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CR12 : Computer-aided proofs and combinatorial exploration

by Pascal Ochem (LIRMM, Montpellier) and Michael Rao (me, LIP)
Recall :

How a computer can help in mathematics or computer
science ?
Presentation of the history/proof of some computer aided
theorems (TODAY : 4 color theorem)
Presentation of classic tools for combinatorial exploration :
reduction to SAT or LP, backtracking, transfer matrix
methods...
Concrete examples of different approaches to accelerate
explorations : reduction of the search space, heuristics, speed
up code...
Lot of practise !
Evaluation by homework and projects.
Note : no “Formal proof assistants” like Coq here !
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Today : One see the history of the Four color theorem (and ideas of
the proofs)

Why :
One of the first “big theorem” proved using the help of the
computer, and explains well several parts of the advantages,
disadvantages, scepticism of this kind of approaches
lot of scepticism at the beginning
some other proofs later always using computer
up to now : no “simple” proofs, no proof by hand...
also, we will (quickly) show the “discharging method”, a tool
often used in planar graph theory

Tomorrow : practise with transfer matrices and power iteration.

Next week : Pascal Ochem will talk about backtracking (and others
things)
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How a computer can help a mathematician ?

Computer algebra system (Maple, Mathematica, Sage...)

A computer can do exact calculus with rationals, algebraic
number... and usually without error.

Test an idea or a conjecture on numerous examples
Find an “object” with some properties

Either to prove the existence of something
Or to “break” a conjecture

Case study : prove something on numerous but “similar” cases
Formal proof assistants (Coq...)

Advantages of the computer : rigorous, and are quick

Disadvantages : know how to program, sometimes it’s more difficult
to find “errors” the the proofs, and the “power” of the computer is
not infinite...
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Some problems solved with the help of a computer

Four-Color Theorem (Appel & Haken, 1976, and others...)

Proof of Kepler Conjecture(Hales & Ferguson, 1998)
Non-existence of a finite projective plane of order 10(Lam,
1991)
Games : 4 in a row, Awalé, Checkers 8× 8...
Rubik’s cube, Sudoku...
The smallest aperiodic Wang tileset is 11 (Jeandel & Rao,
2015)
...
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The Four-Color Theorem

The Four-Color Theorem
Every map can be coloured with (at most) 4 colors, in such a way
that no two adjacent regions have the same color.

(note : regions are connected)

In “graph theory” :

The Four-Color Theorem
Every planar graph is 4-colorable
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Four-Color Theorem : history

Conjecture stated by Guthrie in 1852

Proof by Kempe in 1879
Alternative proof by Tait in 1880
Heawood finds a flaw in the proof of Kempe in 1890 !
Petersen finds a flaw in the proof of Tait in 1891 !
Heesch in 1955 : first idea of a “computer” proof scheme

but
the number of configurations to test is too big for that moment

Proof by Appel & Haken in 1977 (with the help of the
computer for some parts)

but a log of criticism !

Proof by Robertson, Sanders, Seymour & Thomas in 1997
(with the help of the computer for every parts)

much less
criticism ! but...

Verification of the proof by Gonthier in 2005, using a “Formal
proof assistant” (Coq)
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Euler formula and 6 colors

Lemma
In every planar graph, there is a vertex with degree at most 5.

proof. Using the Euler formula :

#vertices−#edges+#faces = 2

A face has at least 3 edges : #faces ≤ 2
3 ×#edges

If every vertices has a degree ≥ 6 : #vertices ≤ 2
6 ×#edges

#faces+#vertices ≤
(
2
6
+

2
3

)
×#edges

Contradiction !
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Euler formula and 6 colors

Every planar graph is 6-colorable :

Recursive algorithm to color with 6 colors
Let v be a vertex of G with degree at most 5
We color G − v with 6 colors (“recursive call”)
At least, one of the 6 colors is not used by the neighbors of v .
We color v with a free color.

One can call it the “6-Color Theorem”.
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Four-Color Theorem (Kempe)

?

Recursive algorithm to color a planar graph G with 4 colors :

Let v be a vertex of G with degree at most 5
We color G − v with 4 colors (“recursive call”)
If one of the 4 colors are not used among the neighbors of v in
G , use it to color v
Otherwise, do local changes (via “Kempe chains”) to « win »
one color.

Every planar graph is 4-colorable

The four color conjecture is a theorem ( ?)
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Four-Color Theorem : history

Conjecture stated by Guthrie in 1852
Proof by Kempe in 1879

Alternative proof by Tait in 1880
Heawood finds a flaw in the proof of Kempe in 1890 !
Petersen finds a flaw in the proof of Tait in 1891 !
Heesch in 1955 : first idea of a “computer” proof scheme

but
the number of configurations to test is too big for that moment

Proof by Appel & Haken in 1977 (with the help of the
computer for some parts)

but a log of criticism !

Proof by Robertson, Sanders, Seymour & Thomas in 1997
(with the help of the computer for every parts)

much less
criticism ! but...

Verification of the proof by Gonthier in 2005, using a “Formal
proof assistant” (Coq)
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Go back to Kempe “proof” : an error, but...

The proof of Keepe has an error : two “Kempe chains” can cross...

But, there are already a lot of ideas inside !

The “recursive approach” and the general outline was the “good”
one, and used in the (correct) proofs

The ideas of “Kempe chains” was also useful in (correct) proofs

But there are (much) more cases to manage...
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Idea for a proof (which is also an algorithm)

If the theorem is false, there is a minimal counter-example (in
number of vertices) : a planar graph which is not 4-colorable,
but if we remove a vertex, it becomes 4-colorable

Now, try to find “reducibles” configurations

What is a “reducible” configuration ?

A configuration is a planar graph with an “external” face.

A configuration C appears in G if there is a injection between
edges/vertices/inner faces of C and some edges/vertices/faces of G
which respects the adjacencies.

Now (roughly) a configuration is reducible if G can be 4-colorated
if we know a coloration of G-C ;

Thus : a reducible configuration cannot appear in a minimal
counter example !
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reducible configurations

There are several type of “reducible” configuration... We already see
some

Some easy “reducibles” configurations :
a vertex of degree at most 3
a vertex of degree 4 (Kempe method works for them)

But there are others reducible configurations. E.g :
if for every valid coloring of the border of C , one can extend it
to a coloring if the rest of C , C is reducible.
if there exists two configurations C and C ′ such that
|C | > |C ′| and the set of the colorings of the borders of C ′ is a
subset of the colorings of the borders of C (i.e., C ′ “mimic”
C ), then C is reducible.

This can be checked by computer : just test every set of colorings.
It’s stupid and very repetitive, so it’s perfect for a computer.
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Discharging : proving that a set is unavoidable

Now, how to prove that a set of configuration is unavoidable on a
planar graph ?

Using the discharging method !
(this tool is often used in planar graph theory)

Start : we suppose that one have a planar graph G , avoiding every
configuration in C

1 We put weight on the vertices (and faces), in such a way that
the sum is negative. For this, we use Euler’s formula

2 We “move” weights according local rules.
The overall sum does not change

3 We show that after all the moves, every vertex in the graph
has non-negative weight

4 We get a contradiction !
Such a graph G cannot exists !
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Discharging : A simple example by Wernicke in 1904

Theorem
A planar graph with minimum degree 5 has either an edge 5-5 or an
edge 5-6

Give the weight d(v)− 6 to each vertex v and and the weight
2d(f )− 6 to each face f .

The overall sum is −12.

Now move 1/5 from every neighboor of a 5 degree vertex v to v.

If we suppose that there is no 5− 5 nor 5− 6, every weight
becomes positive.
Contratiction !
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Proving the 4CT

Two “big” computational parts in this approach :
1 Find a set C of reducible configurations
2 Show that C is unavoidable in a planar graph

The two parts are slightly different.

Approach to show 4CT :
1 Find a big enough set C, with all “reducibility tools” we have
2 Try to show, using the discharging method, that C is

unavoidable
if we fail, go back in (1)
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Estimation of Heesch in 1955

Heesch do some simulation, and estimate that one should have
|C| ∼ 8900 to succeed.

⇒ the usage of a computer seems unavoidable

Computers are not powerful enough. A “race” begins...
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First proof in 1977

Appel and Haken announce that they completed the proof in 1977.

There a two papers (one for each part) :
Appel, Kenneth ; Haken, Wolfgang (1977), "Every Planar Map
is Four Colorable. I. Discharging", Illinois Journal of
Mathematics, 21 (3) : 429–490
Appel, Kenneth ; Haken, Wolfgang ; Koch, John (1977),
"Every Planar Map is Four Colorable. II. Reducibility", Illinois
Journal of Mathematics, 21 (3) : 491–567

But, now well accepted...
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Criticism on proof from Appel and Haken
The proof of Appel and Haken has not been accepted by everyone...

There is a scepticism of long proofs :
The first part is done “by hand”, and is long
Some (small) errors was found

But some new problems...
The second part is done by a computer
The program is programmed in assembly, on a IBM 370/168
How can be sure that there is no bug in the computer
program ?
Few people know really what is a computer, how it works,
have access to it...
Almost nobody known how to program a computer
How can be sure that the computer has no hardware bug ? or
no “computation” error ? (computers are not very reliable at
this time)
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New proof of Robertson et al in 1997

The approach is still the same : reductions and discharging.
What change :

they restarted everything from scratch
everything in only one paper
all checks are done by computer (not only the reduction part)
nevertheless, the proof not fully “automatic”, since the
discharging rules was found “by hand”
the computer programs are in C (not perfect, but way better
than “assembly code”)
programs are available for everyone, and can be
checked/launched by everyone. Also, in 1997, everyone has
access to a computer
there is also a companion technical paper to explain the
computer program.
water has flowed under the bridge....

Everything is done to avoid doubts, and indeed, the proof is better
accepted
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computer program.
water has flowed under the bridge....

Everything is done to avoid doubts, and indeed, the proof is better
accepted
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In the proof of Robertson et al. 1997

633 reducibles configurations (each one checked by computer)
32 discharging rules (found by hand)
The discharging “check” is done by computer
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(and so on...)
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last step : Verification by Gonthier in 2005

Using a “Formal proof assistant” (Coq) Georges Gonthier finished
the computer verification of the proof in 2005

The verification is a translation, in Coq, of the proof of RSST’97.
Thus, the “proof scheme” is not a new one.

Hard work... : one have to formalize all the aspects into the theory
used by the proof assistant

Some others computer aided proofs have been also formally showed.
For example, the proof of Kepler conjecture (Hales & al., 2014)

It’s not only for “computer” aided proofs :
For example, the Feit-Thompson theorem (odd order theorem) has
been formally verified by Gonthier et al. (2012)

(But, it’s not the subject of this course...)
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