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Abstract

We prove that 2-abelian-cubes are avoidable over a binary alphabet and that
3-abelian-squares are avoidable over a ternary alphabet, answering positively
to two questions of Karhumäki et al.. We also show the existence of infi-
nite additive-cube-free words on several ternary alphabets. To achieve this,
we give sufficient conditions for a morphism to be k-abelian-n-power-free (resp.
additive-n-power-free), and then we give several morphisms which respect these
conditions.

Additionally, all our constructions show that the number of such words grows
exponentially. As a corollary, we get a new lower bound of 31/19 = 1.059526 . . .
for the growth rate of abelian-cube-free words.

Keywords: Combinatorics on words, k-abelian equivalence, square-free,
cube-free, morphism

1. Introduction

Avoidability of repetitions in words is one of the most studied topics in
word combinatorics since the seminal papers of Thue [26, 27]. One famous
example is Dejean’s conjecture, recently solved by several authors (see [23]).
The avoidability of abelian repetitions received a lot of interest since a question
from Erdös in 1957 [9, 10].

Two words u, v ∈ A∗ are abelian equivalent , denoted u ≡a v, if for every
a ∈ A, |u|a = |v|a. A word u is an abelian-n-power , where n ≥ 2, if u =
u1u2 . . . un such that ui ≡a ui+1 for every i ∈ {1, . . . , n− 1}. An abelian square
(resp. abelian cube) is an abelian-2-power (resp. abelian-3-power). It is not
difficult to see that every ternary word of size at least 8 has an abelian square.
Erdös [9, 10] raised the question whether they can be avoided in an infinite word
on an alphabet of size 4. Evdokimov [11] showed that one can avoid them on
an alphabet of size 25, which was later lowered to 5 by Pleasants [22]. Finally,
Keränen [18] answered positively to Erdos’s question in 1992. Furthermore,
Dekking [7] showed that abelian cubes can be avoided in an infinite ternary
word, and that abelian-4-powers can be avoided in an infinite binary word.

Email address: michael.rao@ens-lyon.fr (Michaël Rao)

Preprint submitted to Elsevier December 15, 2014



We are here interested in two variations of the previous problem. The first
one is the k-abelian-equivalence introduced by Karhumäki et al. [14, 16, 17].
Let k ≥ 1. Two words u and v (u, v ∈ A∗) are k-abelian-equivalent , denoted
u ≡a,k v, if for every w ∈ A∗ with |w| ≤ k, |u|w = |v|w. A word u is a k-abelian-
n-power , n ≥ 2, if u = u1u2 . . . un such that ui ≡a,k ui+1 for every i ∈ {1, . . . ,
n− 1}. A k-abelian-square (resp. k-abelian-cube) is a k-abelian-2-power (resp.
k-abelian-3-power). This notion is between the abelian equivalence (which is
the 1-abelian-equivalence) and the usual equality between words (which can be
viewed as the ∞-abelian-equivalence). Since cubes are avoidable in the binary
alphabet (e.g. in the Prouhet-Thue-Morse word), but are not avoidable in the
abelian sense, it is natural to ask for the smallest k for which k-abelian-cubes are
avoidable on a binary alphabet. In [14] authors showed that k ≤ 8, and in [20]
that k ≤ 5. Finally, in [21], Mercaş and Saarela showed that k ≤ 3. The same
question can be asked for k-abelian-squares on a ternary alphabet: 2-abelian-
squares cannot be avoided [15], but Huova showed that 64-abelian-squares can
be avoided [12].

In Section 2, we give sufficient conditions for a morphism h : A∗ → B∗

to be k-abelian-n-power-free (for a fixed n ≥ 2 and k ≥ 1), that is for every
abelian-n-power-free word w ∈ A∗, h(w) is k-abelian-n-power-free. Then we
give morphisms which respect the conditions, in order to construct 2-abelian-
cube-free binary words and 3-abelian-square-free ternary words. This answers
the two previous questions and also prove that the number of such words grows
exponentially, as abelian-square-free on four letters [3], and abelian-cube-free
ternary words ([1], see also Section 3).

The second notion is the additive-cube-avoidability. A word w ∈ N∗ is
an additive cube if w = pqr, where p, q and r are non-empty-word such that
|p| = |q| = |r| and

∑
(p) =

∑
(q) =

∑
(r). A word is additive-cube-free if it has

no factor which is an additive cube. Clearly, such words are also abelian-cube-
free. Recently Cassaigne et al. [5] showed that one can construct an infinite
additive-cube-free word on the alphabet {0, 1, 3, 4}. The question of infinite
additive-square-free word’s existence on a finite alphabet is still open.

In Section 3 we give sufficient conditions for a substitution h : A∗ → 2B
∗
, A,

B ⊆ N, to be additive-cube-free. We present substitutions from the alphabet {0,
1, 3, 4} to several ternary alphabets which respects these conditions. Moreover,
the presented constructions show directly that the number of additive-cube-
free words on these ternary alphabets grows exponentially. The lower bound of
31/19 = 1.059526 . . . we obtain for the growth rate for the alphabet {0, 1, 8} is
also a new lower bound for the number of abelian-cube-free words on a ternary
alphabet.

2. k-abelian-n-power-free morphisms

2.1. Preliminaries
Let |u|w denote the number of occurrences of the factor w in u. The Parikh

vector of a word u ∈ A∗, where A = {a1, a2, . . . , ak}, is Ψ(u) = (|u|a1 , |u|a2 ,
. . . , |u|ak). For a set S ⊆ A∗, ΨS(u) is the vector indexed by S such that
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ΨS(u)[w] = |u|w for every w ∈ S. When the alphabet is clear in the context,
we let Ψk(u) be ΨAk(u), for k ≥ 1.

Let Pref(u) be the set of prefixes of u, and Suf(u) be its set of suffixes. For
k ≥ 0, let prefk(u) (resp. sufk(u)) be the prefix (resp. suffix) of u of size k.

There are several equivalent definitions for k-abelian-equivalence (see [17]).
Two words u and v of size at most k − 1 are k-abelian-equivalent if and only if
they are equal. Otherwise, the following conditions are equivalent:

• u and v are k-abelian-equivalent (i.e. u ≡a,k v).

• For every w ∈ A∗ with |w| ≤ k, |u|w = |v|w.

• For every w ∈ Ak, |u|w = |v|w, prefk−1(u) = prefk−1(v) and sufk−1(u) =
sufk−1(v).

• For every w ∈ Ak, |u|w = |v|w, and prefk−1(u) = prefk−1(v).

Given k ≥ 1 and n ≥ 2, a (possibly infinite) word w is k-abelian-n-power-free
if no non-empty factor in w is a k-abelian-n-power. A word is k-abelian-square-
free (resp. k-abelian-cube-free) if it is k-abelian-2-power-free (resp. k-abelian-3-
power-free).

A morphism h : A∗ → B∗ is k-abelian-n-power-free if for every abelian-n-
power-free word u ∈ A∗, h(u) is k-abelian-n-power-free. Note that u has to be
abelian-n-power-free, not only k-abelian-n-power-free; we explain in Section 2.4
why we use this weaker notion. A morphism h : A∗ → B∗ is k-abelian-square-
free (resp. k-abelian-cube-free) if it is k-abelian-2-power-free (resp. k-abelian-3-
power-free).

2.2. Testing k-abelian-n-power-freeness
In [2], Carpi gave a set of conditions which assures that a given morphism

is abelian-n-power-free. We give in the following theorem a set of similar con-
ditions which assures that a given morphism is k-abelian-n-power-free.

Theorem 1. We fix k ≥ 1 and n ≥ 2, and two alphabets A and B. Let
h : A∗ → B∗ be a morphism. Suppose that:

(i) For every abelian-n-power-free word w ∈ A∗ with |w| ≤ 2 or |h(w[2 :
|w| − 1])| ≤ (k − 2)n− 2, h(w) is k-abelian-n-power-free.

(ii) There are p, s ∈ Bk−1 such that for every a ∈ A, p = prefk−1(h(a)p) and
s = sufk−1(sh(a)).

(iii) The matrix N indexed by Bk ×A, with N [w, x] = |h(x)p|w, has rank |A|.

(iv) Let S ⊆ Bk, with |S| = |A|, such that the matrix M indexed by S × A,
with M [w, x] = |h(x)p|w, is invertible. Let

ΨS(v, u) = ΨS(vp) + ΨS(su)−ΨS(sp)

and Ψk(v, u) = ΨBk(v, u). For every ai ∈ A and ui, vi ∈ A∗ with uivi =
h(ai); 0 ≤ i ≤ n; such that:
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(P) |{prefk−1(vip) : 0 ≤ i < n}| = 1,

(I) M−1(ΨS(vi−1, ui)−ΨS(vi, ui+1)) is an integer vector, for every 1 ≤
i < n,

(C) Ψk(vi−1, ui)−Ψk(vi, ui+1) ∈ im(N) for every 1 ≤ i < n,

there is (α0, . . . , αn) ∈ {0, 1}n+1 such that for every 1 ≤ i < n :

M−1ΨS(vi−1, ui)− (1− αi−1)Ψ(ai−1)− αiΨ(ai)

= M−1ΨS(vi, ui+1)− (1− αi)Ψ(ai)− αi+1Ψ(ai+1). (1)

Then h is k-abelian-n-power-free.

Proof. Suppose that h(w) has a k-abelian-n-power q1 . . . qn. Let q0 and qn+1 be
such that h(w) = q0q1 . . . qnqn+1. By condition (i), if |q1| < k − 1, then w has
an abelian-n-power. So we have |qi| ≥ k − 1 for every 1 ≤ i ≤ n.

There are, for every 0 ≤ i ≤ n, ai ∈ A, ui ∈ Pref(h(ai)) and ri ∈ A∗ such
that, for every 0 ≤ i ≤ n, r0 . . . riai ∈ Pref(w) and q0 . . . qi = h(r0 . . . ri)ui.
Note that, for a 1 ≤ i ≤ n, ri can be empty, but ai is always the first letter of
ri+1ai+1. Let vi be such that uivi = h(ai) for every 0 ≤ i ≤ n. By condition
(i), one can suppose w.l.o.g. that |r1 . . . rnan| ≥ 3.

By condition (ii), for every 1 ≤ i ≤ n, prefk−1(qi) = prefk−1(vi−1p). Since
q1 . . . qn is a k-abelian-n-power, we have condition (P).
Claim 1. Let r ∈ A∗ and u, v ∈ B∗. Then:

• NΨ(r) = Ψk(h(r)p) = Ψk(sh(r)) = Ψk(sh(r)p)−Ψk(sp),

• Ψk(vh(r)p) = Ψk(vp) +NΨ(r),

• Ψk(sh(r)u) = Ψk(su) +NΨ(r).

Proof. If prefk−1(u) = p, then Ψk(vu) = Ψk(vp) + Ψk(u). Similarly, if
sufk−1(v) = s, then Ψk(vu) = Ψk(v) + Ψk(su). All the equalities follow from
the previous facts, and the definition of N .

Claim 2. For every 1 ≤ i ≤ n:

Ψk(qi) = N(Ψ(ri)−Ψ(ai−1)) + Ψk(vi−1, ui). (2)

Proof. By double counting, we have :

Ψk(qi) + Ψk(sh(riai)p) = Ψk(sh(ri)ui) + Ψk(vi−1h(a−1i−1riai)p).

By Claim 1:

Ψk(qi) +NΨ(riai) + Ψk(sp) =

Ψk(sui) +NΨ(ri) + Ψk(vi−1p) +NΨ(a−1i−1riai).

Thus: Ψk(qi) = Ψk(vi−1, ui) +N(Ψ(ri)−Ψ(ai−1)).
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Since Ψk(qi) = Ψk(qi+1) for every 1 ≤ i < n, we have the condition (C).
Now we have directly ΨS(qi) = M(Ψ(ri) − Ψ(ai−1)) + ΨS(vi−1, ui). Since
ΨS(qi) = ΨS(qi+1):

M−1(ΨS(vi−1, ui)−ΨS(vi, ui+1)) = Ψ(ri+1)−Ψ(ai)−Ψ(ri) + Ψ(ai−1).

The right part is an integer vector, so we have condition (I). Thus, by condition
(iv), there is (α0, . . . , αn) ∈ {0, 1}n+1 such that (1) is fulfilled.

Equation (1) together with equation (2) give:

−Ψ(ri) + Ψ(ai−1)− (1− αi−1)Ψ(ai−1)− αiΨ(ai)

= −Ψ(ri+1) + Ψ(ai)− (1− αi)Ψ(ai)− αi+1Ψ(ai+1)

that is:

Ψ(ri)− αi−1Ψ(ai−1) + αiΨ(ai) = Ψ(ri+1)− αiΨ(ai) + αi+1Ψ(ai+1). (3)

In equation (3), either the left or the right part is a non-negative vector. Since
equation (3) is fulfilled for every 1 ≤ i < n, Ψ(ri) − αi−1Ψ(ai−1) + αiΨ(ai) is
a non negative vector for every 1 ≤ i ≤ n. Let r′i = a

−αi−1

i−1 ria
αi
i ; 1 ≤ i ≤ n.

Since ai is the first letter of riai+1, and Ψ(r′i) = Ψ(ri)−αi−1Ψ(ai−1) +αiΨ(ai)
is a non-negative vector, r′i is well defined in B∗. In one hand r′1 . . . r

′
n is a

factor of w, and is non empty since |r′1 . . . r′n| ≥ |r1 . . . rnan| − 2. On the other
hand Ψ(r′i) = Ψ(r′i+1) (by equation 3), for every 1 ≤ i < n. Thus, w has an
abelian-n-power r′1 . . . r′n.

We introduce ΨS(v, u) in order to handle pairs (v, u) such that |vu| < k− 1
(otherwise we have Ψk(v, u) = Ψk(vu)). Theorem 1 gives a set of sufficient
conditions, but are still far from a characterization, as Carpi partially done for
abelian-n-power-free morphisms [2]. The key point is the condition (ii). One
mentions that we can save up the suffix condition in (ii) by carefully handling
the cases where ui or vi has size less than k. However, we still need either the
prefix (or the suffix) condition in order to properly define N .

2.3. 2-abelian-cube-free and 3-abelian-square-free morphisms
Morphisms h2 and h′2 respect the conditions of Theorem 1 for k = 2 and

n = 3, i.e. are 2-abelian-cube-free, while morphisms h3 and h′3 respect the
conditions for k = 3 and n = 2, i.e. are 3-abelian-square-free. The checks
were done by computer, and took only a few seconds. Thus, the infinite word
h2(u) (resp. h′2(u)) where u is an infinite abelian-cube-free word (for example
a fixed point of Dekking’s morphism µ : 0 → 0012, 1 → 112, 2 → 022 [7]) is
a 2-abelian-cube-free binary word. Similarly, h3(v) (resp. h′3(v)), where v is
an infinite abelian-square-free word on an alphabet of size 4 (for example, a
fixed point of Keränen’s morphism g85 [18]), is an infinite 3-abelian-square-free
ternary word.

Over all the 2-abelian-cube-free morphisms we found, h2 is the smallest
uniform morphism, while h′2 is the one which minimize |h(012)|. If we are only
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2-abelian-cube-free morphisms:

h2 :


0→ 00100101001011001001010010011001001100101101011

1→ 00100110010011001101100110110010011001101101011

2→ 00110110101101001011010110100101001001101101011

h′2 :


0→ 00100101001100100101001001100100110011011

1→ 010110110011011001100100110011011

2→ 0101101001010010110011011

3-abelian-square-free morphisms:

h3 :


0→ 0102012021012010201210212

1→ 0102101201021201210120212

2→ 0102101210212021020120212

3→ 0121020120210201210120212

h′3 :


0→ 01201020120212012101201021

1→ 01202120121021201021

2→ 0120210201021

3→ 0121020121

Morphisms such that h(µ∞(0)) is 2-abelian-cube-free:

hd :


0→ 001001100110110011001001100100101

1→ 001011010110100101001001100100101

2→ 001011010110110011001001101011011

h′d :


0→ 0101101001011

1→ 010110110011011001100100110011011

2→ 00100101001001100100110011011

Table 1: Morphisms for k-abelian-n-power-free words.
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interested in 2-abelian-cube-free infinite word, one can find simpler construction.
The morphism hd ◦µ is 2-abelian-cube-free so hd(µ∞(0)) is 2-abelian-cube-free.

We also claim that h′d(µ
∞(0)) is 2-abelian-cube-free. One can modify the

decision procedure of Theorem 1 to compute the set of “patterns” that u has to
avoid to ensure that h(u) is k-abelian-n-power-free. This notion of patterns was
used by Carpi [3, 4] to prove that a substitution is abelian-square free, or by
Keränen [19] to prove that a fixed point of g98 is abelian-square free, even though
g98 is not abelian-square free. This was also used, under the name of template,
by Aberkane et al. [1] to show the exponential growth rate of abelian-cube-free
ternary words, and by Currie and Rampersad [6] for an algorithm which decide
if a fixed point of a morphism is abelian-n-power-free. More recently, Mercaş
and Saarela [20, 21] used this kind of patterns to show that a morphic word is
k-abelian-cube-free.

Doing this, we are able to show that h′d ◦ µ3(u) is 2-abelian-cube free if
and only if u forbids factors of the form F = {pqr, 1p0q0r2 : Ψ(p) = Ψ(q) =
Ψ(r)} ∪ {0p1q0r2, 1p1q0r2 : Ψ(p1) = Ψ(q0) = Ψ(r0)}. Moreover, µ(u) forbids
factors of the form F if and only if u forbids factors of the form F (in other
words, µ is F -free). Thus, h′d(µ

∞(0)) is 2-abelian-cube-free, but for every n ≥ 0,
h′d ◦ µn is not 2-abelian-cube-free (e.g. for every n ≥ 0, h′d(µ

n(1002)) has a 2-
abelian-cube).

2.4. Final remarks and questions
We finally shortly explain why we use this weak notion of k-abelian-n-power-

freeness for morphisms. On one hand, k-abelian-squares cannot be avoided by
a pure morphic word on a ternary alphabet [13]. So there is no morphism
h : {0, 1, 2} → {0, 1, 2} such that for every k-abelian-square-free word u, h(u)
is k-abelian-square-free, except trivial ones. On the other hand, suppose that
there is a morphism h : A∗ → B∗, with |A| > |B|, such that for every 2-abelian-
cube-free word u ∈ A∗, h(u) is 2-abelian-cube-free. Without lost of generality,
there is {a, b} ⊆ A, such that the first letter of h(a) and h(b) is the same. Then
babbababb is 2-abelian-cube-free, but h(bab) ≡a,2 h(abb) thus h(babbababb) is
an 2-abelian-cube. We have a contradiction, so such a morphism cannot exist.
Nevertheless, we cannot conclude directly when |A| = |B| and the first and last
letters of the images differ. More specifically, the following question is still open.

Question 1. Is there a pure morphic binary word which avoids 2-abelian-cubes
?

Let us also raise some questions on avoidability of long repetitions. Every
infinite binary word contains arbitrarily long abelian squares, while ones exist
which avoid squares of period at least 3 [8, 25]. We recently showed that one
can avoid 3-abelian-squares of period at least 3 over a binary alphabet [24]. It
seems natural to ask the following:

Question 2. Is there a p ∈ N such that 2-abelian-squares of period at least p
can be avoided over a binary alphabet ?
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That reminds the questions suggested by Mäkelä (see [19]):

Question 3.

(1) Can we avoid abelian-squares of the form uv, with |u| ≥ 2, over a ternary
alphabet ?

(2) Can we avoid abelian-cubes of the form uvw, with |u| ≥ 2, over a binary
alphabet ?

In [24], we answer negatively to (1). Then we modify this question to the
following one:

Question 4. Is there a p ∈ N such that one can avoid abelian cubes of period
at least p over a binary alphabet ?

3. Ternary words avoiding additive cubes

3.1. Testing additive-n-power-freeness
Let Σ be the morphism from the free monoid on the alphabet N to the

additive group (Z,+) such that Σ(x) = x for every x ∈ N. A word w ∈ N∗ is
an additive-n-power , with n ≥ 2, if w = p1 . . . pn, such that for every 1 ≤ i < n,
|pi| = |pi+1| and Σ(pi) = Σ(pi+1). A word is an additive-cube (resp. additive-
square) if it is an additive-3-power (additive-2-power). A (possibly infinite) word
w is additive-n-power-free if no non-empty factor of w is an additive-n-power.
Clearly, such words are also abelian-n-power-free. In [5], authors prove that the
fixed point of the morphism 0→ 03, 1→ 43, 3→ 1, 4→ 01 is additive-cube-free.

A substitution is a morphism s : A∗ → 2B
∗
between the free monoid A∗

and the power monoid of B∗, that is the monoid of subsets of B∗, with the
operation U · V = {uv : (u, v) ∈ U × V }. A morphism h : A∗ → B∗ can be
viewed as a substitution s : A∗ → 2B

∗
such that s(w) = {h(w)}. A substitution

s : A∗ → 2B
∗
, where A,B ⊆ N, is additive-n-power-free if for every additive-n-

power-free word u ∈ A∗, every v ∈ s(u) is additive-n-power-free.
We give sufficient conditions for a substitution to be additive-n-power-free

in the following theorem.

Theorem 2. We fix n ≥ 2 and A,B ⊆ N. Let s : A∗ → 2B
∗
be a substitution.

Suppose that:

(i) For every additive-n-power-free word w′ ∈ A∗ with |w′| ≤ 2, every w ∈
s(w′) is additive-n-power-free.

(ii) There is (l, γ, β) ∈ N× Z× Z, with β 6= 0, such that for every a ∈ A and
w ∈ s(a), we have |w| = l and Σ(w) = γ + aβ.

(iii) For every ai ∈ A, wi ∈ s(ai), and ui, vi ∈ A∗ with uivi = wi; 0 ≤ i ≤ n;
such that for every 1 ≤ i < n:

(L) |vi−1ui| ≡ |viui+1| (mod l),

8



s015 :


0 → {005015100100115010115, 005015100100115100115}
1 → {005015100100105055115, 050015100100105055115}
3 → {005015101155155055115, 050015101155155055115}
4 → {005015155055155055115, 050015155055155055115}

s016 :


0 → {00101160101006001016, 00101160101006001106}
1 → {00166060101006001016, 00166060101006001106}
3 → {00166166110160661106, 00166166110166061106}
4 → {00166166066160661106, 00166166066166061106}

s017 :


0 → {00170010011711001071, 00170010011711001701}
1 → {00170017707001001071, 00170017707001001701}
3 → {00170017711017177077, 01070017711017177077}
4 → {00170017707077177077, 01070017707077177077}

s027 :


0 → {0020720220220722007, 0020720220227022007}
1 → {7220720220220722007, 7220720220227022007}
3 → {7077200770720722007, 7077200770727022007}
4 → {7077272770720722007, 7077272770727022007}

s037 :


0 → {00300307303037707307, 00300307303037700737, 00300307303037707037}
1 → {00300300707737700737, 00300300707737707037, 00300300707737707307}
3 → {00337730337737700737, 00337730337737707037, 00337730337737707307}
4 → {00337737707737700737, 00337737707737707307, 00337737707737707037}

s018 :


0 → {0081001008011811011, 0081010080011811011, 0081001080011811011}
1 → {0081001008011818008, 0081010080011818008, 0081001080011818008}
3 → {0081018818808811811, 0081108818808811811, 0081810818808811811}
4 → {0081018818808808188, 0081108818808808188, 0081188018808808188}

s038 :


0 → {003800303830033833003, 003800308330033833003}
1 → {003800303830080038388, 003800308330080083838}
3 → {003808833833038838838, 003808838330338838838}
4 → {003808838388088388388, 083008838388088388388}

s019 :


0 → {0090110191001009, 0090110911001009}
1 → {0090119110110199, 0900119110110199}
3 → {0090190090099199, 0900190090099199}
4 → {0090119199099199, 0900119199099199}

s029 :


0 → {00290020020090022029, 00290020020090020229}
1 → {00290099220090022029, 00290099220090020229}
3 → {00220292299099299099, 22920220099099299099}
4 → {22920992299099299099, 22990292299099299099}

s049 :


0 → {00400400900499009, 00400400900949009}
1 → {00400449440099409, 00400449440499009}
3 → {00409909909499409, 00409909949099409}
4 → {44944909949499009, 44944909949909409}

Table 2: Additive-cube-free substitutions.
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(M) Σ(vi−1ui) ≡ Σ(viui+1) + xiγ (mod β),

(where xi = (|vi−1ui| − |viui+1|)/l for every 1 ≤ i < n)
there is (α0, . . . , αn) ∈ {0, 1}n+1 such that for every 1 ≤ i < n:

(a) αi − αi−1 = xi + αi+1 − αi,
(b) Σ(vi−1ui) + β[(αi−1 − 1)ai−1 − αiai]

= Σ(viui+1) + γxi + β[(αi − 1)ai − αi+1ai+1].

Then s is additive-n-power-free.

Proof. Suppose that w ∈ s(w′) has an additive-n-power q1 . . . qn. Let q0 and
qn+1 be such that w = q0q1 . . . qnqn+1.

For every 0 ≤ i ≤ n, there is ai ∈ A, wi ∈ s(ai), ui ∈ Pref(wi), and ri ∈ A∗
such that r0 . . . riai ∈ Pref(w′) and q0 . . . qi ∈ s(r0 . . . ri) · {ui}. Let vi be such
that uivi = wi for every 0 ≤ i ≤ n. By condition (i), one can suppose w.l.o.g.
that |r1 . . . rnan| ≥ 3.

By condition (ii), for every p ∈ s(p′), we have Σ(p) = γ|p′|+ βΣ(p′).
For every 1 ≤ i ≤ n, we have ui−1qi ∈ s(ri) · {ui}. Thus, by condition (ii),

and by the fact that ui−1vi−1 = wi−1 we have:

|qi| = |vi−1ui|+ l(|ri| − 1) (4)

and
Σ(qi) = γ(|ri| − 1) + β(Σ(ri)− ai−1) + Σ(vi−1ui). (5)

By equation (4) and by the fact that for every 1 ≤ i < n, |qi| = |qi−1|, we
have the condition (L), and:

|ri+1| − |ri| = (|vi−1ui| − |viui+1|)/l = xi.

Since for every 1 ≤ i < n, Σ(qi) = Σ(qi−1), we have:

γ(|ri| − 1) + β(Σ(ri)− ai−1) + Σ(vi−1ui)

= γ(|ri+1| − 1) + β(Σ(ri+1)− ai) + Σ(viui+1). (6)

Thus

Σ(vi−1ui) = Σ(viui+1) + γxi + β(Σ(ri+1)− ai − Σ(ri) + ai−1),

and equation (M) is fulfilled.
So, by condition (iii), there is (α0, . . . , αn) ∈ {0, 1}n+1 such that (a) and (b)

are fulfilled.
By equation (a), we have, for every 1 ≤ i < n;

|ri|+ αi − αi−1 = |ri−1|+ αi+1 − αi. (7)

If ri is empty, ai = ai+1 otherwise the first letter of ri is ai. In equation (7),
the right side or the left side must be non-negative. Thus, for every 1 ≤ i ≤ n,
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|ri|+ αi − αi−1 ≥ 0, and r′i = a
−αi−1

i−1 ria
αi
i ; 1 ≤ i ≤ n; is well defined. We have

|r′i| = |ri| + αi − αi−1 and Σ(r′i) = Σ(ri) + αiai − αi−1ai−1. By equation (7),
for every 1 ≤ i < n, |r′i| = |r′i+1|. Moreover r′1 . . . r′n is a factor of w′, and is non
empty since |r′1 . . . r′n| ≥ |r1 . . . rnan| − 2.

When we subtract (b) to (6), we get βΣ(r′i) = βΣ(r′i+1). Thus, Σ(r′i) =
Σ(r′i+1) for every 1 ≤ i < n, and w′ has an additive-n-power r′1 . . . r′n.

Theorem 2 can be used to find additive-square-free, additive-cube-free and
additive-4-power-free substitutions. However, we have few hopes to find an
additive-square-free substitution, while additive-4-powers are equivalent to abe-
lian-4-powers on binary words.

3.2. Additive-cube-free substitutions
We have checked by computer that every substitution in Table 2 respects the

conditions of Theorem 2. Since there is an infinite additive-cube-free word on
the alphabet {0, 1, 3, 4}, one can construct infinite additive-cube-free words on
the alphabets {0, 1, 5}, {0, 1, 6}, {0, 1, 7}, {0, 2, 7}, {0, 3, 7}, {0, 1, 8}, {0, 3, 8},
{0, 1, 9}, {0, 2, 9} and {0, 4, 9}. In our substitutions, each letter has at least two
images. This clearly shows that number of additive-cube-free words on these
alphabets grows exponentially. For the alphabet {0, 1, 8}, we got 3 images of
size 19 for each letter, giving the lower bound of 31/19 = 1.059526 . . . for the
growth rate. This bound is also a new lower bound for the growth rate of
abelian-cube-free words on ternary alphabet. (The previous known bound was
21/24 = 1.029302 . . . in [1].)

We conjecture that for every alphabet A = {0, i, j} such that i and j are co-
prime and j ≥ 6, there exists an infinite additive-cube-free word on the alphabet
A. The cases {0, 1, 2}, {0, 1, 3}, {0, 1, 4} and {0, 2, 5} are left open. Further-
more, it seems difficult to construct a very long word on the alphabet {0, 1, 2, 3}
avoiding additive cubes (the longest we got has size ∼ 1.4× 105).

Question 5. Are there infinite additive-cube-free words on the following alpha-
bets : {0, 1, 2, 3}, {0, 1, 4} and {0, 2, 5} ?

The substitutions in Table 3 also respect the conditions of Theorem 2, thus
the existence of an infinite additive-cube-free word on the alphabet {0, 1, 2, 3}
imply the existence of infinite additive-cube-free words on alphabets {0, 1, 4}
and {0, 2, 5}.
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