).s =✏ t

where (A, dA) is an FRel space, s, t 2 Terms⌃(A) and ✏ 2 [0, 1].
We use the letters �, to range over equations and quantitative equations,

and we denote with QEq(⌃), the proper class of all FRel ⌃-equations and
quantitative ⌃-equations.

Definition 3.5 (Interpretations). Given an FRel quantitative ⌃-algebra
A = (A, dA, {opA}op2⌃) and an FRel space (B, dB), an interpretation of
(B, dB) in A is a nonexpansive function ⌧ : (B, dB) ! (A, dA). The in-
terpretation ⌧ extends uniquely to a (set-theoretic) function of type J KA

⌧
:

Terms⌃(B) ! A specified as in Definition 2.6.

In accordance with the above definition, all interpretations of quantita-
tive algebras are nonexpansive. While this prevents any confusion, we will
sometimes stress the fact that the interpretations are nonexpansive as this is
often crucial in some statements and proofs.

Definition 3.6 (Semantics of Equations and Quantitative Equations). Let
A = (A, dA, {opA}) be an FRel quantitative ⌃-algebra. Let �1 and �2 be
the following FRel ⌃-equation and quantitative ⌃-equation, respectively:

�1 = 8(B, dB).s = t �2 = 8(B, dB).s =✏ t.

We say that A satisfies �1, written A |= �1, if for all nonexpansive interpreta-
tions ⌧ : (B, dB) ! (A, dA) of (B, dB) in A, JsKA

⌧
= JtKA

⌧
holds. Similarly, we

say that A satisfies �2, written A |= �2, if for all nonexpansive interpretations
⌧ : (B, dB) ! (A, dA) of (B, dB) in A, dA(JsKA⌧ , JtKA⌧ )  ✏ holds.
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Definition 3.7 (Quantitative Equational Theory of a Class of Models). Let
K ✓ QAlg(⌃) be a class of FRel quantitative ⌃-algebras. The quantita-
tive equational theory of K is defined as the class of FRel ⌃-equations and
quantitative ⌃-equations satisfied by all quantitative algebras in K, formally:

QTh⌃(K) = {� 2 QEq(⌃) | 8A 2 K. A |= �}.

Definition 3.8 (Models and Quantitative Equationally Defined Classes).
Let � ✓ QEq(⌃) be a class of FRel ⌃-equations and quantitative ⌃-equations.
The models of � are the quantitative algebras that satisfy all equations and
quantitative equations in �, formally:

QMod⌃(�) = {A 2 QAlg(⌃) | 8� 2 �. A |= �}.

A class K ✓ QAlg(⌃) of quantitative ⌃-algebras is said to be a quantitative
equationally defined by � if K = QMod⌃(�).

Note that, accordingly, QAlg(⌃) = QMod⌃(;). With some abuse of
notation, we also denote with QMod⌃(�) the full subcategory of QAlg(⌃)
whose objects are inQMod⌃(�). In other words, QMod⌃(�) is the category
having as objects quantitative ⌃-algebras A such that A |= �, for all � 2 �,
and as morphisms all their homomorphisms of quantitative algebras.

We denote with UQMod⌃(�)!FRel the forgetful functor defined as the re-
striction of UQAlg(⌃)!FRel. As usual, this is most often just denoted by U
when no confusion arises.

Definition 3.9 (Model Theoretic Entailment Relation). Let � ✓ QEq(⌃)
be a class of FRel ⌃-equations and quantitative ⌃-equations. We define a
binary (consequence) relation13 �FRel ✓ P(QEq(⌃)) ⇥ QEq(⌃) (or just �
for short) as follows:

� �FRel � () � 2 QTh⌃(QMod⌃(�)).

Thus, the meaning of � �FRel � is that any FRel quantitative ⌃-algebra
that satisfies � (i.e., all the FRel equations and quantitative equations in
�) necessarily also satisfies �.

We can summarize the introduced notions, in relation with the corre-
sponding ones from Universal Algebra, as follows:

13As in Definition 2.10, both P(QEq(⌃)) and �FRel are collections of classes, i.e. con-
glomerates in the sense of [AHS06, 2.3].
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Universal Algebra Universal Quantitative Algebra

⌃-algebra
(A, {opA}op2⌃)

Quantitative ⌃-algebra
(A, dA, {opA}op2⌃)

Homomorphism of
⌃-algebras

(Nonexpansive) homomorphism of
quantitative ⌃-algebras

Category Alg(⌃) of
⌃-algebras

Category QAlg(⌃) of
quantitative ⌃-algebras

⌃-equation 8A.s = t
⌃-equation 8(A, dA).s = t and
quantitative ⌃-equation 8(A, dA).s =✏ t

Interpretation of
⌃-equations

(Nonexpansive) interpretation of
⌃-equations and of
quantitative ⌃-equations

Category Mod⌃(�) of
models of � ✓ Eq(⌃)

Category QMod⌃(�) of
models of � ✓ QEq(⌃)

Equational theoryTh⌃(K)
Quantitative equational theory
QTh⌃(K)

Equationally defined class
of ⌃-algebras
K = Mod⌃(�)

Quantitative equationally defined class
of quantitative ⌃-algebras
K = QMod⌃(�)

Entailment relation �Set Entailment relation �FRel

3.1 Summary of Contributions

We now give an overview of the main results that we will prove in the fol-
lowing sections.

(I) The entailment relation �FRel can be axiomatised by means of a de-
ductive system analogous to the deductive system of Birkho↵’s equa-
tional logic. More formally, there is an inductively defined relation
`FRel ✓ P(QEq(⌃))⇥QEq(⌃), specified as the smallest relation con-
taining a given set of pairs and closed under a given set of deductive
rules (see Section 4 for details), which is sound and complete with
respect to �FRel, i.e., for all � ✓ QEq(⌃) and � 2 QEq(⌃),

� `FRel �() � �FRel �.

The soundness of the deductive system (i.e., the implication � `FRel

� ) � �FRel �) is proved in Section 4. The completeness (i.e., the
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implication � �FRel � ) � `FRel �) is proved in Section 5.4, as a
consequence of our second result (Item II) below.
We recall, from the introduction, that our deductive system `FRel

has significant di↵erences with the one presented in the seminal paper
[MPP16]. A detailed discussion is available in Section 9.

(II) For every signature ⌃ and collection � ✓ QEq(⌃) of ⌃-equations and
quantitative ⌃-equations, the category QMod⌃(�) has U -free objects.
The U -free object F (A, dA) generated by (A, dA) 2 FRel can be iden-
tified (up to isomorphism of quantitative algebras) as follows:

F (A, dA) = (Terms⌃(A)/⌘,�
F (A,dA), {opF (A,dA)

}op2⌃)

where:

(a) the equivalence relation ⌘ ✓ Terms⌃(A)⇥ Terms⌃(A) is defined
as:

s ⌘ t () � `FRel 8(A, dA).s = t

(b) the fuzzy relation �F (A,dA) : (Terms⌃(A)/⌘)2 ! [0, 1] is defined
as:

�F (A,dA)([s]⌘, [t]⌘)  ✏() � `FRel 8(A, dA).s =✏ t

(c) The interpretation opF (A,dA) : (Terms⌃(A)/⌘)n ! (Terms⌃(A)/⌘)
of any n-ary operation op 2 ⌃, is defined as:

opF (A,dA)([s1]⌘, . . . , [sn]⌘) = [op(s1, . . . , sn)]⌘ .

It can be shown that the definitions of �F (A,dA) and opF (A,dA) are well
specified regardless of the choice of representatives s, t for the classes
[s]⌘, [t]⌘, and that indeed the quantitative algebra F (A, dA) belongs
to QMod⌃(�).

These results are formally stated and proved in Section 5, and they
give us the analogous of the result mentioned in Example 2.19 for
Universal Algebra.

(III) As a corollary of the two results above and of Proposition 2.20, there
is a functor F : FRel ! QMod⌃(�) which associates to each FRel

space (A, dA) the corresponding free object F (A, dA). The functor F
is a left adjoint of U :
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QMod⌃(�) FRel

U

F

a

where we just wrote U for UQMod⌃(�)!FRel to improve readability.

This adjunction gives us a monad TFRel
⌃,� on FRel, which is defined

similarly to the Set monad T Set
⌃,� of quotiented terms discussed in

Example 2.12 and Example 2.21. In Section 6 we concretely iden-
tify this adjunction and monad, and we prove that the functor U :
QMod⌃(�) ! FRel is strictly monadic, i.e., there is an isomorphism
of categories:

EM(TFRel
⌃,� ) ⇠= QMod⌃(�)

where EM(TFRel
⌃,� ) is the category of Eilenberg–Moore algebras for the

monad TFRel
⌃,� .

(IV) We identify two relevant collections of FRel monads and of classes of
equations and quantitative equations � ✓ QEq(⌃), respectively. On
one side, we consider monads M in FRel that are monad liftings of
a monad N in Set having an equational presentation  ✓ Eq(⌃).
On the other, classes of FRel equations and quantitative equations
� that are quantitative extensions of  . In Section 7, after having
defined the above notions and that of quantitative equational presen-
tation of a monad on FRel, we establish (Theorem 7.5) the following
correspondence:

(1) IfM is a monad lifting of N , thenM is presented by a quantitative
extension of  .

(2) If � is a quantitative extension of  , then � is a quantitative
equational presentation of an FRel monad that lifts N .

(V) All the results in Item I–Item IV above, stated and proved for the
category FRel, can be specialised and hold true for generalised metric
spaces, i.e., for all full subcategories GMet of FRel defined as in
Section 2.3. We show this in Section 8.

For example, it is possible to consider the category QAlg
Met(⌃) of

quantitative algebras whose underlying fuzzy relation space is a metric
space (A, dA) 2 Met. Accordingly, it is possible to define the entail-
ment relation �Met restricted to QAlg

Met(⌃) and have a sound and
complete proof system `Met. Furthermore, free quantitative algebras
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generated by metric spaces exist in QMod
Met
⌃ (�) and the forgetful

functor U : QMod
Met
⌃ (�) ! Met is strictly monadic. Finally, we

also obtain the analogous of points Item IV1 and Item IV2 above,
relating Met monads liftings and quantitative extensions.

Finally, our contributions are compared to those of the seminal work of Mar-
dare, Panangaden and Plotkin [MPP16] in Section 9.

4 The Deductive System

In this section we introduce a deductive system which can be used to derive
judgments of the form: � `FRel �, for � 2 P(QEq(⌃)) and � 2 QEq(⌃).
Thus, formally, we define by induction a relation `FRel ✓ P(QEq(⌃)) ⇥
QEq(⌃). As standard, we often use `FRel in infix notation, i.e., we write
� `FRel � for (�,�) 2 `FRel.

In the rest of this section, we will often just write ` instead of `FRel to
improve readability.

Definition 4.1. The relation `FRel ✓ P(QEq(⌃)) ⇥ QEq(⌃) is defined as
the smallest relation satisfying the following properties:

1. Closure under the INIT rule: given any � 2 P(QEq(⌃)) and � 2

QEq(⌃), if � 2 � then � ` � holds. That is:

INIT (proviso: � 2 �)
� ` �

2. Closure under the CUT rule: given any �,�0
2 P(QEq(⌃)) and  2

QEq(⌃), if we have that � ` � holds for all � 2 �0 and that �[�0
`  

holds, then � `  holds. That is:

{� ` �}�2�0 �,�0
`  

CUT
� `  

3. Closure under the WEAKENING rule: given any �,�0
2 P(QEq(⌃))

and � 2 QEq(⌃), if � ` � holds, then � [ �0
` � holds. That is:

� ` �
WEAKENING

� [ �0
` �
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4. The relation ` contains all the pairs � ` � listed below (a)–(j). These
pairs are “axiom schemes”, meaning that pairs are obtained from ax-
iom schemes by instantiating the involved fuzzy relation (A, dA), terms
s, t 2 Terms⌃(A), substitutions �, etc., to concrete ones.

(a) (REFL of =):
; ` 8(A, dA).s = s

(b) (SYMM of =):

8(A, dA).s = t ` 8(A, dA).t = s

(c) (TRANS of =):

8(A, dA).s = t, 8(A, dA).t = u ` 8(A, dA).s = u

(d) (CONG of =): for all op 2 ⌃ of arity n,

8(A, dA).s1 = t1, . . . , 8(A, dA).sn = tn ` 8(A, dA).op(s1, . . . , sn) = op(t1, . . . , tn)

(e) (SUBSTITUTION for = and =✏):
Given

• (A, dA) and (B, dB) FRel spaces,

• � : A ! Terms⌃(B), a substitution,

we have the following two similar axiom schemes: one allowing
substitution on conclusions that are equations (=) and the other
on conclusions that are quantitative equations (=✏):

 �, 8(A, dA).s = t ` 8(B, dB).�(s) = �(t)

and
 �, 8(A, dA).s =✏ t ` 8(B, dB).�(s) =✏ �(t)

where in both axiom schemes, the set  � is defined as:

 � =
�
8(B, dB).�(ai) =✏i,j �(aj) | ai, aj 2 A, ✏i,j := dA(ai, aj)

 

and where the function � : A ! Terms⌃(B) is extended to a func-
tion of type � : Terms⌃(A) ! Terms⌃(B) (which we denote with
the same symbol, abusing notation) as expected by induction on
terms, by letting �(op(s1, ..., sn)) = op(�(s1), ...�(sn)).
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(f) (USE VARIABLES): For a metric space (A, dA) and a, a0 2 A and
✏ = dA(a, a0):

; ` 8(A, dA).a =✏ a
0

(g) (UP-CLOSURE): for all ✏  �:

8(A, dA).s =✏ t ` 8(A, dA).s =� t

(h) (1-MAX):
; ` 8(A, dA).s =1 t

(i) (ORDER COMPLETENESS): For an index set I,
�
8(A, dA).s =✏i t

 
i2I

` 8(A, dA).s =inf{✏i}i2I
t

(j) (Left and Right CONGRUENCE) of = with respect to =✏:

8(A, dA).s = t, 8(A, dA).t =✏ u ` 8(A, dA).s =✏ u

and
8(A, dA).s = t, 8(A, dA).u =✏ s ` 8(A, dA).u =✏ t

The first basic result regarding the deductive system is the soundness
theorem.

Theorem 4.2 (Soundness). The inclusion `FRel ✓ �FRel holds.

Proof. To improve notation we just write ` for `FRel, as already done above,
and also � for �FRel.

Assume � ` �. We prove that � � � holds by induction on the derivation
tree used to derive � ` �.

Most cases are straightforward, including the occurrences of INIT, CUT
and WEAKENING rules and most axiom schemes, so we only detail some of
those. The only non-obvious case is the (SUBSTITUTION) axiom scheme
(e), which we will prove in full detail.

For an instance of an easy to prove axiom scheme, consider the (USE
VARIABLES) axiom scheme (f). We need to show that for an arbitrary
quantitative algebra C = (C, dC , {opC}op2⌃) we have

C |= 8(A, dA).a =✏ a
0

for any FRel space (A, dA) and a, a0 2 A with ✏ = dA(a, a0). This means
that, for any nonexpansive interpretation ⌧ : (A, dA) ! (C, dC), we need to
prove that:

dC(JaKC⌧ , Ja0KC⌧ )  ✏
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which by the definition of semantics is equivalent to

dC(⌧(a), ⌧(a
0))  ✏.

This holds since ⌧ is nonexpansive, so we have proven that the axiom scheme
is sound.

For another simple example, consider the (Left CONGRUENCE) axiom
scheme (j). We need to show that a quantitative algebra C = (C, dC , {opC}op2⌃)
satisfying all the left-side premises of the axiom, i.e.,

1. C |= 8(A, dA).s = t

2. C |= 8(A, dA).t =✏ u

necessarily also satisfies the right-side quantitative equation, i.e.,

C |= 8(A, dA).s =✏ u

Take a nonexpansive interpretation ⌧ : (A, dA) ! (C, dC). Then by the two
premises we obtain:

1. JsKC
⌧
= JtKC

⌧

2. dC(JtKC⌧ , JuKC
⌧
)  ✏

from which we immediately derive the desired conclusion:

dC(JsKC⌧ , JuKC
⌧
)  ✏.

We now proceed with the proof of soundness of the (SUBSTITUTION)
axiom scheme (e), which is the non-obvious case, as anticipated above.

Let � : A ! Terms⌃(B) be an arbitrary substitution. We need to show
that a quantitative algebra C = (C, dC , {opC}op2⌃) satisfying all the left-side
premises of (e), i.e.,

1. C |= 8(A, dA).s =✏ t

2. C |=
�
8(B, dB).�(ai) =✏i,j �(aj) | ai, aj 2 A, ✏i,j := dA(ai, aj)

 

necessarily also satisfies the right-side equation or quantitative equation (we
just consider the quantitative equation case as the two are similar), i.e.,

C |= 8(B, dB).�(s) =✏ �(t).

Towards this end, take an arbitrary nonexpansive interpretation:

⌧ : (B, dB) ! (C, dC).
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From the interpretation ⌧ and the substitution �, we define a new interpre-
tation �̂ as follows:

�̂ : (A, dA) ! (C, dC) �̂(a) := J�(a)KC
⌧
.

Before proceeding further, we need to show that �̂ is nonexpansive. So, take
any a, a0 2 A and assume dA(a, a0) = �. Since (from the second hypothesis):

C |= 8(B, dB).�(a) =� �(a
0)

it holds (taking the interpretation ⌧) that:

dC(J�(a)KC⌧ , J�(a0)KC⌧ )  �

By definition of �̂, this means that:

dC(�̂(a), �̂(a
0))  �,

which concludes the proof that �̂ is nonexpansive.
From the first hypothesis (i.e., C |= 8(A, dA).s =✏ t) and taking as inter-

pretation �̂, we know that:

dC
�
JsKC

�̂
, JtKC

�̂

�
 ✏.

It is now su�cient to observe that:

J�(s)KC
⌧
= JsKC

�̂
J�(t)KC

⌧
= JtKC

�̂

from which we derive that:

dC
�
J�(s)KC

⌧
, J�(t)KC

⌧

�
 ✏.

Since ⌧ was chosen as an arbitrary nonexpansive interpretation, we can derive
the desired:

C |= 8(A, dA).�(s) =✏ �(t).

The above proof of soundness is rather direct and simple. Proving the
opposite direction, i.e., the completeness theorem, in contrast requires more
work. Indeed we will use the proof system `FRel to construct free objects
in QMod⌃(�), prove some results about such free objects and finally derive
the completeness result.

Our results regarding free objects in QMod⌃(�) are presented in Sec-
tion 5. The completeness Theorem 5.17 is also established in that section,
as a corollary.
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5 Free Quantitative Algebras

In the following, we fix a signature ⌃ and a class of FRel (quantitative)
⌃-equations � ✓ QEq(⌃). Let us denote by U the forgetful functor:

U : QMod⌃(�) ! FRel

which acts on objects as:

(A, dA, {op
A
}op2⌃) 7! (A, dA)

and as identity on morphisms.
We are going to prove the following statement using (the soundness of)

the deductive system `FRel as main tool. Recall that free objects are defined
as in Definition 2.18.

Theorem 5.1. For every (A, dA) 2 FRel the U-free object generated by
(A, dA) exists in QMod⌃(�).

The proof of this statement occupies the rest of this section.
Let us fix an arbitrary (A, dA) 2 FRel. We are going to explicitly con-

struct the U -free object in QMod⌃(�), denoted by F (A, dA), with respect
to a nonexpansive map

↵ : (A, dA) ! U(F (A, dA))

defined later on in Lemma 5.13.
First, consider the case when (A, dA) = (;, d;) and ⌃ does not contain

any constant, i.e., the case when Terms⌃(A) = ;. In this specific case it is
easy to verify, using the fact that (;, d;) is initial in FRel, that the empty
quantitative algebra (operations op; are uniquely determined by initiality of
; in Set):

(;, d;, {op
;
}op2⌃)

is the U -free object generated by (;, d;) relative to the (unique of this type)
nonexpansive map: ↵ : (;, d;) ! (;, d;).

Now, for the other cases, assume that either (A, dA) 6= (;, d;) or that ⌃
contains some constants, i.e., the case when Terms⌃(A) 6= ;.

We are going to proceed as follows:

1. (Section 5.1) Formally define the quantitative algebra F (A, dA) 2 QAlg
FRel(⌃).

2. (Section 5.2) Prove that, indeed, F (A, dA) belongs to QMod⌃(�). In
other words, we show that F (A, dA) satisfies all the FRel equations
and quantitative equations in �.
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3. (Section 5.3) Finally, define the map

↵ : (A, dA) ! U(F (A, dA))

and show that F (A, dA) satisfies the universal property (from Defini-
tion 2.18) defining the (unique, up to isomorphism) free algebra gener-
ated by (A, dA).

5.1 Definition of F (A, dA)

We recall that, by the soundness (Theorem 4.2) of the deductive system,
whenever � `FRel � holds, also � �FRel � holds. We denote the relation
`FRel just with ` to improve readability.

We start by defining a binary relation (⌘):

⌘ ✓ Terms⌃(A)⇥ Terms⌃(A)

and a fuzzy relation (d):

d : Terms⌃(A)⇥ Terms⌃(A) ! [0, 1]

on the set of terms Terms⌃(A) built from A, as follows.

Definition 5.2. We define ⌘ as follows, for all s, t 2 Terms⌃(A):

s ⌘ t , � ` 8(A, dA).s = t.

We define d as follows, for all s, t 2 Terms⌃(A):

d(s, t) = inf
✏

�
� ` 8(A, dA).s =✏ t

 
.

Lemma 5.3. The relation ⌘ is an equivalence relation.

Proof. This is due to the presence in the deductive system of the axiom
schemes: (REFL of =) (a), (SYMM of =) (b) and (TRANS of =) (c).

Lemma 5.4. The relation ⌘ is a congruence relation:

s1 ⌘ t1, . . . , sn ⌘ tn ) op(s1, . . . , sn) ⌘ op(t1, . . . , tn)

for all op 2 ⌃ and s1, t1, . . . , sn, tn 2 Terms⌃(A).

Proof. This is due to the presence in the system of the (CONG of =) axiom
scheme (d).
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Lemma 5.5. The function d is a fuzzy relation on Terms⌃(A) and satisfies:

d(s, t) = ✏ =) � ` 8(A, dA).s =✏ t.

Proof. The fact that d is a fuzzy relation (i.e., a function of type (Terms⌃(A))2 !
[0, 1]) follows from the (1-MAX) axiom scheme (h) (d is defined on all pairs
of terms, with d(s, t)  1) and the fact that all ✏’s are positive (hence
d(s, t) � 0).

The property:

d(s, t) = ✏ =) � ` 8(A, dA).s =✏ t

follows from the presence of the (ORDER COMPLETENESS) axiom scheme
(i).

The following technical lemma relates the proof system (`) with the def-
inition of the fuzzy relation d.

Lemma 5.6. � ` 8(A, dA).s =✏ t () d(s, t)  ✏.

Proof. The ()) direction follows immediately from the definition of d as an
infimum.

For the (() direction, assume d(s, t)  ✏. Let d(s, t) = � with �  ✏.
As we already established in Lemma 5.5,

d(s, t) = � =) � ` 8(A, dA).s =� t

holds and therefore we deduce that:

� ` 8(A, dA).s =� t

holds. From this, using the (UP-CLOSURE) axiom scheme (g), we can derive
(within the deductive system `, using other rules such as the CUT rule):

� ` 8(A, dA).s =✏ t

as desired.

The following technical lemma shows that the fuzzy relation d is compat-
ible with the equivalence relation ⌘.

Lemma 5.7. The equivalence relation ⌘ is a left and right congruence with
respect to the fuzzy relation d, in the following sense: for all s, t, u 2 Terms⌃(A):

s ⌘ t and d(t, u)  ✏ =) d(s, u)  ✏

and
s ⌘ t and d(u, s)  ✏ =) d(u, t)  ✏.
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Proof. We just consider the first implication (left-congruence) as the other
case is similar. Assume s ⌘ t and d(t, u)  ✏. By definition of ⌘ and by
Lemma 5.6 this means that:

� ` 8(A, dA).s = t � ` 8(A, dA).t =✏ u

Using the (Left CONGRUENCE) axiom scheme (j) we obtain that

� ` 8(A, dA).s =✏ u,

and from this we derive, by definition of d, that

d(s, u)  ✏.

Since we have established that ⌘ is an equivalence relation, the quotient
Terms⌃(A)/⌘, consisting of ⌘-equivalence classes, is well-defined. Further-
more, the equivalence ⌘ is a left and right congruence for the fuzzy relation
d. This implies that the following is a good definition, regardless of the choice
of representatives.

Definition 5.8. The fuzzy relation � : (Terms⌃(A)/⌘ ⇥ Terms⌃(A)/⌘) !
[0, 1] is defined as:

�([s]⌘, [t]⌘) = d(s, t).

Moreover, since we have already established in Lemma 5.4 that ⌘ is
a congruence on Terms⌃(A), the interpretation opF (A,dA) of each operation
op 2 ⌃ specified as:

opF (A,dA)
�
[s1]⌘, . . . , [sn]⌘

�
= [op(s1, . . . , sn)]⌘

is well-defined and does not depend on a specific choice of representatives for
the equivalence classes.

We can collect the results of this subsection as follows:

Corollary 5.9. The structure (Terms⌃(A)/⌘,�, {opF (A,dA)
}op2⌃) is a quan-

titative ⌃-algebra.

The quantitative algebra identified above is our definition of F (A, dA).

Definition 5.10. The quantitative algebra F (A, dA) is defined as:

F (A, dA) = (Terms⌃(A)/⌘,�, {opF (A,dA)
}op2⌃).
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Sometimes, to improve notation, we will explicitly identify some relevant
parameters involved in the construction of the quantitative algebra (such as
�, (A, dA) and ⌃). For example we will write:

F (B, dB) = (Terms⌃(B)/⌘,�
F (B,dB), {opF (B,dB)

}op2⌃)

to highlight that the fuzzy relation �F (B,dB) is the one associated with (B, dB).
Note that also the relation ⌘ is parametric with respect to the generating
fuzzy relation space.

5.2 Proof that F (A, dA) 2 QMod⌃(�)

We show in Lemma 5.12 below that the quantitative algebra F (A, dA) con-
structed from (A, dA), as in the previous Section 5.1, satisfies all FRel equa-
tions and quantitative equations in �.

The proof exploits the following property of F (A, dA).

Lemma 5.11. Assume Terms⌃(A) 6= ;. Let ⌧ : X ! Terms⌃(A)/⌘ be a
function. Let c : Terms⌃(A)/⌘ ! Terms⌃(A) be a choice function, i.e., such
that c([s]⌘) 2 [s]⌘, thus choosing an element s 2 Terms⌃(A) for each ⌘-
equivalence class [s]⌘ 2 Terms⌃(A)/⌘. Note that one such c exists by the
axiom of choice. Define �⌧ : X ! Terms⌃(A) as: �⌧ (x) = c(⌧(x)). Then,
for all s 2 Terms⌃(A), it holds that:

JsKF (A,dA)
⌧

= [�⌧ (s)]⌘

where �⌧ (s) is the term obtained by applying the substitution �⌧ to s.

Proof. The proof is by induction on s. For s = x, the result is immediate by
definition of �⌧ , i.e.,

JxKF (A,dA)
⌧

= ⌧(x) = [�⌧ (x)]⌘.

For s = op(s1, ...sn), we have

JsKF (A,dA)
⌧

= opF (A,dA)(Js1KF (A,dA)
⌧

, ..., JsnKF (A,dA)
⌧

) (by definition of J K)
= opF (A,dA)([�⌧ (s1)]⌘, ..., [�⌧ (sn)]⌘) (by inductive hypothesis)

= [op(�⌧ (s1), ..., �⌧ (sn)]⌘ (by definition of opF (A,dA))

= [�⌧ (op(s1, ..., sn))]⌘ (by definition of �⌧ on terms).

Lemma 5.12. It holds that: F (A, dA) 2 QMod⌃(�).
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Proof. Let

F (A, dA) =
�
Terms⌃(A)/⌘,�, {opF (A,dA)

}op2⌃

�

as specified in Definition 5.10 of the previous Section 5.1.
We need to show that if � 2 � with:

� = 8(X, dX).s = t equation

or
� = 8(X, dX).s =✏ t quantitative equation

for some FRel space (X, dX) and terms s, t 2 Terms⌃(X), then

F (A, dA) |= � .

Therefore, we need to show that for every nonexpansive interpretation
⌧ : (X, dX) ! (Terms⌃(A)/⌘,�), it holds that:

JsKF (A,dA)
⌧

= JtKF (A,dA)
⌧

equation

or
�
⇣
JsKF (A,dA)

⌧
, JtKF (A,dA)

⌧

⌘
 ✏ quantitative equation

or equivalently, by applying Lemma 5.11 where we take �⌧ defined as in
the lemma, we need to show that:

[�⌧ (s)]⌘ = [�⌧ (t)]⌘ equation

or
�
⇣
[�⌧ (s)]⌘ , [�⌧ (t)]⌘

⌘
 ✏ quantitative equation

which in turn, by definition of the equivalence relation ⌘ and of � (which is
defined in Definition 5.8 in terms of the fuzzy relation d), means that:

�⌧ (s) ⌘ �⌧ (t) equation

or
d
�
�⌧ (s), �⌧ (t)

�
 ✏ quantitative equation.

Hence, by unfolding the definitions of ⌘ and d (Definition 5.2), we need to
show that:

� ` 8(A, dA). �⌧ (s) = �⌧ (t) equation

or
� ` 8(A, dA). �⌧ (s) =✏ �⌧ (t) quantitative equation
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is derivable.
We just consider below the case when � is a quantitative equation, the

other case (� is an equation) is identical, just using the appropriate ver-
sion of the (SUBSTITUTION) axiom scheme (e). The assumption that ⌧ is
nonexpansive means that for all xi, xj 2 X:

dX(xi, xj)  ✏ij =) �(JxiKF (A,dA)
⌧

, JxjKF (A,dA)
⌧

)  ✏ij

which by Lemma 5.11 is equivalent to

dX(xi, xj)  ✏ij =) �([�⌧ (xi)]⌘, [�⌧ (xj)]⌘)  ✏ij

By definition of �, d and Lemma 5.6, this gives us:

dX(xi, xj)  ✏✏ij =) � ` 8(A, dA).�⌧ (xi) =✏ij �⌧ (xj). (5)

We know that:

(I) Since 8(X, dX).s =✏ t belongs to �, by the INIT rule we have:

� ` 8(X, dX).s =✏ t

(II) By (5) we have all of the following judgments:
�

� ` 8(A, dA).�⌧ (xi) =✏ij �⌧ (xj) | xi, xj 2 X, ✏ij := dX(xi, xj)
 

Note that, using �⌧ as substitution, (I) and (II) above constitute the
premises of the (SUBSTITUTION) axiom scheme (quantitative equation in-
stance of (e)), which we restate here for convenience14:

 ` 8(A, dA).�⌧ (s) =✏ �⌧ (t)

where

 =
�
8(A, dA).�⌧ (xi) =✏ij �⌧ (xj) | xi, xj 2 X, ✏ij := dX(xi, xj)

 
[{8(X, dX).s =✏ t}.

From which we can derive the desired:

� ` 8(A, dA).�⌧ (s) =✏ �⌧ (t)

as follows:

(I) (II)
SUBST

 ` 8(A, dA).�⌧ (s) =✏ �⌧ (t)
CUT

� ` 8(A, dA).�⌧ (s) =✏ �⌧ (t)

14Compared to the version presented in the list of axioms of the proof system, apply
the renaming A ! X and B ! A.
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5.3 Proof of freeness of F (A, dA)

We now show that the quantitative algebra

F (A, dA) = (Terms⌃(A)/⌘,�, {opF (A,dA)
}op2⌃).

constructed as specified in Definition 5.10 is indeed the free object inQMod⌃(�)
generated by (A, dA). We first observe that the map (a 7! [a]⌘) is nonexpan-
sive.

Lemma 5.13. The map ↵ : (A, dA) ! (Terms⌃(A)/⌘,�) defined as:

↵(a) = [a]⌘

for all a 2 A, is nonexpansive.

Proof. If (A, dA) = (;, d;) the function ↵ is trivially nonexpansive. Other-
wise, fix arbitrary a1, a2 2 A and assume dA(a1, a2) = ✏. We need to prove
that:

�([a1]⌘, [a2]⌘)  ✏

This follows from the definition of �, Lemma 5.6, and the presence in the
proof system of the (USE VARIABLES) axiom scheme (f).

Remark 5.14. We note that the map ↵ is generally not an isometry (i.e.,
distance preserving) nor an injection, although it is in many interesting cases.
For example, consider the case when the generating fuzzy relation space
(A, dA) is defined as follows:

A = {a1, a2} dA(a1, a2) = dA(a2, a1) =
1

2
dA(a1, a1) = dA(a2, a2) = 0

i.e., it is a metric space consisting of two points at distance 1
2 , the signature

⌃ is empty, and the set � = {8(A, dA).a1 = a2} consists of just one FRel

equation. In this case it is easy to check that Terms⌃(A)/⌘ has a single
element (i.e., all terms in Terms⌃(A) are ⌘-equivalent), and thus the map ↵
is neither an injection nor an isometry.

Recall that U : QMod⌃(�) ! FRel is the forgetful functor which maps
a quantitative algebra to its underlying fuzzy relation space. We are now
ready to proceed with the proof that F (A, dA) is the U -free object generated
by (A, dA) relative to the map ↵ : (A, dA) ! (Terms⌃(A)/⌘,�) defined
earlier, in the sense of Definition 2.18.
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Theorem 5.15. Let U : QMod⌃(�) ! FRel. The quantitative algebra
F (A, dA) is the U-free object generated by (A, dA) relative to the map ↵ :
(A, dA) ! (Terms⌃(A)/⌘,�)

a
↵
7! [a]⌘.

Proof. We need to show that for every quantitative algebra B 2 QMod⌃(�)

B = (B, dB, {op
B
}op2⌃)

and nonexpansive map

f : (A, dA) ! (B, dB)

there is a unique homomorphism of quantitative algebras

f̂ : F (A, dA) ! B

which extends f , i.e., which satisfies f = U(f̂) � ↵.
In the remainder of the proof we will generally omit the explicit use of

the forgetful functors on morphisms, i.e., we will often write the same symbol
to denote a function f seen as a set function, or as a morphism of metric
spaces, or as a morphism of quantitative algebras.

We proceed as follows. First (Existence) we exhibit a nonexpansive ho-
momorphism f̂ : F (A, dA) ! B, then (Extension) we show that f̂ extends f ,
and lastly (Uniqueness) we show that f̂ is the unique such homomorphism.

Existence. Recall that, by definition, we have

F (A, dA) = (Terms⌃(A)/⌘,�, {opF (A,dA)
}op2⌃).

For all terms s 2 Terms⌃(A), define f̂ as

f̂([s]⌘) := JsKB
f

Before moving on, we need to establish that this is well-defined, i.e., that it
does not depend on any choice of representative s for the class [s]⌘.

To see this, observe that if s ⌘ t then, by definition of the relation (⌘),
it holds that � ` 8(A, dA).s = t. By the soundness (Theorem 4.2) of the
deductive system, we have that

8(A, dA).s = t 2 QTh⌃(QMod⌃(�))

Since B 2 QMod⌃(�) by hypothesis, this means that

B |= 8(A, dA).s = t

and, in particular taking f : (A, dA) ! (B, dB) as (nonexpansive) interpre-
tation, it holds that JsKB

f
= JtKB

f
. Hence f̂ is well-defined as a function.

It remains to show that:
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1. f̂ is a homomorphism and,

2. f̂ is nonexpansive.

The first follows from the interpretation opF (A,dA) of the operations in F (A, dA)
as follows:

f̂(opF (A,dA)([s1]⌘, ..., [sn]⌘)) = f̂([op(s1, ..., sn)]⌘)

= Jop(s1, ..., sn)KBf
= opB(Js1KBf , ..., JsnKBf )
= opB(f̂([s1]⌘), ..., f̂([sn]⌘)).

Regarding the second point (nonexpansiveness), take two arbitrary [s]⌘, [t]⌘ 2

Terms⌃(A)/⌘ and let �([s]⌘, [t]⌘) = ✏ be their distance in F (A, dA). We need
to show that

dB
�
f̂([s]⌘), f̂([t]⌘)

�
 ✏.

As established in Lemma 5.6, the hypothesis �([s]⌘, [t]⌘) = ✏ implies that:

� ` 8(A, dA).s =✏ t

From the soundness of the deductive system (Theorem 4.2), we therefore
know that:

8(A, dA).s =✏ t 2 QTh⌃(QMod⌃(�))

and since B 2 QMod⌃(�) by hypothesis, we deduce that:

B |= 8(A, dA).s =✏ t

Taking as nonexpansive interpretation f : (A, dA) ! (B, dB) we therefore
obtain that: dB(JsKBf , JtKBf )  ✏. By the definition of f̂ we have

f̂([s]⌘) = JsKB
f

and f̂([t]⌘) = JtKB
f

so we conclude as desired that

dB(f̂([s]⌘), f̂([t]⌘))  ✏.

Extension. We need to show that f = f̂ � ↵. For any a 2 A, we have
�
f̂ � ↵

�
(a) = f̂(↵(a))

= f̂([a]⌘) (definition of ↵)

= JaKB
f

(definition of f̂)

= f(a) (definition of J KB
f
)
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Uniqueness. Let g : F (A, dA) ! B be another nonexpansive homomor-
phism extending f : (A, dA) ! (B, dB), i.e., f = g � ↵. We now prove that
for all s 2 Terms⌃(A) it holds that: g([s]⌘) = f̂([s]⌘).

Again, this follows from the interpretation of the operations in F (A, dA).
Formally, the proof goes by induction on the structure of s as follows:

The base case (s = a) is immediate, as both g and f̂ extend f , i.e.,

g([a]⌘) = g � ↵(a) = f(a) = f̂ � ↵(a) = f̂([a]⌘)

For the inductive case we use the fact that g and f̂ are homomorphisms,
together with the inductive hypothesis:

g([op(s1, ..., sn)]⌘) = g(opF (A,dA)([s1]⌘, ..., [sn]⌘))

= opB(g([s1]⌘), ..., g([sn]⌘))

= opB(f̂([s1]⌘), ..., f̂([sn]⌘))

= f̂(opF (A,dA)([s1]⌘, ..., [sn]⌘))

= f̂([op(s1, ..., sn)]⌘).

5.4 Completeness of the Deductive System

By exploiting the existence of free objects, we can now establish the com-
pleteness of the deductive system `FRel, Theorem 5.17 below.

The proof relies on the following property of F (A, dA), which, as we have
seen, is the U -free object (here U is U : QMod⌃(�) ! FRel) generated
by the FRel space (A, dA) relative to the nonexpansive map ↵ : (A, dA) !
F (A, dA).

Lemma 5.16. For all s, t 2 Terms⌃(A),

if JsKF (A,dA)
↵

= JtKF (A,dA)
↵

then � `FRel 8(A, dA).s = t

and
if �(JsKF (A,dA)

↵
, JtKF (A,dA)

↵
)  ✏ then � `FRel 8(A, dA).s =✏ t.

Proof. First, consider the case when Terms⌃(A) = ;, i.e., when A = ; and
⌃ does not contain any constant. In this case the statement of the lemma
trivially holds as the universal quantification on terms is empty.

Now assume Terms⌃(A) 6= ;.

For the equation case, suppose that the equality JsKF (A,dA)
↵ = JtKF (A,dA)

↵

holds. Note that by Lemma 5.11, where we instantiate ⌧ with ↵, we have
JsKF (A,dA)

↵ = [�↵(s)]⌘, where �↵ : A ! Terms⌃(A) is a choice function for ↵
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as required in the lemma. Since �↵ maps elements of A to terms in their ⌘-
equivalence class, by the definition of ⌘ (Definition 5.2) and by the (CONG
of =) axiom scheme (d) we derive that � ` 8(A, dA).�↵(s) = s. Thus by the
definition of ⌘ we have:

JsKF (A,dA)
↵

= [�↵(s)]⌘ = [s]⌘.

Analogously, we derive that JtKF (A,dA)
↵ = [t]⌘. Hence, [s]⌘ = [t]⌘, which by

definition of ⌘ means � ` 8(A, dA).s = t.
Similarly, for the quantitative equation case, we have that the inequality

�(JsKF (A,dA)
↵ , JtKF (A,dA)

↵ )  ✏ implies, by Lemma 5.11 as above, �([s]⌘, [t]⌘) 
✏. Then, by the definition of � as d (Definition 5.8 and Definition 5.2) and
by Lemma 5.6, we conclude � ` 8(A, dA).s =✏ t.

We can now prove the completeness theorem.

Theorem 5.17 (Completeness of the deductive system). Fix a signature ⌃
and a class � ✓ QEq(⌃) of equations and quantitative equations. For all
� 2 QEq(⌃):

If � �FRel � then � `FRel �.

Proof. Let us consider first the case of � being an equation of the form � :=
8(A, dA).s = t, for some FRel space (A, dA) and terms s, t 2 Terms⌃(A).

Note that since s, t 2 Terms⌃(A), it must be the case that Terms⌃(A) 6= ;.
By the free algebra Theorem 5.15 we know that

F (A, dA) = (Terms⌃(A)/⌘,�, {opF (A,dA)
}op2⌃)

is the UQMod⌃(�)!FRel-free object generated by (A, dA) relative to the non-
expansive map ↵ : (A, dA) ! (Terms⌃(A)/⌘,�) defined as: ↵(a) = [a]⌘.

By definition of the entailment relation (�FRel) the hypothesis � �FRel �
implies that for all B 2 QMod⌃(�) and for all nonexpansive interpreta-
tions ⌧ : (A, dA) ! (B, dB) it holds JsKB

⌧
= JtKB

⌧
. Hence, since F (A, dA) 2

QMod⌃(�) and ↵ is nonexpansive, we have JsKF (A,dA)
↵ = JtKF (A,dA)

↵ . Then by
Lemma 5.16 we conclude that � `FRel 8(A, dA).s = t.

Analogously, for quantitative equations, if � is of the form 8(A, dA).s =✏

t then we derive from � �FRel � that �(JsKF (A,dA)
↵ , JtKF (A,dA)

↵ )  ✏. By
Lemma 5.16 we conclude � `FRel 8(A, dA).s =✏ t.

Corollary 5.18 (Soundness and Completeness). Fix a signature ⌃ and a
class � ✓ QEq(⌃). For all equations and quantitative equations � 2 QEq(⌃):

� �FRel � () � `FRel �.
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6 The Free-Forgetful Adjunction and Strict

Monadicity

By relying on the construction of free objects shown in Section 5, we identify
in this section the free-forgetful adjunction arising from it, together with the
associated monad. We then proceed to prove the strict monadicity of the
adjunction.

Recall from Proposition 2.20 in Section 2.2 that, given a functor U : D !

C such that D has U -free objects, there is a functor F : C ! D which assigns
to each element of C its corresponding U -free object, and which gives an
adjunction F a U and a monad with functor U � F .

We have seen in Section 5 that the forgetful functor U : QMod⌃(�) !
FRel has U -free objects, identified (up to isomorphism) as the quantitative
algebras of quotiented terms. Hence, using the recipe from Proposition 2.20
we obtain the adjunction F a U , where F is the functor mapping each FRel

space (A, dA) to the free quantitative algebra of quotiented terms F (A, dA) =
(Terms⌃(A)/⌘A ,�

F (A,dA), {opF (A,dA)
}op2⌃). For a nonexpansive function f :

(A, dA) ! (B, dB), the functor F gives the nonexpansive homomorphism
of quantitative algebras F (f) : F (A, dA) ! F (B, dB) which is the unique
homomorphic extension of f . This means that once the forgetful functor U
is applied, i.e., when seen as a (nonexpansive) function on terms, it can be
defined by induction on t 2 Terms⌃(A) as follows:

UF (f)([a]⌘A) = [f(a)]⌘B

and

UF (f)([op(t1, ..., tn)]⌘A) = opF (B,dB)(UF (f)([t1]⌘A)), ..., UF (f)([tn]⌘A)).

We denote the obtained FRel monad on UF (by Proposition 2.17) by
TFRel
⌃,� , and we can describe it concretely as follows.

• The functor TFRel
⌃,� = U � F maps an object (A, dA) to

TFRel
⌃,� (A, dA) = (Terms⌃(A)/⌘A ,�

F (A,dA))

and a morphism f : (A, dA) ! (B, dB) to

TFRel
⌃,� (f) : (Terms⌃(A)/⌘A ,�

F (A,dA)) ! (Terms⌃(B)/⌘B ,�
F (B,dB))

where TFRel
⌃,� (f)([t]⌘A) = UF (f)([t]⌘A) is the nonexpansive homomor-

phism which can be specified by induction on terms t as above.

44



• The unit ⌘ is given by the unit of the adjunction, i.e., for every (A, dA) 2
FRel we have that ⌘(A,dA) is the function ↵(A,dA) (see Lemma 5.13) given
together with the free object F (A, dA) in Section 5. Concretely, this is
the function assigning to a 2 A the equivalence class [a]⌘A .

• The multiplication µ of the monad is given as µ(A,dA) = U("F (A,dA)),
where " is the counit of the adjunction. We now show that, for [t]⌘F (A,dA)

2

Terms⌃(Terms⌃(A)/⌘A)⌘F (A,dA)
, the multiplication behaves as the func-

tion substituting each occurrence of an equivalence class of terms in t
with a representative of the class, thus “flattening” the term as follows:

µ(A,dA)

⇣⇥
t
�
[t1]⌘A , . . . , [tn]⌘A

�⇤
⌘F (A,dA)

⌘
= [t(t1, . . . , tn)]⌘A .

This can be seen as follows where, to improve readability, we just write
⌘ for ⌘F (A,dA). For t 2 Terms⌃(Terms⌃(A)/⌘A) of the form t = [t0]⌘A ,
for some [t0]⌘A 2 Terms⌃(A)/⌘A , we have:

µ(A,dA)([t]⌘) = µ(A,dA)([[t
0]⌘A ]⌘)

= U("F (A,dA))([[t
0]⌘A ]⌘)

= U("F (A,dA)) � ⌘UF (A,dA)([t
0]⌘A)

= idUF (A,dA)([t
0]⌘A)

= [t0]⌘A

where the second to last equation follows from the properties of the
unit-counit triangle identities of the adjunction (see Section 2.2). For
t 2 Terms⌃(Terms⌃(A)/⌘A) of the form t = op(t1, . . . , tn), for some
t1, . . . , tn 2 Terms⌃(Terms⌃(A)/⌘A), we have:

µ(A,dA)([t]⌘) = µ(A,dA)

⇣
[op(t1, ...tn)]⌘

⌘

= U("F (A,dA))
⇣
[op(t1, ...tn)]⌘

⌘

= U("F (A,dA))
⇣
opF

�
U(F (A,dA))

�
([t1]⌘, ..., [tn]⌘)

⌘

= opF (A,dA)
⇣
U("F (A,dA))([t1]⌘), ..., U("F (A,dA))([tn]⌘)

⌘

= opF (A,dA)
⇣
µ(A,dA)([t1]⌘), ..., µ(A,dA)([tn]⌘)

⌘

where we exploit the fact that "F (A,dA) is a homomorphism.

We now proceed to prove that the forgetful functor U : QMod⌃(�) !
FRel is strictly monadic (see Definition 2.23), i.e., that there is an isomor-
phism of categories:

EM(TFRel
⌃,� ) ⇠= QMod⌃(�)
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whereEM(TFRel
⌃,� ) is the Eilenberg–Moore category ofM (see Definition 2.13).

We will prove in Theorem 6.3 that U : QMod⌃(�) ! FRel satisfies
the condition (3) of Beck’s theorem (Proposition 2.25), from which we con-
clude by Beck’s theorem that it is strictly monadic. In order to do so,
we first consider the special case when � = ;. In this case we recall
that QMod⌃(;) = QAlg(⌃) consists of the category of all quantitative
⌃-algebras.

Theorem 6.1. The forgetful functor U; : QAlg(⌃) ! FRel is strictly
monadic.

Sketch. It is enough to prove that the forgetful functor U; : QAlg(⌃) !

FRel strictly creates coequalizers for all QAlg(⌃)-arrows f, g such that
U;(f), U;(g) has an absolute coequalizer (in FRel). From this we derive,
by Beck’s theorem (Proposition 2.25), that U; is strictly monadic. The ar-
gument follows the structure of the proof of [Mac88, §VI.8, Theorem 1],
i.e., of the analogous result for Set. A fully detailed proof is available in
[MSV23].

We are now going to use the above result, which deals with the special
case � = ;, to prove Theorem 6.3 in its full generality, showing that the
functor U : QMod⌃(�) ! FRel is strictly monadic for arbitrary �.

The proof is a generalisation of the analogous result in [Adá22, Theorem
2.17], which proves strict monadicity in the framework of [MPP16]. In par-
ticular, we prove that U satisfies the condition (3) of Beck’s theorem, i.e.,
in contrast with Theorem 6.1, we use split coequalizers instead of absolute
coequalizers. We do so since split coequalizers guarantee the existence of a
right inverse of the coequalizer, which allows us to apply the following fact
(Lemma 6.2): QMod⌃(�) is closed under the images of homomorphisms
that have a right inverse in FRel.

Recall that, given f : A ! B and g : B ! A, we say that g is a right
inverse of f if f � g = idA. Note that if f has a right inverse g, then f is
surjective.

Lemma 6.2. Let A = (A, dA, {opA}op2⌃) be a quantitative algebra in QMod⌃(�),
for some class of FRel equations and quantitative equations � ✓ QEq(⌃),
and let B = (B, dB, {opB}op2⌃) be in QAlg(⌃). If there is a homomorphism
of quantitative algebras f : A ! B such that U(f) has a nonexpansive right
inverse g : (B, dB) ! (A, dA) then B is in QMod⌃(�).

Proof. We need to show that, under the hypothesis of the statement, for
every � 2 �:

B |= �
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holds. We first consider the case of � being an equation:

� = 8(X, dX).s = t

for some FRel space (X, dX) and terms s, t 2 Terms⌃(X).
By definition (of B |= �), we need to show that JsKB

⌧
= JtKB

⌧
, for all

nonexpansive interpretations ⌧ : (X, dX) ! (B, dB).
Let ⌧ : (X, dX) ! (B, dB) be such an interpretation. Then g � ⌧ :

(X, dX) ! (A, dA) is an interpretation in A (which is nonexpansive as FRel

is a category and thus the composition of nonexpansive functions is nonex-
pansive). We prove that for any term r 2 Terms⌃(X) (and so, in particular,
s and t) it holds that:

U(f)(JrKA
g�⌧

) = JrKB
⌧

(6)

The proof is by induction on r:

• if r = x then we have U(f)(JxKA
g�⌧

) = U(f) � g � ⌧(x) = ⌧(x) = JxKB
⌧

since g is a right inverse of U(f), i.e., U(f) � g = idB.

• if r = op(r1, ..., rn) then we have

U(f)(JrKA
g�⌧

) = U(f)(opA(Jr1KAg�⌧ , ..., JrnKAg�⌧ ))
= opB(U(f)(Jr1KAg�⌧ ), ..., U(f)(JrnKAg�⌧ ))

(by U(f) a homomorphism)

= opB(Jr1KB⌧ , ..., JrnKB⌧ )) (by inductive hypothesis)

= JrKB
⌧

We now conclude the proof that B satisfies the equation under the interpre-
tation ⌧ . Since, by hypothesis, A is a model of �, we know that A |= � and
therefore:

JsKA
g�⌧

= JtKA
g�⌧

(7)

Then, we derive:

JsKB
⌧
= U(f)(JsKA

g�⌧
) (by (6))

= U(f)(JtKA
g�⌧

) (by (7))

= JtKB
⌧

(by (6))

We now consider the case of quantitative equations � 2 � of the form:

� = 8(X, dX).s =✏ t.
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Since, by hypothesis A is a model of �, we know that A |= � and therefore:

dA(JsKAg�⌧ , JtKAg�⌧ )  ✏.

From which we derive:

dB(JsKB⌧ , JtKB⌧ ) = dB(U(f)(JsKB
g�⌧

), U(f)(JtKB
g�⌧

)) (by (6))

 dA(JsKAg�⌧ , JtKAg�⌧ ) (by U(f) nonexpansive)

 ✏ (by A a model of �)

Theorem 6.3 (Strict Monadicity of U : QMod⌃(�) ! FRel). The forgetful
functor U : QMod⌃(�) ! FRel is strictly monadic.

Proof. From result (III) (see Section 6), we know that there is an adjunc-
tion F a U . We now prove that the forgetful functor U : QMod⌃(�) !

FRel strictly creates coequalizers for all QMod⌃(�)-arrows f, g such that
U(f), U(g) has a split coequalizer (in FRel). From this, it immediately
follows by Beck’s theorem (Proposition 2.25) that U is strictly monadic.

Let f, g : A ! B be QMod⌃(�)-arrows such that U(f), U(g) : (A, dA) !
(B, dB) have a split coequalizer e : (B, dB) ! (C, dC). We show that there
exists a unique algebra C in QMod⌃(�) such that U(C) = (C, dC), such
that e = U(u) for u : B ! C an arrow in QMod⌃(�), and such that u is a
coequalizer of f, g in QMod⌃(�).

Recall that U; is the forgetful functor U; : QAlg(⌃) ! FRel from
Theorem 6.1. Since U; is strictly monadic (by Theorem 6.1), it satisfies
condition (3) of Proposition 2.25. Since QAlg(⌃)-arrows between objects in
QMod⌃(�) coincide with QMod⌃(�)-arrows, i.e., they are both defined as
nonexpansive homomorphisms of quantitative ⌃-algebras, the condition (3)
of Proposition 2.25 implies that there is a unique algebra C in QAlg(⌃) such
that U;(C) = C, such that e = U;(u) for u : B ! C an arrow in QAlg(⌃),
and such that u is a coequalizer of f, g in QAlg(⌃).

Now, e = U;(u) is a split coequalizer, so it has a right inverse r : (C, dC) !
(B, dB). Hence, Lemma 6.2 applies and it says that C satisfies all the equa-
tions and quantitative equations satisfied by B. In particular, C is a model
of � because B is a model of �, i.e., C and u are an object and morphism in
QMod⌃(�).

We conclude by noting that the uniqueness and universal property (be-
ing a coequalizer of f, g) of u that were true in QAlg(⌃) are also true in
QMod⌃(�) because the latter is a full subcategory of the former.
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7 Lifting Presentations from Set to FRel

We recall, from Definition 2.27, that a Set monad M has an equational pre-
sentation if there exists a class of equations � ✓ Eq(⌃) over some signature
⌃ such that T Set

⌃,�
⇠= M . A well known result, dating back to the seminal

works of Lawvere [Law63] connecting the theory of monads with Universal
Algebra, states that a Set monad M has an equational presentation if and
only if it is finitary (see, e.g., [AR94, Chapter 3]). This result provides a
useful correspondence between a logical notion (definability by equations)
and a categorical one (finitary monad).

In the context of our theory of quantitative algebras, it is natural to give
the following definition of FRel monads having a quantitative equational
presentation.

Definition 7.1 (Quantitative Equational Presentation). An FRel monad
M has a quantitative equational presentation if there is a class of equations
and quantitative equations � ✓ QEq(⌃), over some signature ⌃, such that
TFRel
⌃,b�

⇠= M .

The problem of characterising which FRel monads have a quantitative
equational presentation in terms of categorical properties seems to be hard.
For instance, Adámek provides in [Adá22, Example 4.1] an example of a class
� ✓ QEq(⌃) such that TFRel

⌃,� is not finitary. This example is formulated in
the context of the framework of Mardare, Panangaden and Plotkin [MPP16],
but can be reformulated in our setting (see also Section 9 where we compare
the framework of [MPP16] with ours).

In this section we establish (Theorem 7.5) a correspondence between
FRel monads that are liftings of Set monads (Definition 7.2) having an
equational presentation  ✓ Eq(⌃) (i.e., finitary Set monads) and quantita-
tive equational presentations � ✓ QEq(⌃) that are extensions of  ✓ Eq(⌃)
(Definition 7.4).

Before proceeding with the formal definitions, since we have to deal with
both Set and FRel monads, and with both classes of equations in P(Eq(⌃))
and classes of FRel equations and quantitative equations in P(QEq(⌃)), in
the the rest of this section we adopt the following notational convention:

1. We reserve the lettersM and � for Setmonads and classes of equations
� ✓ Eq(⌃), respectively.

2. We use the letters cM and b�, with the “hat” notation, for FRel mon-
ads cM and classes of FRel equations and quantitative equations b� ✓

QEq(⌃), respectively.
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We first give the standard (see, e.g., [Bec69, p. 121]) definition of lifting of a
monad.

Definition 7.2 (Monad Lifting). An FRel monad (cM, b⌘, bµ) is a lifting of a
Set monad (M, ⌘, µ) if:

UcM = MU Ub⌘ = ⌘U Ubµ = µU,

where U : FRel ! Set is the forgetful functor. More explicitly,

(i) the action of cM on objects is an assignment (A, dA) 7! (MA, bdA) that
lifts every fuzzy relation dA on A to a fuzzy relation bdA on MA,

(ii) the actions of cM and M on morphisms coincide, set-theoretically,

(iii) the units ⌘ and b⌘ coincide, set-theoretically. This means that for any
(A, dA) 2 FRel, the function ⌘A : A ! MA is nonexpansive when seen
as the map of type b⌘(A,dA) : (A, dA) ! (MA, bdA).

(iv) the multiplications µ and bµ coincide, set-theoretically. This means that
for any (A, dA) 2 FRel, the function µA : MMA ! MA is nonexpan-

sive when seen as the map of type bµ(A,dA) : (MMA, bbdA) ! (MA, bdA).

Remark 7.3. Many monads of interest, on di↵erent GMet categories (like
the usual category Met of metric spaces, see Section 2.3), are liftings of Set
monads which have an equational presentation. Two important instances
are the Hausdor↵ lifting of the finite powerset monad and the Kantorovich
lifting of the finite distribution monad, on (pseudo-)metric spaces (see, e.g.,
[BBKK15, Examples 4.3 and 4.4]). There is also a combination of the two
liftings: the Hausdor↵–Kantorovich lifting of the convex sets of distributions
monad [MV20] on (pseudo-)metric spaces. As a last example, we mention the
formal ball monad on quasi-metric spaces [GL19] which is a lifting of a writer
monad on Set (see also the quantitative writer monad of [BMPP21, §4.3.2]).
It is a consequence of Theorem 7.5 (and its GMet variant Theorem 8.11)
that all such liftings have quantitative equational presentations.

We now formally define when a class b� ✓ QEq(⌃) is an extension of a
class � ✓ Eq(⌃).

Definition 7.4 (Quantitative Extension). Let ⌃ be a signature. A class
b� ✓ QEq(⌃) is a quantitative extension of a class � ✓ Eq(⌃) if

for all (A, dA) 2 FRel and s, t 2 Terms⌃(A),

� �Set 8A.s = t () b� �FRel 8(A, dA).s = t.
(8)
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This guarantees that the equations entailed by b� “coincide” with those
of �, in the sense that 8A.s = t follows from � if and only if 8(A, dA).s = t
follows from b�, for all possible fuzzy relations dA on A.

We are now ready to state our main result of this section.

Theorem 7.5. Let (M, ⌘, µ) be a monad on Set presented by � ✓ Eq(⌃).
Then:

(1) For any quantitative extension b� of �, there is a monad lifting cM of M
presented by b�.

(2) For any monad lifting cM of M , there is a quantitative extension b� of �

presenting cM .

The goal of the rest of this section is to sketch the proof of the above
theorem. A detailed proof is available in [MSV23].

For the statement in Item 1 of the theorem, we are a given a class b� ✓

QEq(⌃) extending � ✓ Eq(⌃), and a Set monad M presented by � (with
a given monad isomorphism ⇢ : T Set

⌃,�
⇠= M). Our goal is to exhibit an FRel

monad cM that lifts M and is presented by b�.
As a first step, we establish that, from the assumption that b� extends �,

it follows that TFRel
⌃,b� is a monad lifting of T Set

⌃,� . Hence, diagrammatically,

the assumptions can be depicted as below (left) and our goal is to complete
the diagram as in the (right):

TFRel
⌃,b�

cM TFRel
⌃,b�

M T Set
⌃,� M T Set

⌃,�
⇢
⇠=

b⇢
⇠=

U UU

⇢
⇠=

We thus need to define an FRel monad cM lifting M . We remark that, from
Definition 7.2 of monad lifting, the unit, the multiplication and the action
on morphisms on any such cM are fully determined (set-theoretically) by M .

We therefore just need to specify the action of cM on objects (A, dA) 2 FRel,
respecting the constraint of Definition 7.2:

(A, dA) 7! (MA, bdA).

Therefore, we only need to specify the fuzzy relation: bdA : (MA)2 ! [0, 1].
To do this, we use the monad isomorphism ⇢ : T Set

⌃,�
⇠= M to get a bijection

⇢�1
A

: MA ! Terms⌃(A)/⌘A
�
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between MA and the set Terms⌃(A)/⌘A
�
underlying T Set

⌃,� and, as we have

already established, also TFRel
⌃,b� . We can now define bdA as follows:

8m,m0
2 MA, bdA(m,m0) = �F (A,dA)(⇢�1

A
(m), ⇢�1

A
(m0)),

where �F (A,dA) is the distance on quotiented terms obtained in Definition 5.8.
This completes the set-theoretic definition of the FRel monad cM . The

verification that all these definitions are valid in FRel (i.e., that the unit,
the multiplication and the action of morphisms yield nonexpansive maps) is

straightforward. The fact that cM is a lifting of M follows directly from its
construction.

Finally, we define the components of the monad isomorphism b⇢:

b⇢(A,dA) : T
FRel
⌃,b� (A, dA) ! cM(A, dA)

to coincide with ⇢A : T Set
⌃,�A ! MA, for every (A, dA) 2 FRel. Checking

that b⇢(A,dA) is indeed a map in FRel (i.e., it is nonexpansive) and that b⇢
satisfies the constraints of a monad isomorphism is also straightforward.

For the statement in Item 2 of the theorem, we are given an FRel monad
cM which is a lifting of a given Set monad M presented by some class of
equations � ✓ Eq(⌃) (with a given monad isomorphism ⇢ : T Set

⌃,�
⇠= M).

Our goal is to exhibit a class of FRel equations and quantitative equations
b� ✓ QEq(⌃) such that: (i) b� is a quantitative extension of � and (ii) there

is a monad isomorphism b⇢ : TFRel
⌃,b�

⇠= cM .

We define b� to be the union of a class of FRel equations b�EQ and a class

of FRel quantitative equations b�QEQ

b� = b�EQ [ b�QEQ

defined as follows.
The class b�EQ consists of all equations 8X.s = t entailed by �, trans-

formed to FRel equations 8(X, d).s = t, for all possible fuzzy relations d on
X:

b�EQ = {8(X, d).s = t | � �Set 8X.s = t and (X, d) 2 FRel} . (9)

The class b�QEQ contains quantitative equations of the form 8(X, d).s =✏ t,
for all possible FRel spaces (X, d) and s, t 2 Terms⌃(X). The ✏ 2 [0, 1],
expressing the distance between s and t, is obtained by:

(a) using the monad isomorphism ⇢ : T Set
⌃,�

⇠= M to get a bijection:

⇢X : Terms⌃(X)/⌘� ! MX
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where the equivalence ⌘� is defined as: s ⌘� t , � �Set 8X.s = t (see
Example 2.12),

(b) using the distance provided by the given FRel monad cM , cM(X, d) =�
MX, bd

�
, to obtain the required value for ✏:

✏ = bd(⇢X
�
[s]⌘�

�
, ⇢X

�
[t]⌘�

�
).

Thus, formally:

b�QEQ =

⇢
8(X, d).s =✏ t

����
(X, d) 2 FRel, s, t 2 Terms⌃(X),

and ✏ = bd (⇢X([s]⌘�), ⇢X([t]⌘�))

�
. (10)

The rest of the proof consists in verifying that the defined b� = b�EQ [ b�QEQ

satisfies the desired properties: (i) b� extends � and (ii) b⇢, defined set-

theoretically as ⇢, is a monad isomorphism b⇢ : TFRel
⌃,b�

⇠= cM .

8 From Fuzzy Relations to Generalised Met-

ric Spaces

Most of the literature on quantitative algebras following the seminal paper
[MPP16] (see, e.g., [MSV21, Adá22, BMPP21, BMPP18]) considers quanti-
tative algebras whose carriers are metric spaces. Up to this point, our results
have been stated for quantitative algebras (in the sense of Definition 3.1)
whose carriers are arbitrary fuzzy relations.

In this section, we show that all the results proved so far also hold when,
instead of FRel, we take as base category an arbitrary category GMet of
generalised metric spaces (see Section 2.3), such as the category Met of
metric spaces.

In what follows, we fix a category of generalised metric spaces GMet

defined by a set H of L -implications (see Definition 2.30) and a signature ⌃.
We denote byQAlg

GMet(⌃) the full subcategory ofQAlg
FRel(⌃) comprising

only quantitative algebras whose underlying fuzzy relations satisfy the L -
implications defining GMet:

QAlg
GMet(⌃) = {(A, dA, {op

A
}op2⌃) | (A, dA) |=

L
H} ✓ QAlg

FRel(⌃).
(11)

Given a class of FRel equations and quantitative equations � ✓ QEq(⌃),
we also denote by QMod

GMet
⌃ (�) the full subcategory of QMod

FRel
⌃ (�)

comprising only quantitative algebras that belong to QAlg
GMet(⌃):

QMod
GMet
⌃ (�) = QAlg

GMet(⌃) \QMod
FRel
⌃ (�). (12)
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Note that since we are taking full subcategories, homomorphisms of GMet

quantitative ⌃-algebras are still nonexpansive homomorphisms of the under-
lying ⌃-algebras.

We first show that QAlg
GMet(⌃) is a quantitative equationally definable

class of quantitative ⌃-algebras in the sense of Definition 3.8. In other words,
we show (Corollary 8.6) that there is a class �H ✓ QEq(⌃) of FRel equations
and quantitative equations such that

QAlg
GMet(⌃) = QMod

FRel
⌃ (�H).

We prove this fact by giving an explicit procedure to translate any L -
implication H 2 H to an FRel equation or quantitative equation �H 2

QEq(⌃) having the following property:

For any quantitative algebra (A, dA, {opA}op2⌃) 2 QAlg
FRel(⌃),

(A, dA) |=
L H () A |= �H .

In fact, the terms in �H will not be built using any of the operations op 2 ⌃,
so this translation is independent of the signature ⌃.

Definition 8.1 (Translation). Let

H = 8x1, . . . , xn.
⇣ �

G1 ^ · · · ^Gm ^G0

1 · · · ^G0

k

�
) F

⌘

be an L -implication, where:

• We denote with X = {x1, . . . , xn} the set of variables occurring in H.
Note that this set cannot be empty as the atomic formulas in H (not
empty because F is one of them) are predicates (x = y or d(x, y)  ✏)
which must use variables.

• All atomic formulasGi, 1  i  m (possibly an empty set whenm = 0),
are of the form:

x = y

for some x, y 2 X,

• All atomic formulas G0

j
, 1  j  k (possibly an empty set when k = 0),

are of the form:
d(x, y)  ✏

for some x, y 2 X and ✏ 2 [0, 1].
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We are going to define a (quantitative) equation �H 2 QEq(⌃) constructed
from H. We first use the premises (G1, . . . , Gm, G0

1 . . . , G
0

k
) of H to construct

a fuzzy relation space (XH , dH). Let ⇠ ✓ X⇥X be the smallest equivalence
relation on X generated by (i.e., containing all) the pairs:

�
(x, x0) | there is a formula Gi in H of the form: x = x0

 
.

Hence, ⇠ consists of exactly all pairs (x, y) of variables in X such that x = y
is logically implied by the conjunction of all formulas Gi. Let us denote with
XH the quotient X/⇠, i.e., the set of all ⇠-equivalence classes. Finally, let
dH : XH ⇥XH ! [0, 1] be the following fuzzy relation on XH

dH([x]⇠, [x
0]⇠) = min

8
<

:✏ 2 [0, 1]

������

there is a formula G0

j
in H

of the form: d(y, y0)  ✏,
with y 2 [x]⇠ and y0 2 [x0]⇠

9
=

; ,

with the convention min(;) = 1. We have thereby defined the fuzzy relation
space (XH , dH).

Now we use the conclusion F of H to construct �H which can be either
an FRel equation or an FRel quantitative equation depending on F :

• If F is of the form x = y, for some x, y 2 X, then:

�H is defined as: 8(XH , dH).[x]⇠ = [y]⇠

• If F is of the form d(x, y)  ✏, for some x, y 2 X and ✏ 2 [0, 1], then:

�H is defined as: 8(XH , dH).[x]⇠ =✏ [y]⇠.

We note that the two terms ([x]⇠ and [y]⇠) appearing in �H belong to
Terms⌃(XH), because they both belong to XH , for any specific choice of
signature ⌃. Hence the translation is well-defined for all ⌃.

Before proving the main result regarding this translation (Lemma 8.4) we
provide some illustrative examples.

Example 8.2. Consider the L -implication H (a logically equivalent variant
of (1) in Section 2.3):

8x1.x2.
�
x1 = x2 ) d(x1, x2)  0

�
. (13)

We are in the case where X = {x1, x2}, n = 2 (two variables), m = 1
(one atomic equation among the premises) and k = 0 (no atomic formula
of the form d(x, y)  ✏ among the premises). Since the only premise (G1)
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of the formula is x1 = x2, we have that x1 ⇠ x2, and thus XH consists
of only one element XH = { [x1]⇠}. By the definition of dH we have that
dH([x1]⇠, [x1]⇠) = 1. Finally, since the conclusion is of the form d(x1, x2)  0,
we have that �H is defined as:

8
�
{[x1]⇠}, dH

�
. [x1]⇠ =0 [x1]⇠.

Now, we note that a nonexpansive interpretation ⌧ : (XH , dH) ! (A, dA)
is simply a choice of an element a = ⌧([x1]⇠) 2 A, and �H holds under
such an assignment if and only if dA(a, a) = 0. Therefore, an algebra A 2

QAlg
FRel(⌃) satisfies �H if and only if all elements of A have self-distance

0. This is indeed also the meaning of the L -implication (13) and of the
logically equivalent variant (1).

Example 8.3. Consider the L -implication H (cf. (3) in Section 2.3):

8x1, x2.
�
d(x1, x2)  ✏ ) d(x2, x1)  ✏

�
. (14)

We are in the case where X = {x1, x2}, n = 2 (two variables), m = 0 (no
atomic equations among the premises) and k = 1 (one atomic formula of the
form d(x, y)  ✏ among the premises). In this case, the equivalence ⇠ is the
identity relation on X, hence XH = X. By the definition of dH , we have

dH(x1, x1) = 1 dH(x1, x2) = ✏ dH(x2, x1) = 1 dH(x2, x2) = 1.

Finally, since the conclusion is of the form d(x2, x1)  ✏, we have that �H is
defined as:

8
�
{x1, x2}, dH

�
. x2 =✏ x1.

One can check that a quantitative ⌃-algebra satisfies �H if and only if the
underlying fuzzy relation is symmetric, which is exactly what satisfaction of
(14) means.

Lemma 8.4. Let A = (A, dA, {opA}op2⌃) be an FRel quantitative ⌃-algebra,
H be an L -implication, and �H be the corresponding (quantitative) equation
constructed in Definition 8.1. Then

(A, dA) |=
L H () A |= �H .

Proof. Let H be of the form described in Definition 8.1

8x1, . . . , xn.
⇣ �

G1 ^ · · · ^Gm ^G0

1 · · · ^G0

k

�
) F

⌘
,

and let X = {x1, . . . , xn}. We consider in parallel the two cases when the
conclusion F is of the form

x = y or d(x, y)  ✏
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for some x, y 2 X. Let �H be defined as in Definition 8.1 and be of the form:

8(XH , dH). [x]⇠ = [y]⇠ or 8(XH , dH). [x]⇠ =✏ [y]⇠.

We first show (A, dA) |=L H implies A |= �H .
Assume (A, dA) |=L H holds. This means that for all interpretations

◆ : X ! A of the variables X, if all premises Gi and G0

j
hold under the

interpretation ◆ then also F holds under ◆. Our goal is to prove that A |= �H .
This amount to showing that, for all interpretations of the fuzzy relation
(XH , dH) in A, i.e., for all nonexpansive maps ⌧ : (XH , dH) ! (A, dA), it
holds that:

J[x]⇠KA
⌧
= J[y]⇠KA

⌧
or dA

�
J[x]⇠KA

⌧
, J[y]⇠KA

⌧

�
 ✏

or equivalently, by definition of J K, that:

⌧([x]⇠) = ⌧([y]⇠) or dA
�
⌧([x]⇠), ⌧([y]⇠)

�
 ✏. (15)

So let us fix an arbitrary such ⌧ . Let ◆⌧ : X ! A be the interpretation of
the variables X defined as follows:

◆⌧ (x) = ⌧([x]⇠).

We can show that all the premises Gi and G0

j
of H hold under the inter-

pretation ◆⌧ . Indeed consider Gi of the form

x = y

By definition of the equivalence relation ⇠ from Definition 8.1, we know that
x ⇠ y, or equivalently [x]⇠ = [y]⇠, so we infer that ◆⌧ (x) = ◆⌧ (y), and this
means the premise Gi holds under ◆. Now consider a premise G0

j
of the form

d(x, y)  ✏.

By definition of dH as a minimum from Definition 8.1, we know that the
inequality dH([x]⇠, [y]⇠)  ✏ holds. From the fact that ⌧ is nonexpansive, we
can therefore deduce that:

dA
�
⌧([x]⇠), ⌧([y]⇠)

�
 ✏,

which, by definition of ◆⌧ , is equivalent to

dA
�
◆⌧ (x), ◆⌧ (y)

�
 ✏,

which in turn precisely means that ◆⌧ satisfies the premise G0

j
.
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Hence, we have established that the interpretation ◆⌧ satisfies all the
premises Gi and G0

j
of H and therefore, by the assumption (A, dA) |=L H,

we know that it also satisfies the conclusion F , which means that:

◆⌧ (x) = ◆⌧ (y) or dA(◆⌧ (x), ◆⌧ (y))  ✏.

This in turn, by definition of ◆⌧ (x), means that

⌧([x]⇠) = ⌧([y]⇠) or dA(⌧([x]⇠), ⌧([y]⇠))  ✏

This concludes the proof of (15). Since ⌧ is arbitrary, we have established
that A |= �H .

We now show that A |= �H implies (A, dA) |=L H. Assume A |= �H . This
means that for every interpretation of (XH , dH) in A, i.e., every nonexpansive
map ⌧ : (XH , dH) ! (A, dA), (15) holds. Our goal is to show that (A, dA) |=L

H. This amount to showing that, for all interpretations ◆ : X ! A of
the variables X, if all the premises Gi and G0

j
of H are satisfied under the

interpretation ◆ then also the conclusion F is satisfied by ◆, i.e.:

◆(x) = ◆(y) or dA(◆(x), ◆(y))  ✏ (16)

So let us fix an arbitrary ◆ satisfying all of the premises Gi and G0

j
of H.

Let ⌧◆ : (XH , dH) ! (A, dA) be the interpretation of (XH , dH) in A defined
as follows:

⌧◆([x]⇠) = ◆(x).

Before moving further, we need to verify two facts:

1. that ⌧◆ is well-defined, i.e., that the definition does not depend on
any specific choice of representative x 2 [x]⇠ of the equivalence class.
Formally, we need to show that if x1 ⇠ x2, then ◆(x1) = ◆(x2).

Proof of fact Item 1 Assume x1 ⇠ x2. By definition of ⇠, this means
that the satisfaction of all the premises Gi in H implies satisfaction of
the predicate x1 = x2. Since, by assumption, ◆ satisfies all premises in
H, this means that ◆(x1) = ◆(x2) as desired.

2. that (the well-defined) ⌧◆ is a nonexpansive map.

Proof of fact Item 2: Assume dH([x1]⇠, [x2]⇠)  ✏, for some [x1]⇠, [x2]⇠ 2

XH and ✏ 2 [0, 1]. We need to show that dA
�
⌧◆([x1]⇠), ⌧◆([x2]⇠)

�
 ✏

holds. Equivalently, by definition of ⌧◆, we need to show that the in-
equality dA

�
◆(x1), ◆(x2)

�
 ✏ holds. Recall from Definition 8.1 that

dH([x1]⇠, [x2]⇠) is defined as a minimum of all �’s such that there is
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some premise G0

j
in H of the form d(x1, x2)  �. Therefore, since ◆

satisfies all the premises of H by assumption, we know that:

dA
�
◆(x1), ◆(x2)

�
 �

for all the �’s involved in the minimised expression. Hence

dA
�
◆(x1), ◆(x2)

�
 ✏

as desired.

Now that we have defined the interpretation ⌧◆, we can apply the hypoth-
esis (A |= �H) and obtain that the following holds:

⌧◆([x]⇠) = ⌧◆([y]⇠) or dA
�
⌧◆([x]⇠), ⌧◆([y]⇠)

�
 ✏

By definition of ⌧◆, this means that:

◆(x) = ◆(y) or dA
�
◆(x), ◆(y)

�
 ✏

which means that the interpretation ◆ satisfies the conclusion F . Since ◆ is
arbitrary, we have established that (A, dA) |=L H.

We can obtain a few useful corollaries from Lemma 8.4. The first ex-
tends the result of Lemma 8.4 from one L -implication H to a set H of
L -implications. In what follows, we define the set �H ✓ QEq(⌃) as the set
of (quantitative) equations:

�H = {�H | H 2 H and �H is a (quantitative) equation translating H}

where the translation is the one specified in Definition 8.1.

Corollary 8.5. Let A = (A, dA, {opA}op2⌃) be an FRel quantitative ⌃-
algebra. Let H be a set of L -implications. Then

(A, dA) |=
L

H () A 2 QMod
FRel
⌃ (�H).

Proof. We have

(A, dA) |=
L

H , 8H 2 H. (A, dA) |=
L H (by definition)

, 8�H 2 �H. A |= �H (by Lemma 8.4)

, A 2 QMod
FRel
⌃ (�H) (by definition).

Hence, the class of quantitative algebras QAlg
GMet(⌃), which contains

exactly those algebras satisfying the L -implications in H, is quantitative
equationally definable.
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Corollary 8.6. For any signature ⌃ and any GMet category defined by a
set H of L -implications,

QMod
FRel
⌃ (�H) = QAlg

GMet(⌃).

Proof. We have that for any quantitative algebra A 2 QAlg
FRel(⌃),

A 2 QMod
FRel
⌃ (�H) , (A, dA) |=

L
H (by Corollary 8.5)

, A 2 QAlg
GMet(⌃) (by (11))

Since both QMod
FRel
⌃ (�H) and QAlg

GMet(⌃) are full subcategories of the
category QAlg

FRel(⌃) and we have shown that they have the same objects,
they are the same categories.

An important instance of this corollary is when ⌃ is empty. The category
QAlg

GMet(⌃) is then simply the category of fuzzy relations that satisfy
H, i.e., it is GMet. Thus, we have shown that GMet is a quantitative
equationally definable class of fuzzy relations.

The next corollary is a further generalisation of the previous one, show-
ing that for any class of equations and quantitative equations � ✓ QEq(⌃),
QMod

GMet
⌃ (�) is a quantitative equationally definable family of quantita-

tive ⌃-algebras. Namely, the full subcategories QMod
FRel
⌃ (�H [ �) and

QMod
GMet
⌃ (�) of QAlg

FRel(⌃) coincide.

Corollary 8.7. For any signature ⌃, for any GMet category defined by a
set H of L -implications, and for any class � ✓ QEq(⌃) of FRel equations
and quantitative equations,

QMod
FRel
⌃ (�H [ �) = QMod

GMet
⌃ (�).

Proof. For any quantitative algebra A 2 QAlg
FRel(⌃), we have

A 2 QMod
FRel
⌃ (�H [ �) , A 2 QMod

FRel
⌃ (�) and A 2 QMod

FRel
⌃ (�H)

(by Corollary 8.6)

, A 2 QMod
FRel
⌃ (�) and A 2 QAlg

GMet(⌃)

(by (12))

, A 2 QMod
GMet
⌃ (�).

Hence, QMod
FRel
⌃ (�H[�) and QMod

GMet
⌃ (�) have the same objects, and,

since they are full subcategories of QAlg
FRel(⌃), they also have the same

morphisms.
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We can now show that all the results proved for FRel in Section 4,Sec-
tion 5,Section 6 and Section 7 also hold when specialised for a categoryGMet

defined by a set H of L -implications.
Starting from the relation `FRel for FRel defined in Definition 4.1, we

define a relation `GMet for GMet as follows:

� `GMet �() �H [ � `FRel �.

Theorem 8.8 shows that the relation `GMet is sound and complete for
the relation �GMet, which is the restriction of �FRel to GMet defined as
follows:

� �GMet �() 8A 2 QMod
GMet
⌃ (�), A |= �.

Theorem 8.8 (Soundness and Completeness for GMet). � `GMet � ()

� �GMet �.

Proof. We have

� `GMet �, �H [ � `FRel � (definition of `GMet)

, �H [ � �FRel � (by Corollary 5.18)

, 8A 2 QMod
FRel
⌃ (�H [ �), A |= � (definition of �FRel)

, 8A 2 QMod
GMet
⌃ (�), A |= � (by Corollary 8.7)

, � �GMet �. (definition of �GMet)

Now fix a class of equations and quantitative equations � ✓ QEq(⌃). We
have the following diagram:

QMod
GMet
⌃ (�)

GMet FRel
E

UGMet

F

U

a

(17)

where:

• E is the (full and faithful) functor embedding GMet into FRel;

• UGMet is the forgetful functor of type UGMet : QMod
GMet
⌃ (�) !

GMet;

• U is the forgetful functor of type U : QMod
FRel
⌃ (�H [ �) ! FRel,

which indeed also has type U : QMod
GMet
⌃ (�) ! FRel by Corol-

lary 8.7;
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• F is the left adjoint of the forgetful functor U , as given in Section 6.

We can then define the functor FGMet : GMet ! QMod
GMet
⌃ (�) as follows

FGMet = F � E.

Theorem 8.9. The functor FGMet : GMet ! QMod
GMet
⌃ (�) is a left

adjoint of UGMet : QMod
GMet
⌃ (�) ! GMet.

Proof. Let ⌘ : idFRel ) U � F be the unit of the adjunction F a U . For any
GMet space (A, dA), define

⌘0(A,dA) = ⌘E(A,dA) : E(A, dA) ! UFE(A, dA)

Since, by the diagram (17) we have UFE(A, dA) = EUGMetFE(A, dA) =
EUGMetFGMet(A, dA), and since E embeds a GMet space into an FRel

space, we can see ⌘0(A,dA) as a function of type

⌘0(A,dA) : (A, dA) ! UGMetFGMet(A, dA)

Since ⌘ is a natural transformation and E acts like identity on morphisms,
we also obtain a natural transformation

⌘0 : idGMet ) UGMetFGMet.

Now take a GMet space (A, dA), a quantitative algebra

B = (B, dB, {op
B
}op2⌃) 2 QMod

GMet
⌃ (�)

and a nonexpansive map f : (A, dA) ! (B, dB). Since F a U is an adjunction
with unit ⌘, by seeing f as the FRel morphism E(f) we obtain that there
is a unique quantitative algebra homomorphism g : F (E(A, dA)) ! B such
that E(f) = U(g) � ⌘E(A,dA).

By definition of the embedding E and of ⌘0(A,dA), this implies that there
is a unique quantitative algebra homomorphism g : FGMet(A, dA) ! B such
that f = UGMet(g) � ⌘0(A,dA). Hence, FGMet is a left adjoint of UGMet.

Note that, by definition, the functor FGMet acts as the functor F on
GMet spaces, and thus the free UGMet-object generated by a generalised
metric space (A, dA) is the quantitative algebra of quotiented terms built as in
Section 5. The monad onGMet obtained from the composite UGMet�FGMet

will be denoted TGMet
⌃,� .

Moreover, we have strict monadicity of the functor UGMet.15

15This is direct a consequence of a more abstract result sometimes called “cancellability
of monadicity”, see [Bou92, Proposition 5] or [AM23, Corollary 5.6]. We a give a direct
proof to keep the document self contained.
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Theorem 8.10. The functor UGMet : QMod
GMet
⌃ (�) ! GMet is strictly

monadic.

Proof. By Beck’s theorem, in order to show that UGMet is strictly monadic
it is enough to show that UGMet strictly creates coequalizers for pairs of
morphisms f, g 2 QMod

GMet
⌃ (�) such that UGMetf and UGMetg have an

absolute coequalizer.
Let f, g : A ! B be such a pair and

UGMetA UGMetB (C, dC)
h

UGMetg

UGMetf

(18)

be an absolute coequalizer in GMet. Applying E to (18), we obtain an
absolute coequalizer in FRel:

UA UB E(C, dC)
Eh

Ug

Uf

.

By Theorem 6.3 we know that U is strictly monadic, and thus strictly creates
coequalizers for pairs of arrows f, g such that Uf and Ug have an absolute
coequalizer. So, we derive that there exists a unique morphism ĥ : B ! C
in QMod

GMet
⌃ (�) such that U(C) = E(C, dC) and U(ĥ) = Eh and ĥ is a

coequalizer for f, g.
Moreover, we also have that ĥ : B ! C is unique in QMod

GMet
⌃ (�) such

that UGMet(C) = (C, dC), UGMet(ĥ) = h and ĥ is a coequalizer of f and g.
To see this, suppose that u : B ! C0 in QMod

GMet
⌃ (�) is a coequalizer of

f and g such that UGMet(C0) = (C, dC) and UGMet(u) = h. Then, applying
E yields U(C0) = E(C, dC) and U(u) = Eh, and because U strictly creates
coequalizers of f and g, we must have ĥ = u.

Hence, we have obtained that ĥ : B ! C is unique in QMod
GMet
⌃ (�)

such that UGMet(C) = (C, dC) and UGMet(ĥ) = h, and that it is a coequalizer
of f, g. This allows us to conclude that UGMet strictly creates coequalizers
for pairs of arrows f, g such that UGMetf and UGMetg have an absolute
coequalizer.

Finally, we adapt the results of Section 7 to GMet. The three central
notions of quantitative equational presentations (Definition 7.1), monad lift-
ings (Definition 7.2) and quantitative extensions (Definition 7.4) just need to
be modified in a straightforward way by replacing all instances of FRel to
GMet.16

16Note that the notion of equation and quantitative equation remains as in Definition 3.4,
i.e., (A, dA) in 8(A, dA).s = t and 8(A, dA).s =✏ t is an arbitrary FRel space.

63



First, a quantitative equational presentation of a monad M on GMet is
a class of FRel equations and quantitative equations b� ✓ QEq(⌃) along
with a monad isomorphism TGMet

⌃,b�
⇠= M , where we recall that TGMet

⌃,b� is the

monad obtained from going around the triangle in (17). Second, a GMet

monad (cM, b⌘, bµ) is a GMet lifting of a Set monad (M, ⌘, µ) if

UcM = MU Ub⌘ = ⌘U Ubµ = µU,

where U is now the forgetful functor U : GMet ! Set. The explicit de-
scription of what it means to be a monad lifting (in Definition 7.2) is still
valid after replacing fuzzy relations with generalised metric spaces. Third, a
class of FRel equations and quantitative equations b� ✓ QEq(⌃) is a GMet

quantitative extension of � ✓ Eq(⌃) if:

for all (A, dA) 2 GMet and s, t 2 Terms⌃(A),

� �Set 8A.s = t () b� �GMet 8(A, dA).s = t.
(19)

This simple transformation can also be carried out in the proofs, yielding the
following theorem.

Theorem 8.11. Let (M, ⌘, µ) be a monad on Set presented by � ✓ Eq(⌃).
The following holds:

(1) For any GMet quantitative extension b� of �, there is a GMet monad

lifting cM of M presented by b�.

(2) For any GMet monad lifting cM of M , there is a GMet quantitative

extension b� of � that presents cM .

While the proof of Theorem 8.11 above is essentially identical to that
of Theorem 7.5, the results that the two theorems state may present some
subtle di↵erences.

For instance, there are classes of equations and quantitative equations
b� ✓ QEq(⌃) such that TGMet

⌃,b� is a GMet monad lifting (of some monad

M on Set) but TFRel
⌃,b� is not. For a concrete example, let ⌃ = ; and b� be

the class �HMet resulting from the translation (as in Definition 8.1) of the
set of L -implications HMet defining the category Met (see Definition 2.32).
It is readily seen that the monad TGMet

⌃,b� on Met is a lifting of the identity

monad on Set. However, the monad TFRel
⌃,b� on FRel is not a lifting of the

any monad on Set. It sends (A, dA) to (A, dA) when dA is a metric, but
when e.g. dA(a, b) = 0 for a 6= b 2 A, the carrier set of TFRel

⌃,b� (A, dA) will be

a quotient of A where a and b are identified. This means TFRel
;,b� cannot lift a

monad on Set because it sends two fuzzy relations with identical carrier set
to fuzzy relations with di↵erent carriers.
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9 Comparison with the Framework of Mar-

dare, Panangaden and Plotkin

In Section 3 we have formally introduced our theory of quantitative algebras
and in sections Section 4, Section 5, Section 6, Section 7 and Section 8 we
have stated and proved the main results.

In this section we compare our theory with the original one presented in
the seminal paper [MPP16]. For clarity purposes, in what follows we refer to
our theory as “MSV theory” (for Mio, Sarkis and Vignudelli [MSV23]) and
to that of [MPP16] as “MPP theory”.

A first point of comparison is that the MPP theory deals with quantitative
algebras over metric spaces formally specified as follows:17

Definition 9.1 (MPP Quantitative Algebra). [MPP16, Definition 3.1] Given
a signature ⌃, a MPP quantitative ⌃-algebra is a triple (A, dA, {opA}op2⌃)
such that (A, dA) 2 Met is a metric space and such that all interpretations
of operation symbols in the signature opA : An

! A (where ar(op) = n) are
nonexpansive functions

opA : (An, dn
A
) ! (A, dA),

where dn
A
is the product metric defined as: dn

A
((a1, . . . , an), (a01, . . . , a

0

n
)) =

max
i=1...n

{dA(ai, a
0

i
)}.

As a result, it only makes sense to compare the MPP theory to the MSV
theory restricted to the category Met of metric spaces. This restriction is
done by first seeing Met as the category of fuzzy relations satisfying the
L -implications in HMet as explained in Section 2.3, and then instantiating
the results of Section 8 with GMet = Met.

Note that a MPP quantitative ⌃-algebra is a MSV quantititative ⌃-
algebra A 2 QAlg

Met(⌃) such that all the interpretations opA are non-
expansive in the sense of Definition 9.1. It is straightforward to see that, for
a given op 2 ⌃ of arity n, the interpretation opA of a quantitative algebra
A 2 QAlg

Met(⌃) is nonexpansive if and only if A satisfies all the following
quantitative equations �op

d
, one for each fuzzy relation d : X2

! [0, 1], where
X = {x1, . . . , xn, x0

1, . . . , x
0

n
}

8(X, d).op(x1, . . . , xn) =✏ op(x
0

1, . . . , x
0

n
) ✏ = max

i=1...n
{d(xi, x

0

i
)}.

17A technical di↵erence between Definition 9.1 and [MPP16, Definition 3.1] is that the
metrics of the latter are actually extended metrics, i.e. dA(a, b) ranges in [0,1] instead of
[0, 1].
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In other words, opA is nonexpansive in the sense of Definition 9.1 if and
only if A belongs to QMod

Met
⌃ (�op

NE
), where �op

NE
is the class of quantitative

equations
�op

NE
=

[

d:X2![0,1]

{�op

d
}.

Therefore the class of MPP quantitative ⌃-algebras is a quantitative equa-
tionally definable class of MSV quantitative algebras in QAlg

Met(⌃), and
its theory is generated by

�NE =
[

op2⌃

�op

NE
.

Furthermore, it is an immediate consequence of Corollary 8.7 that the
class of MPP quantitative algebras can be quantitative equationally defined
in QAlg

FRel(⌃) as the class QMod
FRel
⌃ (�NE [ �HMet)

Remark 9.2. Note that the MSV theory allows for other interesting properties
of opA to be defined by quantitative equations. For example, by using:

✏ = ↵ · max
i=1...n

{d(xi, xi)} for some ↵ > 0

in the definition of �op

d
one expresses the property of being Lipschitz with

constant ↵ (nonexpansivness being the case ↵ = 1).

We now proceed to compare the logical expressiveness of the MPP and
MSV frameworks.

First, we observe that in the MSV theory restricted to Met, equations
of the form 8(X, d).s = t and quantitative equations 8(X, d).s =0 t are
semantically equivalent, and in fact mutually derivable in the deductive sys-
tem `Met. This just reflects the fact that metric spaces satisfy the property
x = y , d(x, y) = 0 (c.f. the set HMet of L -implications defining the
category Met in Section 2.3). Hence in the MSV theory for Met, as far as
expressiveness is concerned, we can just restrict our attention to quantitative
equations.

Secondly, the basic logical judgment in the MPP framework is a form
of implication (possibly with infinitely many premises), called quantitative
inference, of the form18

{si =✏i ti}i2I ) s =✏ t,

18The notation used in [MPP16, Definition 2.1] is {si =✏i ti}i2I ` s =✏ t, but it clashes
with our use of the turnstile `, so we write ) instead.
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where si, ti, s, t 2 Terms⌃(X), for some set X, and ✏i, ✏ 2 [0, 1]. A MPP
quantitative algebra A = (A, dA, {opA}op2⌃) (or, alternatively, a MSV quan-
titative algebra in QMod

Met
⌃ (�NE), as noted above) satisfies such a judg-

ment J , written A |=MPP J , if for all set-theoretic interpretations j : X ! A
it holds that:

if, for all i 2 I, dA(JsiKAj , JtiKAj )  ✏i holds, then dA(JsKAj , JtKAj )  ✏.

A judgment J is called a basic quantitative inference if all the terms si, ti
appearing on the left-side of the implication are variables in X, i.e., J is of
the form:

{xi =✏i x
0

i
}i2I ) s =✏ t.

One can verify that for every basic quantitative inference J of the above
shape and for any MSV quantitative algebra A = (A, dA, {opA}op2⌃) in
QMod

GMet
⌃ (�NE) it holds that:

A |=MPP J () A |= �J ,

where �J is the formula 8(X, dX).s =✏ t with X being the set of variables
appearing in the premises of J and dX : X2

! [0, 1] defined as follows:

dX(x, x
0) = inf{✏i | (x =✏i x

0) is among the premises of J}

where the infimum of the empty set is 1. Note that, in the formula �J , the
fuzzy relation (X, dX) is constructed (in a similar fashion to the translation
of Definition 8.1) to ensure that nonexpansive interpretations ⌧ : (X, dX) !
(A, dA) correspond to set-theoretic interpretations j : X ! A satisfying the
premises of J (i.e. 8i 2 I, dX(j(xi), j(x0

i
))  ✏i).

In the opposite direction, given any quantitative equation � of the form
8(X, dX).s =✏ t, it holds that

A |=MPP J� () A |= �

where J� is
{x =dX(x,x0) x

0
}x,x02X ) s =✏ t.

We can therefore conclude that the expressive power of MPP basic infer-
ences J and MSV quantitative equations � is the same. This means that our
MSV theory, restricted to Met, coincides with the MPP theory where only
basic quantitative inferences are used. We note that this is a mild restriction,
as most interesting results and application instances of the MPP framework
only use basic quantitative inferences [MPP16, MPP17, BMPP18, BMPP21,
MV20, MSV21, MSV22]
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As a further point of comparison, we now discuss the proof systems. Note
that our MSV proof system `Met, which we have proved to be sound and
complete, is not obtained by simply “restricting” the MPP proof system
of [MPP16] to basic quantitative inferences (via the translation J 7! �J).
Indeed the MPP proof system is not “closed under basic quantitative infer-
ences”. The reason is the presence in the MPP proof system of the following
substitution rule:

Rule (Subst) in [MPP16, Definition 2.1]

�
si =✏i ti

 
i2I

) s =✏ t
Substitution by ��

�(si) =✏i �(ti)
 
i2I

) �(s) =✏ �(t)

where all terms have variables ranging over a set X and � : X !

Terms⌃(X) is a substitution, which is homomorphically extended to a
function of type � : Terms⌃(X) ! Terms⌃(X).

Note that even in the case where the premise of the substitution rule is a basic
quantitative inference (i.e., the terms si and ti are variables for all i 2 I), the
conclusion of the rule is generally not a basic quantitative inference, because
the substitution is also applied to the premises.

This highlights the novelty in the design of our MSV proof system `Met

(the new substitution rule), which in turn also proves a novel result applicable
to the MPP theory: a sound and complete proof system for basic quantitative
inference exists (via the translation � 7! J�).

To conclude, we now compare the expressiveness of the MPP theory and
of the MSV theory in terms of which Met monads can be presented, respec-
tively, by a class of basic quantitative inferences and by a class of quanti-
tative equations. By exploiting the correspondence between monad liftings
and quantitative extensions proved in Section 7, instantiated to the category
Met via Theorem 8.11, we show the following result:

There exist monads on Met which can be presented by a class
of quantitative equations in the MSV theory, but which cannot be
presented by a class of basic quantitative inferences in the MPP
theory.

To see this, consider the (finite, non-empty) powerset monad (P, ⌘, µ)
on Set, which is presented by the equations � of semilattices. Define the
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monad (cP, b⌘, bµ) on Met where the functor cP : Met ! Met is such that

cP(X, d) = (PX, bd) with bd(S, S 0) =

8
><

>:

0 S = S 0

d(x, y) S = {x} and S 0 = {y}

1 otherwise

and where the unit b⌘ and multiplication bµ coincide, as Set functions, with
the unit ⌘ and multiplication µ of the monad P. The Met monad cP is a
monad lifting of the Set monad P, and this implies by Theorem 8.11 that
there is a Met quantitative extension b� of the equations of semilattices �
which is a presentation of cP. Hence, cP has a presentation in the MSV
theory.

In contrast, there is no class of basic quantitative inferences presenting
the monad cP in the MPP theory. This is a consequence of the fact that all
monads which can be presented by a class of basic quantitative inferences
in the MPP theory are enriched (see [ADV23, Theorem 8.10]), and that the

monad cP is not enriched. A proof of such properties of of the monad cP is
available in [MSV23].

10 Conclusions and Directions for Future Work

We have presented an extension of the theory of quantitative algebras of
Mardare, Panangaden and Plotkin [MPP16]. In our theory the carriers of
quantitative algebras are not restricted to be metric spaces and can be ar-
bitrary fuzzy relations (or generalised metric spaces) and the interpretations
of the algebraic operations are not required to be nonexpansive. We have
established some key results, including the soundness and completeness of
a novel proof system, the existence of free quantitative algebras, the strict
monadicity of the associated Free-Forgetful adjunction, and the correspon-
dence between monad liftings of a finitary monad and quantitative extensions
of an equational presentation.

A first direction for future work is to adapt and generalise to our set-
ting some theoretical results obtained for the framework of Mardare, Panan-
gaden and Plotkin [MPP16]. Examples include: monad composition tech-
niques [BMPP18] (see also [BMPP22]), fixed-points [MPP21], completion
techniques [BMPP18], variety “HSP-style” theorems19 [MPP17, Adá22].

19Jan Jurka, Stefan Milius and Henning Urbat already have preliminary results in this
direction: talk titled “Varieties of Quantitative Algebras: A Categorical Perspective” given
by Henning Urbat at the QUALOG 2023 workshop, the 25th of June 2023, Boston (USA).
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A second direction, more oriented towards applications, consists in lever-
aging the additional flexibility provided by our theory. For example, in
[DLHLP22] the authors investigate Curry’s combinatory logic (an algebraic
counterpart of the �-calculus) under the lenses of quantitative algebras, and
they point out the need of considering operations that are not nonexpansive
and carriers that are partial ultra-metrics. As the latter is an example of
GMet category, in the sense of Section 2.3, the research line of [DLHLP22]
can be carried out within the framework presented in this work. Similarly,
in [MSV22] the authors have investigated the  Lukaszyk–Karmowski distance
on di↵use metric spaces [HS00, CKPR21] of probability distributions. This
is yet another type of GMet category that can be formalised within our
framework. As a last example, in [GF23] the authors investigate “quanti-
tative rewriting systems” and need to go beyond nonexpansive operations,
by admitting (in what they call “graded rewriting systems”) Lipschitz oper-
ations with constant ↵ > 1. As noted in Remark 9.2, it is possible in our
theory to express, by means of quantitative equations, that operations are
Lipschitz for any ↵ > 1.

A third direction for future work consists in exploring further generalisa-
tions of our framework. For example, our choice of considering fuzzy relations
dA : A2

! [0, 1] has been made, somewhat arbitrarily, as a compromise be-
tween maximal generality and the convenience of dealing with a concrete
notion of numeric distance. But it would be possible to work with distances
dA : A2

! [0,1] (valued in the extended real line) as in [MPP16] or, even
more generally, dA : A2

! Q where Q is an abstract quantale [PC96]. We
expect that all our results can be easily adapted to such variants, but details
needs to be carefully verified. In a similar direction, it could be interesting
to follow the work of [FMS21] and move beyond “distances” and towards
arbitrary relational structures.

Finally, a fourth direction is to use our deductive apparatus to reason
quantitatively about program distances as, e.g., suggested in the preliminary
examples given in [MSV21, §VI] in the context of process algebras. In partic-
ular, adapting the well-known framework of (equational) “up-to techniques”
(see, e.g., [BPPR17]) to the quantitative setting (see, e.g., [BKP18]) appears
to be a promising endeavour.
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Konnov and Laura Kovács, editors, 31st International Confer-
ence on Concurrency Theory, CONCUR 2020, September 1-
4, 2020, Vienna, Austria (Virtual Conference), volume 171 of
LIPIcs, pages 28:1–28:18. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020. doi:10.4230/LIPIcs.CONCUR.2020.28.

[PC96] Mario Piazza and Maurizio Castellan. Quantales and struc-
tural rules. J. Log. Comput., 6(5):709–724, 1996. doi:10.1093/
logcom/6.5.709.

78

https://doi.org/10.3233/FI-2017-1472
https://doi.org/10.3233/FI-2017-1472
https://doi.org/10.23638/LMCS-14(2:2)2018
https://doi.org/10.23638/LMCS-14(2:2)2018
https://doi.org/10.1109/LICS52264.2021.9470717
https://doi.org/10.1109/LICS52264.2021.9470717
https://doi.org/10.1145/3531130.3533366
https://doi.org/10.48550/arXiv.2304.14361
https://doi.org/10.48550/arXiv.2304.14361
http://arxiv.org/abs/2304.14361
https://doi.org/10.48550/ARXIV.2304.14361
https://doi.org/10.4230/LIPIcs.CONCUR.2020.28
https://doi.org/10.1093/logcom/6.5.709
https://doi.org/10.1093/logcom/6.5.709


[PP03] Gordon D. Plotkin and John Power. Algebraic operations and
generic e↵ects. Appl. Categorical Struct., 11(1):69–94, 2003.
doi:10.1023/A:1023064908962.

[Rie17] Emily Riehl. Category Theory in Context. Aurora: Dover Mod-
ern Math Originals. Dover Publications, 2017. URL: https:
//emilyriehl.github.io/files/context.pdf.

[RT93] Jan J. M. M. Rutten and Daniele Turi. Initial algebra and fi-
nal coalgebra semantics for concurrency. In J. W. de Bakker,
Willem P. de Roever, and Grzegorz Rozenberg, editors, A
Decade of Concurrency, Reflections and Perspectives, REX
School/Symposium, Noordwijkerhout, The Netherlands, June 1-
4, 1993, Proceedings, volume 803 of Lecture Notes in Com-
puter Science, pages 530–582. Springer, 1993. doi:10.1007/

3-540-58043-3\_28.

[vBW01a] Franck van Breugel and James Worrell. An algorithm for
quantitative verification of probabilistic transition systems. In
Kim Guldstrand Larsen and Mogens Nielsen, editors, CON-
CUR 2001 - Concurrency Theory, 12th International Confer-
ence, Aalborg, Denmark, August 20-25, 2001, Proceedings, vol-
ume 2154 of Lecture Notes in Computer Science, pages 336–350.
Springer, 2001. doi:10.1007/3-540-44685-0\_23.

[vBW01b] Franck van Breugel and James Worrell. Towards quantitative
verification of probabilistic transition systems. In Fernando Ore-
jas, Paul G. Spirakis, and Jan van Leeuwen, editors, Automata,
Languages and Programming, 28th International Colloquium,
ICALP 2001, Crete, Greece, July 8-12, 2001, Proceedings, vol-
ume 2076 of Lecture Notes in Computer Science, pages 421–432.
Springer, 2001. doi:10.1007/3-540-48224-5\_35.

[vBW05] Franck van Breugel and James Worrell. A behavioural pseu-
dometric for probabilistic transition systems. Theor. Comput.
Sci., 331(1):115–142, 2005. doi:10.1016/j.tcs.2004.09.035.

[Wec92] Wolfgang Wechler. Universal algebra for computer scientists. In
EATCS Monographs on Theoretical Computer Science, 1992.

[Wil31a] W. A. Wilson. On quasi-metric spaces. American Journal of
Mathematics, 53(3):675–684, 1931.

79

https://doi.org/10.1023/A:1023064908962
https://emilyriehl.github.io/files/context.pdf
https://emilyriehl.github.io/files/context.pdf
https://doi.org/10.1007/3-540-58043-3_28
https://doi.org/10.1007/3-540-58043-3_28
https://doi.org/10.1007/3-540-44685-0_23
https://doi.org/10.1007/3-540-48224-5_35
https://doi.org/10.1016/j.tcs.2004.09.035


[Wil31b] Wallace Alvin Wilson. On semi-metric spaces. American Jour-
nal of Mathematics, 53(2):361–373, 1931. URL: http://www.
jstor.org/stable/2370790.

[Zad71] L.A. Zadeh. Similarity relations and fuzzy order-
ings. Information Sciences, 3(2):177–200, 1971. URL:
https://www.sciencedirect.com/science/article/pii/

S0020025571800051, doi:https://doi.org/10.1016/

S0020-0255(71)80005-1.

80

http://www.jstor.org/stable/2370790
http://www.jstor.org/stable/2370790
https://www.sciencedirect.com/science/article/pii/S0020025571800051
https://www.sciencedirect.com/science/article/pii/S0020025571800051
https://doi.org/https://doi.org/10.1016/S0020-0255(71)80005-1
https://doi.org/https://doi.org/10.1016/S0020-0255(71)80005-1

	Introduction
	Contributions
	Organisation of the Document

	Technical Background
	Universal Algebra
	Category Theory
	Monads and Adjunctions
	Free Objects
	Strict Monadicity

	Fuzzy Relations and Generalised Metric Spaces

	Presentation of the Framework and Results
	Summary of Contributions

	The Deductive System
	Free Quantitative Algebras
	Definition of 
	Proof that  
	Proof of freeness of 
	Completeness of the Deductive System

	The Free-Forgetful Adjunction and Strict Monadicity
	Lifting Presentations from  to 
	From Fuzzy Relations to Generalised Metric Spaces
	Comparison with the Framework of Mardare, Panangaden and Plotkin
	Conclusions and Directions for Future Work

