
Safety and Versatility
Verifying Swarms of Mobile Robots

Xavier Urbain UCBL-1–LIRIS

Safety and Versatility DI-ENSL 2023 1

Autonomous Mobile Robots

Safety and Versatility DI-ENSL 2023 2

Autonomous Mobile Robots

Safety and Versatility DI-ENSL 2023 3

Autonomous Mobile Robots cooperation

● Dynamic networks

● Exploration/Patrol

● Search and Rescue

● . . .

Environment: hostile?

Safety and Versatility DI-ENSL 2023 4



Safety and Versatility DI-ENSL 2023 5

Autonomous Mobile Robots cooperation
● Dynamic networks

● Exploration/Patrol

● Search and Rescue

● . . .

EnvironmentEnvironment: hostile? Task: critical!

● Cheap the userthe user and

● Protocols Robust the taskthe task can loose agents

↝ Assumptions low capabilities, silence. . .

↝ Expectations high Guarantee through formal methods

Safety and Versatility DI-ENSL 2023 6

Distributed Computing certification

Subtle variations + informal reasoning ↝ source of errors

Protocols incorrect wrt specifications still found

Recent, in expansion + critical app. ↝ need for sound foundations

Formal Methods

● Model-checking: reachability LTL [Défago. . . , Bérard. . . , Devisme. . . ]

+ automation − instances (limited, discrete)

● Synthesis [Bonnet. . . , Millet. . . ]

● Formal proof : mechanically assisted Coq, Isabelle− expertise + scalable, generic

↝ 2 phases spec/proof: emphasis on easy specification

Safety and Versatility DI-ENSL 2023 7

Mobile Robots needs

From a computer science point of view:

● Model characterized clearly, towards "realistic" variants

● Tools (theory+software) for formal verification

Safety and Versatility DI-ENSL 2023 8



Autonomous Mobile Robots context

Suzuki & Yamashita 1999

Robots move in space according to their perception
Following a cycle:

Robots autonomous ↝ cooperate in a task

Without any explicit communication channel

↝ many variants. . .

Safety and Versatility DI-ENSL 2023 9

Autonomous Mobile Robots context

Suzuki & Yamashita 1999

Robots move in space according to their perception

Characteristics of space

● Topology?

● Discrete/Continuous ?

● Bounded/infinite?

● . . .

Safety and Versatility DI-ENSL 2023 10

Autonomous Mobile Robots context

Suzuki & Yamashita 1999

Robots move in space according to their perception

Capabilities (robots/sensors)

● Memory/Oblivious? (no memory of previous cycle)

● Vision limited/global?

● Orientation share/chirality? left/right?

● Perception? names? multiplicity? (“3 robots here”≠“some here”)

● . . .

Safety and Versatility DI-ENSL 2023 11

Autonomous Mobile Robots unlimited vision

Safety and Versatility DI-ENSL 2023 12



Autonomous Mobile Robots limited vision

Safety and Versatility DI-ENSL 2023 13

Autonomous Mobile Robots orientation

Safety and Versatility DI-ENSL 2023 14

Autonomous Mobile Robots colours

Self-visible?

Safety and Versatility DI-ENSL 2023 15

Autonomous Mobile Robots context
Suzuki & Yamashita 1999

Robots move in space according to their perception

Synchronization and movement

● Model of synchro?

● Trajectory?

● Speed?

● . . .

+ (Byzantine) faults!

Safety and Versatility DI-ENSL 2023 16



Autonomous Mobile Robots context

Suzuki & Yamashita 1999

Robots move in space according to their perception

Synchronization and movement
Round 1 Round 2 Round 3 Round 4

FSYNC

Round 1 Round 2 Round 3 Round 4

SSYNC

Safety and Versatility DI-ENSL 2023 17

Autonomous Mobile Robots context

Suzuki & Yamashita 1999

Robots move in space according to their perception

Synchronization and movement
⋯

⋯
⋯ ASYNC

↝ outdated perceptions. . . ASYNC ⊆ SSYNC ⊂ ASYNCO(1)
Safety and Versatility DI-ENSL 2023 18

Core
Definition round r da config : configuration :=

fun id ⇒ (* for a given robot, the new configuration *)

let state := config id in

if da.(activate) id then match id with (* activated *)

match id with

| Byz b ⇒ da.(relocate_byz) config b (* by demon *)

| Good g ⇒ (* change the frame of reference *)

let frame_choice := ... in let new_frame := ... in

let local_conf := ... in let local_st := ... in

(* compute the observation and apply r *)

let obs := obs_from_config local_conf local_st in

let loc_robot_dec := r obs in

(* demon choice on how to update state *)

let choice := da.(choose_update)... loc_robot_dec in

(* actual update and return to the global frame *)

else inactive config id (da.(choose_inactive) config id).
Safety and Versatility DI-ENSL 2023 19

Swarms in Continuous Space

Questions:

● What is possible?

● How it is possible?

● Is that correct?

Popular Problems

● Probe (patrol/exploration)

● Pursuit (flock/school)

● Pattern formation

Safety and Versatility DI-ENSL 2023 20



Swarms in Continuous Space pattern

Origin: any conf. (scattered)

Goal: Arbitrary pattern

Safety and Versatility DI-ENSL 2023 21

Swarms in Continuous Space pattern

Origin: any conf. (scattered)

Goal: Arbitrary pattern

Safety and Versatility DI-ENSL 2023 22

Swarms in Continuous Space pattern

Origin: any conf. (scattered)

Goal: Arbitrary pattern

Subcases: benchmarks

● Uniform circle/polygons, regular -ish shapes. . .

● Convergence/Gathering

Safety and Versatility DI-ENSL 2023 23

Swarms in Continuous Space initial

Safety and Versatility DI-ENSL 2023 24



Swarms in Continuous Space convergence

.

c
ε

● Forever

within ε from c

(coinductive)

● Eventually there

(inductive)

Convergence:

∃c,∀ε . . .

Safety and Versatility DI-ENSL 2023 25

Swarms in Continuous Space gathering

⋅
c

● Forever at c

(coinductive)

● Eventually there

(inductive)

Gathering: ∃c, . . .

Safety and Versatility DI-ENSL 2023 26

Formalisation SSYNC/mult./rigid

Definition Gather (pt: Location.t) (e: execution) :=

Stream.forever (Stream.instant (gathered_at pt)) e.

Definition WillGather (pt: Location.t) (e: execution) :=

Stream.eventually (fun e ⇒ ∃ pt, Gather pt e) e.

Definition FullSolGathering (r: robogram) (d: demon) :=∀ conf, WillGather (execute r d conf).

Hypothesis even_nG : Nat.Even N.nG.

Hypothesis nG_non_0 : N.nG ≠ 0.

Variable r : robogram.

Theorem noGathering_Fair:∀ config, invalid config →∃ d, Fair d ∧ ¬WillGather (execute r d config).
Safety and Versatility DI-ENSL 2023 27

Example of Impossibility gathering even

≡

Safety and Versatility DI-ENSL 2023 28



Example of Impossibility gathering even

?

≡

Safety and Versatility DI-ENSL 2023 29

Example of Impossibility gathering even

≡

Safety and Versatility DI-ENSL 2023 30

Example of Impossibility gathering even

?

≡

Safety and Versatility DI-ENSL 2023 31

Example of Impossibility gathering even

≡

Safety and Versatility DI-ENSL 2023 32



Example of Impossibility gathering even

≡

Safety and Versatility DI-ENSL 2023 33

Example of Impossibility gathering even

≡

Safety and Versatility DI-ENSL 2023 34

Example of Impossibility gathering even

≡

Safety and Versatility DI-ENSL 2023 35

Example of Impossibility gathering even

≡

Safety and Versatility DI-ENSL 2023 36



Formalisation SSYNC/mult./rigid
Definition Gather (pt: Location.t) (e: execution) :=

Stream.forever (Stream.instant (gathered_at pt)) e.

Definition WillGather (pt: Location.t) (e: execution) :=

Stream.eventually (fun e ⇒ ∃ pt, Gather pt e) e.

Definition ValidSolGathering (r: robogram) (d: demon) :=∀ conf, ¬invalid conf → WillGather (execute r d conf).

Definition gatherR2... (* first solution *)

Theorem Gathering_in_R2 : ∀ d, Fair d →
ValidSolGathering gatherR2 d. (* proof 25 lines *)

(* total 3000 lines *)

Safety and Versatility DI-ENSL 2023 37

GatherR2 SSYNC/mult./rigid

Gathered

Maj

DcDd

Sc

Ic

Ec

Sd

Id

Ed

GcGd

Safety and Versatility DI-ENSL 2023 38

Mobile Robots needs

From a computer science point of view:

● Model characterized clearly, towards "realistic" variants

● Tools (theory+software) for formal verification

In practice: problem oriented

Academic/Fundamental problems Gathering. . .

↝ contradiction!

How to obtain a correct protocol?

Context: Suzuki & Yamashita Task: Rescue/Lifeline
Safety and Versatility DI-ENSL 2023 39

Keeping in touch task

Safety and Versatility DI-ENSL 2023 40



Keeping in touch task

(Balabonski, Courtieu, Pelle, Rieg, Tixeuil, Urbain)

Special locations:

● Base

● Companion

Invariant: connection

Base

CompanionSafety and Versatility DI-ENSL 2023 41

Assumptions space, robots

● R3 ↝ R2 flying over on a plane (!) Companion ≠ rescue team

● Special point: base

● Volume/collision ↝ no mult. detection

● Vision bounded Dmax

● Speed bounded D/round

● No Byzantine

Safety and Versatility DI-ENSL 2023 42

Assumptions execution

● FSYNC short cycles

● Movements rigid

● Initial config.: start from base

Parameter (n : nat).

Instance Robot_Names : Names := Robots n 0.

Parameter (D Dmax : R).

Instance Loc : Location := make_Location R2.

Instance SetObs := limited_set_observation Dmax.

Instance setting_is_rigid : RigidSetting.

Safety and Versatility DI-ENSL 2023 43

Assumptions execution, invariant 1

● FSYNC short cycles

● Movements rigid

● Initial config.: start from base

Remain connected

Safety and Versatility DI-ENSL 2023 43



Assumptions execution, invariant 2

● FSYNC short cycles

● Movements rigid

● Initial config.: start from base

No collision : cannot have two robots at same spot

Safety and Versatility DI-ENSL 2023 43

Building a correct solution

1 Instance of model with assumptions [ok]

2 Strengthening of assumptions, towards sufficient set

3 Getting a (scheme of) correct protocol

4 (Providing a concrete protocol) (scheme ≠ ∅)

Safety and Versatility DI-ENSL 2023 44

Building a correct solution strengthening

● Initial

● Orientation (prob. asymmetrical) go towards companion 0

● In flight ≠ at base

● Contributing +A

Definition identifier := nat.

Definition launched := bool.

Definition alive := bool.

Definition state:= location * identifier * launched * alive.

Safety and Versatility DI-ENSL 2023 45

Building a correct solution strengthening

Formal expression of invariants

Definition path_conf (cf:config) :=∀ g, get_alive (cf g) = true →
get_ident (cf g) = 0∨ ∃ g’, dist (get_loc (cf g)) (get_loc (cf g’)) ≤ Dmax∧ get_alive (cf g’) = true∧ get_launched (cf g’) = true∧ get_ident (cf g’) < get_ident (cf g).

Definition no_collision_conf(cf:config) := ∀ g g’, g ≠ g’→ get_launched(cf g) = true → get_launched(cf g’) = true→ get_alive(cf g) = true → get_alive(cf g’) = true→ dist (get_loc (cf g)) (get_loc (cf g’)) ≠ 0R.

Definition NoCollAndPath e :=

forever (fun c ⇒ no_collision_conf c ∧ path_conf c) e.

Safety and Versatility DI-ENSL 2023 46



Building a correct solution strengthening

Getting rid of trivial counter-examples

● Enough robots. . . (always a robot at base)

● Initial configuration valid: companion connected and without collision

Less trivial counter-examples

● Targetting a robot soonA? risk of losing connection. . . lights

● Cannot predict others’ moves. . . defensive approach

Dmax

Dp

D
D

D

↝ Constraints : Dmax > 7D and launch at Dmax − 4D optimal?
Safety and Versatility DI-ENSL 2023 47

Building a correct solution candidate

1 Choose a target robot (direction)

2 Choose a destination

3 Safe?

● Yes: go to destination, no warning● No: stay at location, display warning

Constraints over choices of 1) target and 2) destination

Axiom choose_new_pos_spec : ∀ obs target,

let new := choose_new_pos obs target in

dist new target ≤ Dp (* keep in range *)∧ dist new (0,0) ≤ D. (* reachable *)

Definition protocole (s : observation) : R2*light :=

let target := choose_target s in

let new_pos := choose_new_pos s (fst target) in

match move_to s new_pos with (* Is this dangerous? *)

| true ⇒ (new_pos,false) (* Safe: move + light off. *)

| false ⇒ ((0,0), true) (* Danger: stay + light on. *)

end.
Safety and Versatility DI-ENSL 2023 48

Building a correct solution candidate

Axiom choose_target_spec : ∀ obs_id local_config,

let obs := obs_from_config local_config in

let target := choose_target obs_id obs in

target ∈ obs (* target must be in range *)∧ get_alive target = true (* be alive *)∧ get_ident target < get_ident obs_id (* smaller id *)∧ (get_light target = true (* preferably light off *)→ ∀ id ∈ obs, get_light id = true)∧ (get_light target = true (* preferably close *)→ dist (0,0) (get_loc target) > Dp→ ∀ id ∈ obs, dist (0,0) (get_loc elt) > Dp).

Axiom choose_new_pos_spec : ∀ obs target,

let new := choose_new_pos obs target in

dist new target ≤ Dp (* keep in range *)∧ dist new (0,0) ≤ D. (* reachable *)Safety and Versatility DI-ENSL 2023 48

Building a correct solution suited family

Theorem NoCollAndPath invariant of any FSYNC execution, from a

valid conf., of a candidate that fulfils these constraints.

● 520 lines of instantiation

● 540 lines of specifications

● 1000 lines of actual proof

No loss of contact with the rescue team!

Solution obtained

● within the formal framework

● along specification

Easy concrete solution (choices for target and dest. fulfilling constraints)
Safety and Versatility DI-ENSL 2023 49



Future work

Towards a complete tool-chain for safe protocols

Background:

● New topologies, case studies, similar models (Coq)

● Comparison of demons

Core model:

● ASYNC: how to ease proofs? ● Randomized protocols

Tool chain:

● Automation

● Links model-cheking/formal proof, Graphs and rewriting, WF

● Semantics ↝ DSL

● Generation of proof obligations, phases, etc.

↝ implementation. . .
Safety and Versatility DI-ENSL 2023 50

A few words on. . .
SAPPORO = Research project on oblivious robots (France/Japan)

https://sapporo.liris.cnrs.fr/

Pactole = formal library for the Coq proof assistant

modelling robotic swarms https://pactole.liris.cnrs.fr/

Assets:

● single framework to express everything

● specification is easy (very close to math)

● proof of correctness + of impossibility

● compare expressive power of models

Examples:

● Space: ring, graph, plane, etc.

● Problems: gathering, convergence, exploration, lifeline
Safety and Versatility DI-ENSL 2023 51


