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Abstract

We prove that 2-abelian-cubes are avoidable over a binary alphabet and that
3-abelian-squares are avoidable over a ternary alphabet, answering positively
to two questions of Karhuméki et al.. We also show the existence of infi-
nite additive-cube-free words on several ternary alphabets. To achieve this,
we give sufficient conditions for a morphism to be k-abelian-n-power-free (resp.
additive-n-power-free), and then we give several morphisms which respect these
conditions.

Additionally, all our constructions show that the number of such words grows
exponentially. As a corollary, we get a new lower bound of 3!/19 = 1.059526. ..
for the growth rate of abelian-cube-free words.

Keywords: Combinatorics on words, k-abelian equivalence, square-free,
cube-free, morphism

1. Introduction

Avoidability of repetitions in words is one of the most studied topics in
word combinatorics since the seminal papers of Thue [26, 27]. One famous
example is Dejean’s conjecture, recently solved by several authors (see [23]).
The avoidability of abelian repetitions received a lot of interest since a question
from Erd6s in 1957 [9, 10].

Two words u,v € A* are abelian equivalent, denoted u =, v, if for every
a € A, |ulg = |v]s. A word u is an abelian-n-power, where n > 2, if u =
Uiz . . . Uy, such that u; =, u;41 for every i € {1,...,n —1}. An abelian square
(resp. abelian cube) is an abelian-2-power (resp. abelian-3-power). It is not
difficult to see that every ternary word of size at least 8 has an abelian square.
Erdos [9, 10] raised the question whether they can be avoided in an infinite word
on an alphabet of size 4. Evdokimov [11] showed that one can avoid them on
an alphabet of size 25, which was later lowered to 5 by Pleasants [22]. Finally,
Kerénen [18] answered positively to Erdos’s question in 1992. Furthermore,
Dekking [7] showed that abelian cubes can be avoided in an infinite ternary
word, and that abelian-4-powers can be avoided in an infinite binary word.
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We are here interested in two variations of the previous problem. The first
one is the k-abelian-equivalence introduced by Karhumaéki et al. [14, 16, 17].
Let £k > 1. Two words v and v (u,v € A*) are k-abelian-equivalent, denoted
U =qk v, if for every w € A* with |w| <k, |u|w = |v]w. A word u is a k-abelian-
n-power, n. > 2, if u = uyug ... u, such that u; =, u;y; for every i € {1,...,
n—1}. A k-abelian-square (resp. k-abelian-cube) is a k-abelian-2-power (resp.
k-abelian-3-power). This notion is between the abelian equivalence (which is
the 1-abelian-equivalence) and the usual equality between words (which can be
viewed as the co-abelian-equivalence). Since cubes are avoidable in the binary
alphabet (e.g. in the Prouhet-Thue-Morse word), but are not avoidable in the
abelian sense, it is natural to ask for the smallest k for which k-abelian-cubes are
avoidable on a binary alphabet. In [14] authors showed that k < 8, and in [20]
that k£ < 5. Finally, in [21], Mercag and Saarela showed that k£ < 3. The same
question can be asked for k-abelian-squares on a ternary alphabet: 2-abelian-
squares cannot be avoided [15], but Huova showed that 64-abelian-squares can
be avoided [12].

In Section 2, we give sufficient conditions for a morphism A : A* — B*
to be k-abelian-n-power-free (for a fixed n > 2 and k > 1), that is for every
abelian-n-power-free word w € A*, h(w) is k-abelian-n-power-free. Then we
give morphisms which respect the conditions, in order to construct 2-abelian-
cube-free binary words and 3-abelian-square-free ternary words. This answers
the two previous questions and also prove that the number of such words grows
exponentially, as abelian-square-free on four letters [3], and abelian-cube-free
ternary words ([1], see also Section 3).

The second notion is the additive-cube-avoidability. A word w € N* is
an additive cube if w = pqr, where p, ¢ and r are non-empty-word such that
Ip| = lg| = |r] and > (p) = > (q) = D_(r). A word is additive-cube-free if it has
no factor which is an additive cube. Clearly, such words are also abelian-cube-
free. Recently Cassaigne et al. [5] showed that one can construct an infinite
additive-cube-free word on the alphabet {0,1,3,4}. The question of infinite
additive-square-free word’s existence on a finite alphabet is still open.

In Section 3 we give sufficient conditions for a substitution h : A* — 287, A,
B C N, to be additive-cube-free. We present substitutions from the alphabet {0,
1,3,4} to several ternary alphabets which respects these conditions. Moreover,
the presented constructions show directly that the number of additive-cube-
free words on these ternary alphabets grows exponentially. The lower bound of
31/19 = 1.059526 . .. we obtain for the growth rate for the alphabet {0, 1,8} is
also a new lower bound for the number of abelian-cube-free words on a ternary
alphabet.

2. k-abelian-n-power-free morphisms

2.1. Preliminaries

Let |ul,, denote the number of occurrences of the factor w in u. The Parikh
vector of a word u € A*, where A = {a1,aq,...,ax}, is U(u) = (|t)ay, |tU|ays
..y |t)a,). For a set S C A*, Wg(u) is the vector indexed by S such that



Us(u)[w] = |u|w for every w € S. When the alphabet is clear in the context,
we let Ug(u) be U r (u), for k > 1.
Let Pref(u) be the set of prefixes of u, and Suf(u) be its set of suffixes. For
k>0, let pref (u) (resp. sufy(u)) be the prefix (resp. suffix) of u of size k.
There are several equivalent definitions for k-abelian-equivalence (see [17]).
Two words v and v of size at most k — 1 are k-abelian-equivalent if and only if
they are equal. Otherwise, the following conditions are equivalent:

e u and v are k-abelian-equivalent (i.e. u =, v).
o For every w € A* with |w| <k, |u|w = |v]|y-

e For every w € A, |uly, = |v|w, pref,_;(u) = pref,_;(v) and sufy_q(u) =
sufy_1(v).

e For every w € A*, |u|y, = |v|w, and pref,_; (u) = pref,_;(v).

Given k > 1 and n > 2, a (possibly infinite) word w is k-abelian-n-power-free
if no non-empty factor in w is a k-abelian-n-power. A word is k-abelian-square-
free (resp. k-abelian-cube-free) if it is k-abelian-2-power-free (resp. k-abelian-3-
power-free).

A morphism h : A* — B* is k-abelian-n-power-free if for every abelian-n-
power-free word u € A*, h(u) is k-abelian-n-power-free. Note that u has to be
abelian-n-power-free, not only k-abelian-n-power-free; we explain in Section 2.4
why we use this weaker notion. A morphism h : A* — B* is k-abelian-square-
free (resp. k-abelian-cube-free) if it is k-abelian-2-power-free (resp. k-abelian-3-
power-free).

2.2. Testing k-abelian-n-power-freeness

In [2], Carpi gave a set of conditions which assures that a given morphism
is abelian-n-power-free. We give in the following theorem a set of similar con-
ditions which assures that a given morphism is k-abelian-n-power-free.

Theorem 1. We fir k > 1 and n > 2, and two alphabets A and B. Let
h: A* — B* be a morphism. Suppose that:

1) For every abelian-n-power-free word w & with |w| < or w|2 :
F bel fi d A* h 2 h(w|2
lw] = 1])| < (k —2)n — 2, h(w) is k-abelian-n-power-free.

(ii) There are p,s € B¥~1 such that for every a € A, p = pref,_,(h(a)p) and
s = sufp_1(sh(a)).

(iii) The matriz N indexed by B* x A, with N|w, ] = |h(z)p|w, has rank |Al.

(iv) Let S C BF, with |S| = |A|, such that the matriv M indexed by S x A,
with M|w, z] = |h(z)pl|w, is invertible. Let

Ug(v,u) = Ug(vp) + Yg(su) — Ug(sp)

and Ui (v,u) = Ypr(v,u). For every a; € A and u;,v; € A* with uv; =
h(a;); 0 <i < n; such that:



(P) {prefy_(vip) : 0 <i <nj[ =1,
(I) M= (Us(vi_1,u;) — Ys(vi,uir1)) is an integer vector, for every 1 <
1< n,

(C) ¥r(vie1,u;) — Vi (v, uir1) € Im(N) for every 1 <i < n,

there is (g, - .., ) € {0,1}"F such that for every 1 <i<n :

Mﬁl\I/S(’Ui_l,ui) — (1 — 017;_1)\1/(&,‘_1) — ozi\If(ai)
=M " WUg(viui1) — (1 — ;) (a;) — aig1¥(aip). (1)

Then h is k-abelian-n-power-free.

Proof. Suppose that h(w) has a k-abelian-n-power ¢ ... ¢g,. Let ¢o and g,41 be
such that h(w) = qoq1 - - . gngn+1. By condition (i), if |¢1] < k — 1, then w has
an abelian-n-power. So we have |¢;| > k — 1 for every 1 <i < n.

There are, for every 0 < i < n, a; € A, u; € Pref(h(a;)) and r; € A* such
that, for every 0 < i < m, rg...1r;a; € Pref(w) and qo...¢; = h(ro...7r)u;.
Note that, for a 1 < i < n, r; can be empty, but a; is always the first letter of
riy1a;41. Let v; be such that w;v; = h(a;) for every 0 < i < n. By condition
(i), one can suppose w.l.o.g. that |ry...rpa,| > 3.

By condition (ii), for every 1 < ¢ < n, pref,_;(q;) = pref;_;(vi_1p). Since
q1--.qn is a k-abelian-n-power, we have condition (P).

Claim 1. Let r € A* and u,v € B*. Then:

o NW(r) = W(h(r)p) = Uy (sh(r)) = Wk(sh(r)p) — Vi (sp),
o Uy (vh(r)p) = Uk(vp) + N¥(r),
o Uy (sh(r)u) = ¥r(su) + NU(r).

Proof. Tf pref,_;(u) = p, then Uy(vu) = Ui(vp) + Vi(u). Similarly, if
sufp_1(v) = s, then Uy (vu) = Ui (v) + Pi(su). All the equalities follow from
the previous facts, and the definition of N. U

Claim 2. For every 1 <i < n:
Wi(g:) = N(¥(ri) — ¥(ai-1)) + Yr(vi-1, u;). (2)
Proof. By double counting, we have :

(@) + Ur(sh(ria)p) = Ve(sh(riu;) + i (vi—1h(a; ' ria;)p).

—

By Claim 1:

Vi(qi) + NV(ria;) + Yi(sp) =
Uy (su;) + NU(r;) + U (vi—1p) + N\Il(ai__llmai).

Thus: \I’k(Qi) = \I/k(vi_l,ui) + N(\I’(Tl) — \I/(ai_l)). ]



Since Wj(g;) = ¥r(giy1) for every 1 < ¢ < n, we have the condition (C).
Now we have directly ¥g(q;) = M(¥(r;) — ¥(a;—1)) + Yg(vi—1,u;). Since

Vs(qi) = Ys(git1):
Mﬁl(\PS(vi_l,ui) — \Ils(’Ui, ui+1)) = \I’(TZ‘+1) — \I/((lz) — \I/(TZ) + \I/(ai_l).

The right part is an integer vector, so we have condition (I). Thus, by condition
(iv), there is (ap, ..., a,) € {0,1}"*1 such that (1) is fulfilled.
Equation (1) together with equation (2) give:

— \I/(TZ) —+ \I/(ai_l) — (1 — ai_l)\l’(ai_l) — ozi\I/(ai)
= —U(riy1) + ¥(a;) — (1 — ;) ¥(a;) — aiy1¥(ait1)

that is:
\II(T’1) — Oti_l\I’(CLi_l) + Oéi\I/(CL,L') = \I/(T‘H_l) — ai\I/(ai) + ozi+1‘ll(ai+1). (3)

In equation (3), either the left or the right part is a non-negative vector. Since
equation (3) is fulfilled for every 1 < i < n, ¥(r;) — a;—1¥(ai—1) + a;¥(a;) is
a non negative vector for every 1 < i < n. Let 7} = a; Y 'rial’; 1 < i < n.
Since a; is the first letter of r;a;41, and ¥(r}) = U(r;) — a;—1¥(a;—1) + a; ¥(a;)
is a non-negative vector, r} is well defined in B*. In one hand r{...7] is a
factor of w, and is non empty since |r} ...7r.| > |r1...ra,| — 2. On the other
hand ¥(rj) = ¥(r;,,) (by equation 3), for every 1 < i < n. Thus, w has an

3 / /
abelian-n-power 1 ...77,. O

We introduce ¥g(v,u) in order to handle pairs (v, u) such that |vu| < k—1
(otherwise we have Uy (v,u) = Uy(vu)). Theorem 1 gives a set of sufficient
conditions, but are still far from a characterization, as Carpi partially done for
abelian-n-power-free morphisms [2]. The key point is the condition (ii). One
mentions that we can save up the suffix condition in (ii) by carefully handling
the cases where u; or v; has size less than k. However, we still need either the
prefix (or the suffix) condition in order to properly define N.

2.8. 2-abelian-cube-free and 3-abelian-square-free morphisms

Morphisms hs and k), respect the conditions of Theorem 1 for & = 2 and
n = 3, i.e. are 2-abelian-cube-free, while morphisms hs and h% respect the
conditions for k = 3 and n = 2, i.e. are 3-abelian-square-free. The checks
were done by computer, and took only a few seconds. Thus, the infinite word
ho(u) (resp. hh(u)) where u is an infinite abelian-cube-free word (for example
a fixed point of Dekking’s morphism p : 0 — 0012, 1 — 112, 2 — 022 [7]) is
a 2-abelian-cube-free binary word. Similarly, hg(v) (resp. h%(v)), where v is
an infinite abelian-square-free word on an alphabet of size 4 (for example, a
fixed point of Kerdnen’s morphism ggs [18]), is an infinite 3-abelian-square-free
ternary word.

Over all the 2-abelian-cube-free morphisms we found, ho is the smallest
uniform morphism, while A} is the one which minimize |h(012)|. If we are only



2-abelian-cube-free morphisms:

0 — 00100101001011001001010010011001001100101101011
ho : ¢ 1—00100110010011001101100110110010011001101101011
2 —00110110101101001011010110100101001001101101011

0 — 00100101001100100101001001100100110011011
h% <1 —010110110011011001100100110011011
2 — 0101101001010010110011011

3-abelian-square-free morphisms:

0 — 0102012021012010201210212
1 — 0102101201021201210120212
2 — 0102101210212021020120212
3 — 0121020120210201210120212

0 — 01201020120212012101201021
1 — 01202120121021201021

2 — 0120210201021

3 — 0121020121

Morphisms such that h(p>°(0)) is 2-abelian-cube-free:

0 — 001001100110110011001001100100101
hqg: 41— 001011010110100101001001100100101
2 — 001011010110110011001001101011011

0 — 0101101001011
hl: <1 —010110110011011001100100110011011
2 — 00100101001001100100110011011

Table 1: Morphisms for k-abelian-n-power-free words.



interested in 2-abelian-cube-free infinite word, one can find simpler construction.
The morphism hg o p is 2-abelian-cube-free so hg(1>°(0)) is 2-abelian-cube-free.

We also claim that h/;(¢°°(0)) is 2-abelian-cube-free. One can modify the
decision procedure of Theorem 1 to compute the set of “patterns” that u has to
avoid to ensure that h(u) is k-abelian-n-power-free. This notion of patterns was
used by Carpi [3, 4] to prove that a substitution is abelian-square free, or by
Kerénen [19] to prove that a fixed point of gog is abelian-square free, even though
gog 1s not abelian-square free. This was also used, under the name of template,
by Aberkane et al. [1] to show the exponential growth rate of abelian-cube-free
ternary words, and by Currie and Rampersad [6] for an algorithm which decide
if a fixed point of a morphism is abelian-n-power-free. More recently, Mercag
and Saarela [20, 21] used this kind of patterns to show that a morphic word is
k-abelian-cube-free.

Doing this, we are able to show that h} o u3(u) is 2-abelian-cube free if
and only if u forbids factors of the form F' = {pgr, 1p0g0r2 : ¥(p) = ¥(q) =
U(r)} U {0plq0r2, 1plq0r2 : ¥(pl) = ¥(g0) = ¥(r0)}. Moreover, u(u) forbids
factors of the form F if and only if u forbids factors of the form F (in other
words, p is F-free). Thus, h};(u>°(0)) is 2-abelian-cube-free, but for every n > 0,
h!; o ™ is not 2-abelian-cube-free (e.g. for every n > 0, h/;(¢™(1002)) has a 2-
abelian-cube).

2.4. Final remarks and questions

We finally shortly explain why we use this weak notion of k-abelian-n-power-
freeness for morphisms. On one hand, k-abelian-squares cannot be avoided by
a pure morphic word on a ternary alphabet [13]. So there is no morphism
h:{0,1,2} — {0,1,2} such that for every k-abelian-square-free word u, h(u)
is k-abelian-square-free, except trivial ones. On the other hand, suppose that
there is a morphism h : A* — B*, with |A| > |B|, such that for every 2-abelian-
cube-free word u € A*, h(u) is 2-abelian-cube-free. Without lost of generality,
there is {a, b} C A, such that the first letter of h(a) and h(b) is the same. Then
babbababb is 2-abelian-cube-free, but h(bab) =, 2 h(abb) thus h(babbababb) is
an 2-abelian-cube. We have a contradiction, so such a morphism cannot exist.
Nevertheless, we cannot conclude directly when |A| = |B| and the first and last
letters of the images differ. More specifically, the following question is still open.

Question 1. Is there a pure morphic binary word which avoids 2-abelian-cubes
?

Let us also raise some questions on avoidability of long repetitions. Every
infinite binary word contains arbitrarily long abelian squares, while ones exist
which avoid squares of period at least 3 [8, 25]. We recently showed that one
can avoid 3-abelian-squares of period at least 3 over a binary alphabet [24]. It
seems natural to ask the following:

Question 2. Is there a p € N such that 2-abelian-squares of period at least p
can be avoided over a binary alphabet 7



That reminds the questions suggested by Mikela (see [19)]):
Question 3.

(1) Can we avoid abelian-squares of the form wv, with |u| > 2, over a ternary
alphabet ?

(2) Can we avoid abelian-cubes of the form uvw, with |u| > 2, over a binary
alphabet ?

In [24], we answer negatively to (1). Then we modify this question to the
following one:

Question 4. Is there a p € N such that one can avoid abelian cubes of period
at least p over a binary alphabet 7

3. Ternary words avoiding additive cubes

8.1. Testing additive-n-power-freeness

Let ¥ be the morphism from the free monoid on the alphabet N to the
additive group (Z,+) such that X(z) = = for every z € N. A word w € N* is
an additive-n-power, with n > 2, if w = p1 ... p,, such that for every 1 <1 < n,
|pi| = |pix1] and X(p;) = X(pi+1). A word is an additive-cube (resp. additive-
square) if it is an additive-3-power (additive-2-power). A (possibly infinite) word
w is additive-n-power-free if no non-empty factor of w is an additive-n-power.
Clearly, such words are also abelian-n-power-free. In [5], authors prove that the
fixed point of the morphism 0 — 03,1 — 43,3 — 1,4 — 01 is additive-cube-free.

A substitution is a morphism s : A* — 28" between the free monoid A*
and the power monoid of B*, that is the monoid of subsets of B*, with the
operation U -V = {wv : (u,v) € U x V}. A morphism h : A* — B* can be
viewed as a substitution s : A* — 25" such that s(w) = {h(w)}. A substitution
s: A* — 287 where A, B C N, is additive-n-power-free if for every additive-n-
power-free word u € A*, every v € s(u) is additive-n-power-free.

We give sufficient conditions for a substitution to be additive-n-power-free
in the following theorem.

Theorem 2. We fitn > 2 and A, B C N. Let s : A* — 28" be a substitution.
Suppose that:

(i) For every additive-n-power-free word w' € A* with |w'| < 2, every w €
s(w') is additive-n-power-free.

(ii) There is (1,7,8) € N X Z x Z, with 8 # 0, such that for every a € A and
w € s(a), we have |w| =1 and L(w) = v + af.

(iii) For every a; € A, w; € s(a;), and u;,v; € A* with u;v; = w;; 0 < i < n;
such that for every 1 <i < n:

(L) |vi—1w;| = |vjuiqa| (mod 1),



015 *

016 *

S017 ¢

5027 *

5037 *

5018 *

5038 *

5019 *

5029 *

5049 *

0 — {005015100100115010115,005015100100115100115}
1 — {005015100100105055115,050015100100105055115}
3 — {005015101155155055115,050015101155155055115}
4 — {005015155055155055115,050015155055155055115}

0 — {00101160101006001016,00101160101006001106}
1 — {00166060101006001016,00166060101006001106}
3 — {00166166110160661106,00166166110166061106}
4 — {00166166066160661106,00166166066166061106 }

0 — {00170010011711001071,00170010011711001701}
1 — {00170017707001001071,00170017707001001701}
3 — {00170017711017177077,01070017711017177077}
4 — {00170017707077177077,010700177070771 77077}

0 — {0020720220220722007,0020720220227022007}
1 — {7220720220220722007, 7220720220227022007 }
3 — {7077200770720722007, 7077200770727022007 }
4 — {7077272770720722007, 7077272770727022007}

0 — {00300307303037707307,00300307303037700737,00300307303037707037}
1 — {00300300707737700737,00300300707737707037,00300300707737707307}
3 — {00337730337737700737,00337730337737707037,00337730337737707307 }
4 — {00337737707737700737,00337737707737707307,00337737707737707037}

0 — {0081001008011811011,0081010080011811011, 0081001080011811011}
1 — {0081001008011818008, 0081010080011818008, 0081001080011818008}
3 — {0081018818808811811,0081108818808811811,0081810818808811811}
4 — {0081018818808808188,0081108818808808188,0081188018308808188}

0 — {003800303830033833003, 003800308330033833003}
1 — {003800303830080038388, 003800308330080083838 }
3 — {003808833833038838838, 003808838330338838838}
4 — {003808838388088388388, 083008838388088388388}

0 — {0090110191001009,0090110911001009}
1 — {0090119110110199,0900119110110199}
3 — {0090190090099199, 0900190090099199}
4 — {0090119199099199, 0900119199099199}

0 — {00290020020090022029, 00290020020090020229}
1 — {00290099220090022029, 00290099220090020229 }
3 — {00220292299099299099, 22920220099099299099}
4 — {22920992299099299099, 22990292299099299099 }

0 — {00400400900499009, 00400400900949009 }
1 — {00400449440099409, 00400449440499009}
3 — {00409909909499409, 00409909949099409 }
4 — {44944909949499009, 44944909949909409 }

Table 2: Additive-cube-free substitutions.



(M) 2(vi—1u;) = E(viuip1) + 2y (mod 3),
(where x; = (|vi—1u;| — |v;uiqq])/1 for every 1 <i<n)
there is (g, . - ., ) € {0, 1} such that for every 1 <i < n:
(a) o — i1 = x; + i1 — oy,
(b) B(vi—1u;) + Bl(i—1 — )ai—1 — a;ai]
= Y(vittiy1) +v2; + Bl(ai — 1)a; — aiprai1]-

Then s is additive-n-power-free.

Proof. Suppose that w € s(w’) has an additive-n-power ¢ ...q,. Let go and
Gn+1 be such that w = qpq1 - .. ¢ngn+1-

For every 0 < i < n, there is a; € A, w; € s(a;), u; € Pref(w;), and r; € A*
such that rg...r;a; € Pref(w’) and qp...¢; € s(rg...7;) - {u;}. Let v; be such
that u;v; = w; for every 0 < 4 < n. By condition (i), one can suppose w.l.o.g.
that |ry...rpan| > 3.

By condition (ii), for every p € s(p’), we have X(p) = v[p’| + BE(p).

For every 1 < i < n, we have u;_1q; € s(r;) - {u;}. Thus, by condition (ii),
and by the fact that w; _1v;_1 = w;_1 we have:

|gi| = |vi—1wi| + 1(Jri| = 1) (4)

and
¥(qi) = (il = 1) + B(E(ri) — ai—1) + B(vi—1u;). (5)

By equation (4) and by the fact that for every 1 < i < n, |g;| = |gi—1|, we
have the condition (L), and:

rial = Iril = (Jvicaua] = [viuigal) /1 = @i
Since for every 1 < i < n, X(¢;) = X(¢;—1), we have:
Y(Irsl = 1) + B(E(rs) — ai—1) + X(vi—1u;)

=Y(riga = 1) + BE(rig1) — ai) + E(vivigr).  (6)

Thus
B(vi-1ug) = D(vittisr) + i + B(E(riv1) — ai — X(ri) + ai—1),
and equation (M) is fulfilled.

So, by condition (iii), there is (g, ..., ay,) € {0,1}"! such that (a) and (b)

are fulfilled.
By equation (a), we have, for every 1 < i < n;

ril + i — a1 = [rica| + ig1 — a;. (7)
If r; is empty, a; = a;+1 otherwise the first letter of r; is a;. In equation (7),

the right side or the left side must be non-negative. Thus, for every 1 < ¢ < n,
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|7i] + i — aj—1 >0, and 7} = a; 7 'r;af?; 1 < i < n; is well defined. We have
|| = |ri] + @ — aj—1 and 3(r}) = X(r;) + aja; — aj—1a;—1. By equation (7),
for every 1 <i <mn, |rj| = |ri,,|. Moreover 7 ...r; is a factor of w’, and is non
empty since |r]...7L| > |r1...rpan| — 2.

When we subtract (b) to (6), we get SX(r;) = AX(rj,,). Thus, X(r]) =

(rjyq) for every 1 <i < n, and w’ has an additive-n-power 77 ...77,. O

Theorem 2 can be used to find additive-square-free, additive-cube-free and
additive-4-power-free substitutions. However, we have few hopes to find an
additive-square-free substitution, while additive-4-powers are equivalent to abe-
lian-4-powers on binary words.

3.2. Additive-cube-free substitutions

We have checked by computer that every substitution in Table 2 respects the
conditions of Theorem 2. Since there is an infinite additive-cube-free word on
the alphabet {0,1,3,4}, one can construct infinite additive-cube-free words on
the alphabets {0,1,5}, {0,1,6}, {0,1,7}, {0,2,7}, {0,3,7}, {0,1,8}, {0,3,8},
{0,1,9}, {0,2,9} and {0,4,9}. In our substitutions, each letter has at least two
images. This clearly shows that number of additive-cube-free words on these
alphabets grows exponentially. For the alphabet {0, 1,8}, we got 3 images of
size 19 for each letter, giving the lower bound of 3'/1% = 1.059526... for the
growth rate. This bound is also a new lower bound for the growth rate of
abelian-cube-free words on ternary alphabet. (The previous known bound was
21/24 = 1.029302... in [1].)

We conjecture that for every alphabet A = {0, 4,7} such that ¢ and j are co-
prime and j > 6, there exists an infinite additive-cube-free word on the alphabet
A. The cases {0,1,2}, {0,1,3}, {0,1,4} and {0,2,5} are left open. Further-
more, it seems difficult to construct a very long word on the alphabet {0, 1,2, 3}
avoiding additive cubes (the longest we got has size ~ 1.4 x 10°).

Question 5. Are there infinite additive-cube-free words on the following alpha-
bets : {0,1,2,3}, {0,1,4} and {0,2,5} ?

The substitutions in Table 3 also respect the conditions of Theorem 2, thus
the existence of an infinite additive-cube-free word on the alphabet {0, 1,2, 3}
imply the existence of infinite additive-cube-free words on alphabets {0,1,4}
and {0,2,5}.
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