
# **Safety and Versatility**

**Verifying Swarms of Mobile Robots** 

**Xavier Urbain** 

UCBL-1-LIRIS

## **Autonomous Mobile Robots**



Safety and Versatility

**DI-ENSL 2023** 

Safety and Versatility

DI-ENSL 2023

cooperation

### **Autonomous Mobile Robots**



## **Autonomous Mobile Robots**

- Dynamic networks
- Exploration/Patrol
- Search and Rescue

Environment: hostile?

Safety and Versatility **DI-ENSL 2023** Safety and Versatility



**Autonomous Mobile Robots** 

cooperation

- Dynamic networks
- Exploration/Patrol
- Search and Rescue

• ...

EnvironmentEnvironment: hostile? Task: critical!

Cheap the user and

Protocols Robust the task the task can loose agents

→ Assumptions low capabilities, silence...

→ Expectations high Guarantee through formal methods

Safety and Versatility DI-ENSL 2023

# Distributed Computing certification

Subtle variations + informal reasoning → source of errors
Protocols incorrect wrt specifications still found

Recent, in expansion + critical app. → need for sound foundations

#### **Formal Methods**

- Model-checking: reachability LTL [Défago..., Bérard..., Devisme...]
  - + automation instances (limited, discrete)
- Synthesis [Bonnet..., Millet...]
- Formal proof: mechanically assisted
   Coq, Isabelle
  - expertise + scalable, generic
- → 2 phases spec/proof: emphasis on easy specification

Safety and Versatility

5

DI-ENSL 2023

needs

#### Mobile Robots

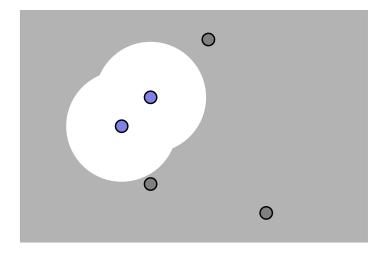
From a computer science point of view:

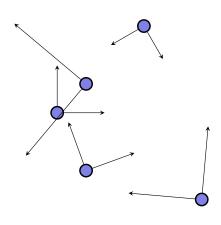
DI-ENSL 2023

- Model characterized clearly, towards "realistic" variants
- Tools (theory+software) for formal verification

Safety and Versatility DI-ENSL 2023 7 Safety and Versatility

**Autonomous Mobile Robots Autonomous Mobile Robots** context context Suzuki & Yamashita 1999 Suzuki & Yamashita 1999 Robots move in space according to their perception Robots move in space according to their perception Following a cycle: 👫 🏢 🏂 Characteristics of space Robots autonomous → cooperate in a task • Topology? Without any explicit communication channel • Discrete/Continuous ? Bounded/infinite? → many variants... Safety and Versatility **DI-ENSL 2023** 9 Safety and Versatility DI-ENSL 2023 10 **Autonomous Mobile Robots Autonomous Mobile Robots** unlimited vision context Suzuki & Yamashita 1999 Robots move in space according to their perception Capabilities (robots/sensors) Memory/Oblivious? (no memory of previous cycle) Vision limited/global? Orientation share/chirality? left/right? Perception? names? multiplicity? ("3 robots here" #some here") 


Safety and Versatility DI-ENSL 2023 11 Safety and Versatility DI-ENSL 2023 12


## **Autonomous Mobile Robots**

## limited **vision**

## **Autonomous Mobile Robots**

orientation





Safety and Versatility

**DI-ENSL 2023** 

13

DI-ENSL 2023

### **Autonomous Mobile Robots**

## colours

## **Autonomous Mobile Robots**

context

Suzuki & Yamashita

Safety and Versatility

1999

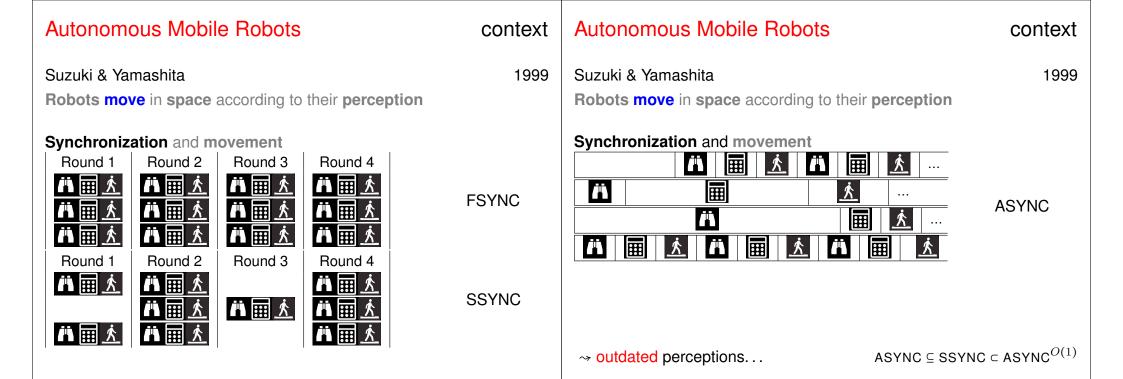
14

Robots move in space according to their perception

### Synchronization and movement

- Model of synchro?
- Trajectory?
- Speed?
- + (Byzantine) faults!






Self-visible?

Safety and Versatility DI-ENSL 2023 15

Safety and Versatility

DI-ENSL 2023



17

#### Core

Safety and Versatility

**DI-ENSL 2023** 

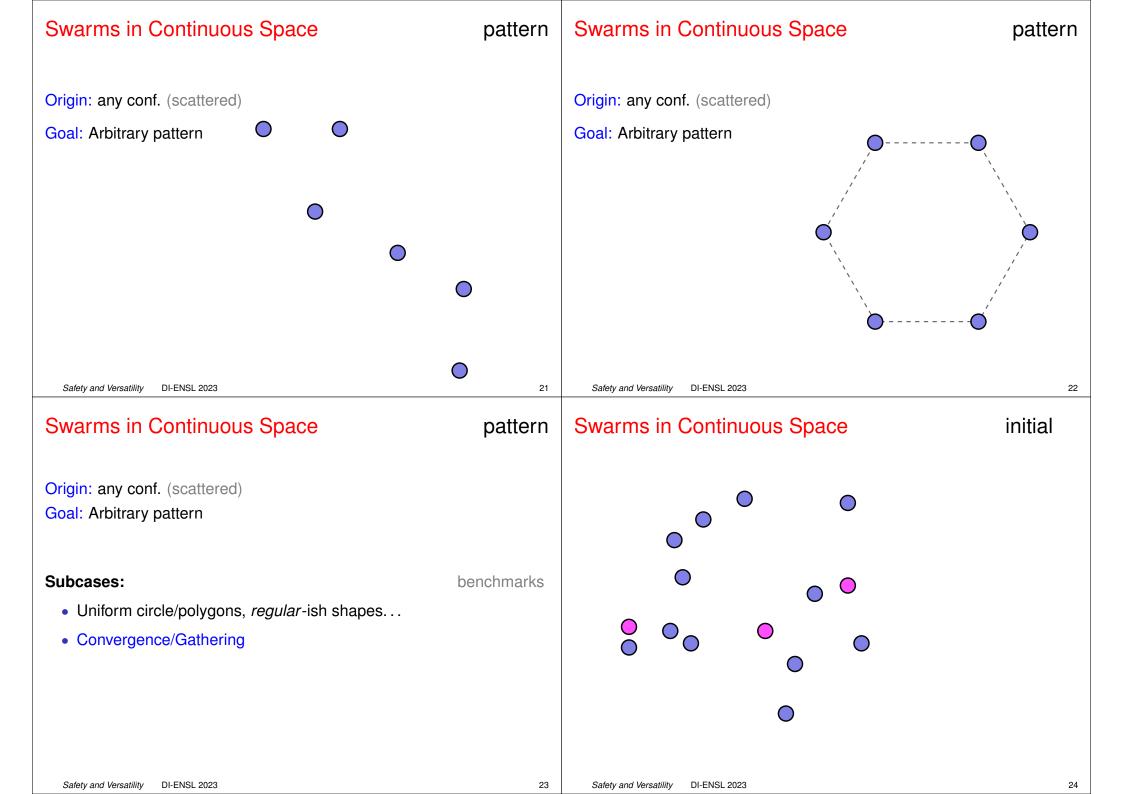
```
Definition round r da config : configuration :=
fun id \Rightarrow (* for a given robot, the new configuration *)
  let state := config id in
  if da.(activate) id then match id with (* activated *)
    match id with
     | Byz b \Rightarrow da.(relocate_byz) config b (* by demon *)
                       (* change the frame of reference *)
     | Good a ⇒
       let frame choice := ... in let new frame := ... in
       let local conf := ... in let local st := ... in
       (* compute the observation and apply r *)
       let obs := obs_from_config local_conf local_st in
       let loc_robot_dec := r obs in
       (* demon choice on how to update state *)
       let choice := da.(choose update)... loc robot dec in
       (* actual update and return to the global frame *)
  else inactive config id (da. (choose_inactive) config id).
  Safety and Versatility DI-ENSL 2023
```

# Swarms in Continuous Space

DI-ENSL 2023

#### **Questions:**

Safety and Versatility

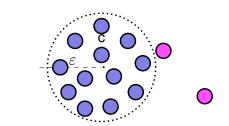

- What is possible?
- How it is possible?
- Is that correct?

#### **Popular Problems**

- Probe (patrol/exploration)
- Pursuit (flock/school)
- Pattern formation

Safety and Versatility DI-ENSL 2023

20




# Swarms in Continuous Space

## convergence

# Swarms in Continuous Space

gathering



- Forever within  $\varepsilon$  from c(coinductive)
- Eventually there (inductive)

### Convergence:

 $\exists c, \forall \varepsilon \dots$ 

- Forever at c (coinductive)
  - Eventually there (inductive)

Gathering:  $\exists c, \dots$ 

Safety and Versatility **DI-ENSL 2023**  25 Safety and Versatility

DI-ENSL 2023

gathering even

## **Formalisation**

## SSYNC/mult./rigid

**Definition** Gather (pt: Location.t) (e: execution) := Stream.forever (Stream.instant (gathered\_at pt)) e. **Definition** WillGather (pt: Location.t) (e: execution) := Stream.eventually (fun  $e \Rightarrow \exists pt$ , Gather pt e) e.

**Definition** FullSolGathering (r: robogram) (d: demon) := ∀ conf, WillGather (execute r d conf).

Hypothesis even\_nG : Nat.Even N.nG. Hypothesis nG\_non\_0 : N.nG # 0.

Variable r : robogram.

Theorem noGathering\_Fair:  $\forall$  config, invalid config  $\rightarrow$ 

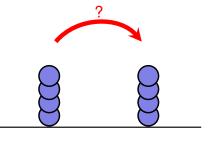
 $\exists$  d, Fair d  $\land$   $\neg$ WillGather (execute r d config). Safety and Versatility DI-ENSL 2023

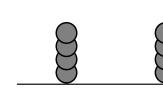
Example of Impossibility

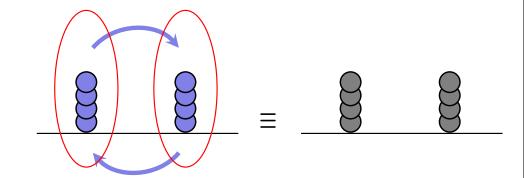







27


Example of Impossibility


gathering even

Example of Impossibility

gathering even





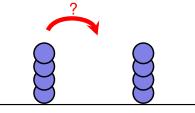


Safety and Versatility

DI-ENSL 2023

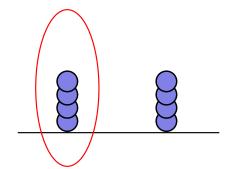
29

DI-ENSL 2023


Example of Impossibility

gathering even

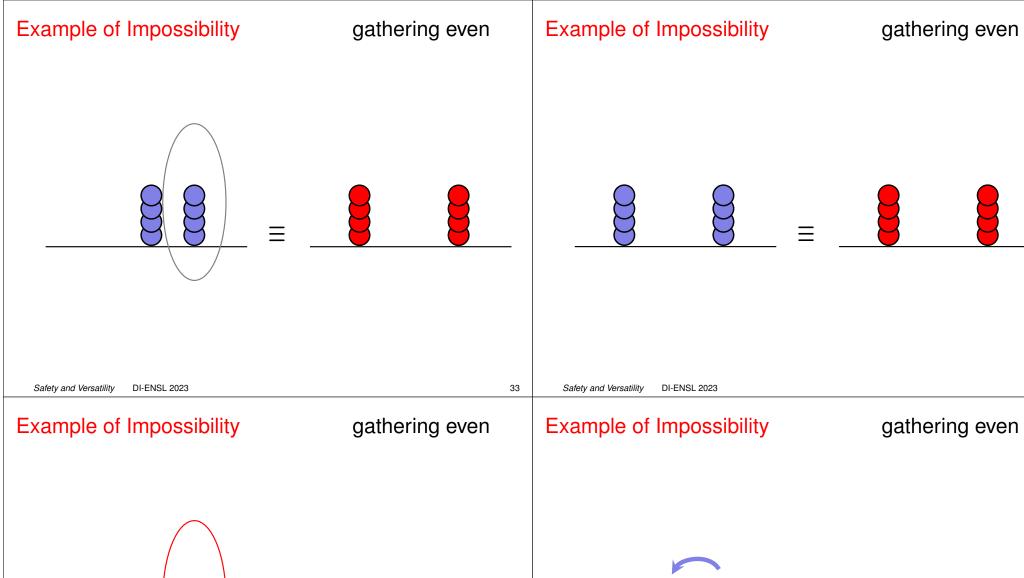
Example of Impossibility

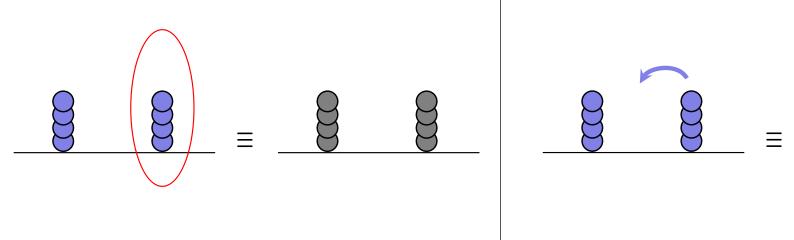

Safety and Versatility

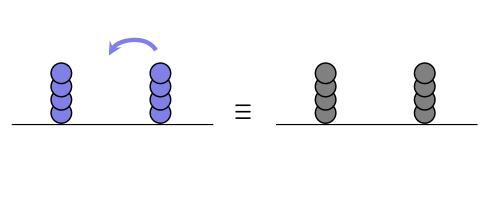
gathering even









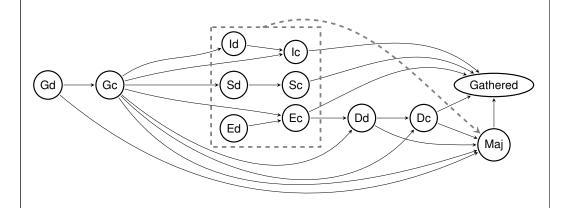

Safety and Versatility DI-ENSL 2023 31 Safety a







Safety and Versatility **DI-ENSL 2023** 35 Safety and Versatility DI-ENSL 2023


### **Formalisation**

# SSYNC/mult./rigid

```
GatherR2
```

SSYNC/mult./rigid

```
Definition Gather (pt: Location.t) (e: execution) :=
  Stream.forever (Stream.instant (gathered at pt)) e.
Definition WillGather (pt: Location.t) (e: execution) :=
  Stream.eventually (fun e \Rightarrow \exists pt, Gather pt e) e.
Definition ValidSolGathering (r: robogram) (d: demon) :=
  \forall conf, \neginvalid conf \rightarrow WillGather (execute r d conf).
                                     (* first solution *)
Definition gatherR2...
Theorem Gathering_in_R2 : ∀ d, Fair d →
  ValidSolGathering gatherR2 d. (* proof 25 lines *)
                                     (* total 3000 lines *)
  Safety and Versatility
              DI-ENSL 2023
                                                               37
```



Safety and Versatility

DI-ENSL 2023

Mobile Robots

From a computer science point of view:

- Model characterized clearly, towards "realistic" variants
- Tools (theory+software) for formal verification

In practice: problem oriented

Academic/Fundamental problems

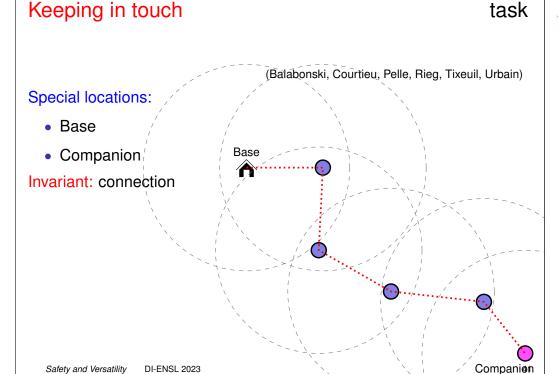
Gathering...

needs

→ contradiction!

How to obtain a correct protocol?

Task: Rescue/Lifeline Context: Suzuki & Yamashita


Keeping in touch

task



Safety and Versatility DI-ENSL 2023

Safety and Versatility DI-ENSL 2023



# **Assumptions**

space, robots

- $\mathbb{R}^3 \to \mathbb{R}^2$  flying over on a plane (!)
- Companion ≠ rescue team

- Special point: base
- Volume/collision → no mult, detection
- Vision bounded

 $D_{max}$ 

Speed bounded

D/round

No Byzantine

Safety and Versatility

Assumptions

DI-ENSL 2023

42

short cycles

**Assumptions** 

execution

execution, invariant 1

FSYNC

short cycles

- Movements rigid
- Initial config.: start from base

Parameter (n : nat).

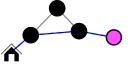
Instance Robot\_Names : Names := Robots n 0.

Parameter (D Dmax : R).

Instance Loc : Location := make\_Location R2.

Instance SetObs := limited\_set\_observation Dmax.

Instance setting\_is\_rigid : RigidSetting.


43

FSYNC

Movements rigid

Initial config.: start from base





Remain connected

Safety and Versatility

Safety and Versatility DI-ENSL 2023

## **Assumptions**

## execution, invariant 2

# Building a correct solution

FSYNC

short cycles

- Movements rigid
- Initial config.: start from base

No collision: cannot have two robots at same spot

1 Instance of model with assumptions

[ok]

- 2 Strengthening of assumptions, towards sufficient set
- 3 Getting a (scheme of) correct protocol
- 4 (Providing a concrete protocol)

(scheme  $\neq \emptyset$ )

Safety and Versatility

**DI-ENSL 2023** 

43

Safety and Versatility

DI-ENSL 2023

Building a **correct** solution

strengthening

44

## Building a **correct** solution

## strengthening

- Initial
- Orientation (prob. asymmetrical)

go towards companion 0

In flight

≠ at base

Contributing + \( \mathbb{Z} \)

Formal expression of invariants

```
Definition path conf (cf:config) :=
\forall g, get_alive (cf g) = true \rightarrow
 get_ident (cf g) = 0
 V \exists g', dist (get_loc (cf g)) (get_loc (cf g')) \leq Dmax
                 \land get_alive (cf g') = true
                 A get_launched (cf g') = true
                 \land get_ident (cf g') < get_ident (cf g).
```

**Definition** no\_collision\_conf(cf:config) := ∀ g g', g ≠ g' → get launched(cf g) = true → get launched(cf g') = true → get\_alive(cf g) = true → get\_alive(cf g') = true  $\rightarrow$  dist (get\_loc (cf g)) (get\_loc (cf g'))  $\neq 0_{\mathbb{R}}$ .

**Definition** NoCollAndPath e := forever (**fun**  $c \Rightarrow no\_collision\_conf c \land path\_conf c) e.$ 

```
Definition identifier := nat.
Definition launched := bool.
```

**Definition** alive := bool.

**Definition** state:= location \* identifier \* launched \* alive

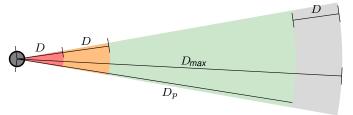
**DI-ENSL 2023** Safety and Versatility

Safety and Versatility DI-ENSL 2023

## Building a **correct** solution

# strengthening

Getting rid of trivial counter-examples


Enough robots...

- (always a robot at base)
- Initial configuration valid: companion connected and without collision

### Less trivial counter-examples

- Targetting a robot soon <a>2</a>? risk of losing connection... liahts
- Cannot predict others' moves...

defensive approach



 $\rightarrow$  Constraints:  $D_{max} > 7D$  and launch at  $D_{max} - 4D$ Safety and Versatility

Axiom choose\_new\_pos\_spec : ∀ obs target,

let new := choose\_new\_pos obs target in

Safety and dist new News (0.00) \leq D. (\* reachable \*)

dist new target ≤ Dp (\* keep in range \*)

optimal?

## Building a **correct** solution

## candidate

```
Axiom choose_target_spec : ∀ obs_id local_config,
  let obs := obs_from_config local_config in
  let target := choose_target obs_id obs in
     target ∈ obs (* target must be in range *)
   ∧ get_alive target = true
                                         (* be alive *)
   ^ get_ident target < get_ident obs_id (* smaller id *)</pre>
   ^ (get_light target = true (* preferably light off *)
        \rightarrow \forall id \in obs, get_light id = true)
   \rightarrow dist (0,0) (get_loc target) > Dp
        \rightarrow \forall id \in obs, dist (0,0) (get_loc elt) > Dp).
```

```
Building a correct solution
```

candidate

- Choose a target robot (direction)
- Choose a destination
- 3 Safe?
  - Yes: go to destination, no warning
  - No: stay at location, display warning

### Constraints over choices of 1) target and 2) destination

```
Axiom choose new pos spec : \forall obs target,
Definition protocole (s : observation) : R2*light :=
 let target := choose target s in
 let new_pos := choose_new_pos s (fst target) in
 match move_to s new_pos with (* Is this dangerous? *)
 | true ⇒ (new_pos, false) (* Safe: move + light off. *)
 | false \Rightarrow ((0,0), true) (* Danger: stay + light on. *)
 end.
```

Safety and Versatility DI-ENSL 2023

Building a **correct** solution

suited family

Theorem NoCollandPath invariant of any FSYNC execution, from a valid conf., of a candidate that fulfils these constraints.

- 520 lines of instantiation
- 540 lines of specifications
- 1000 lines of actual proof

No loss of contact with the rescue team!

#### Solution obtained

- within the formal framework
- along specification

Easy concrete solution (choices for target and dest. fulfilling constraints) Safety and Versatility DI-ENSL 2023

## Future work

Towards a complete tool-chain for safe protocols

#### Background:

New topologies, case studies, similar models

(Coq)

50

Comparison of demons

#### Core model:

- ASYNC: how to ease proofs?
- Randomized protocols

### Tool chain:

- Automation
  - · Links model-cheking/formal proof, Graphs and rewriting, WF
- Semantics → DSL
  - Generation of proof obligations, phases, etc.

→ implementation...
Safety and Versatility DI-ENSL 2023

2023

### A few words on...

SAPPORO = Research project on oblivious robots (France/Japan)

https://sapporo.liris.cnrs.fr/

Pactole = formal library for the Coq proof assistant

modelling robotic swarms https://pactole.liris.cnrs.fr/

#### Assets:

- single framework to express everything
- specification is easy (very close to math)
- proof of correctness + of impossibility
- compare expressive power of models

#### Examples:

- Space: ring, graph, plane, etc.
- Problems: gathering, convergence, exploration, lifeline Safety and Versatility

51