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Emeraude: Who Are We?

Main Research Interest: Embedded Audio Systems and Their Programming

Gathers the strengths of INRIA, INSA Lyon (Engineering School), and GRAME-CNCM
(birthplace of the Faust programming language)

6 faculty, 3 PhD Candidates, 1 postdoc, 1 engineer, bunch of interns
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What’s an FPGA?

Field-Programmable Gate Array.

Integrated circuit designed to be configured “on the field” using a Hardware Description
Language (HDL).

FPGAs contain an array of programmable logic blocks, and a hierarchy of reconfigurable
interconnects allowing blocks to be wired together.

FPGA performances are limited by: (i) the amount of resources available on the chip, (ii)
the maximum clock at which it can be ran.

FPGAs provide a high level of parallelization.

The two main manufacturers of FPGAs are Xilinx/AMD and Altera/Intel.
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FPGAs and Real-Time Audio Processing

FPGAs offer unique features in the context of audio real-time DSP:

▶ Sample-per-sample computation (no buffering)
▶ High sampling rate (>20MHz)
▶ Extremely low latency
▶ Large number of GPIOs allowing for direct interfacing with audio codec chips, etc.

Highly adapted to audio DSP algorithms with a high potential for parallelization (e.g.,
spatial audio, modal synthesis, etc.)

FPGAs are already used at the heart of some high-end professional audio products.
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Dante Audio Interface Based on a Xilinx Spartan 6
In this specific case, the power of the FPGA is exploited to interface with multiple audio

codec chips in parallel and to compute a large number of audio channels.
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Novation Summit Keyboard
In this specific case, the power of the FPGA is exploited to implement digital oscillators
running at a very high audio sampling rate (about 24MHz), approximating analog...

6 31



Antelope Audio Synergy Core Series
High-end audio interfaces and processors based on FPGAs. In this specific case, FPGAs are

used for their computational power.
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Now if FPGAs are so great for audio,
why don’t we see more of them (both in

the industry and in academia)?
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Because they’re extremely hard to program and their
architecture is intrinsically low-level...
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Basic Audio-FPGA System Architecture
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Programming an FPGA-Based Board for Audio Applications:
a Challenging Task

Interfacing the CPU and the FPGA

Interfacing DDR (RAM) with the CPU and the FPGA

Balancing computation between the CPU and the FPGA

All of the above imply important design choices (e.g., what goes in the RAM, on the
FPGA, on the CPU, etc.?)

Interfacing the FPGA with audio codec chips

Dealing with clocking issues

Dealing with hardware description languages (i.e., Verilog or VHDL) implying the use of
fixed-point arithmetic

Thinking programs as a �hardware circuit� instead of so�ware

Etc.
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Dev Board Based on an FPGA: the Digilent Zybo Z7
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Faust comes to the rescue!
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What is Faust?

Faust is a functional programming language for real-time audio signal processing.

It has been developed for the past 20 years by members of the Emeraude team and a
worldwide community.

The Faust compiler can target a wide range of languages such as C, C++, Java, LLVM,
Web Assembly, Rust, and many more.

The Faust compiler provides a high level of control on the generated code.

One of Faust's strength lies in its DSP libraries implementing hundreds of algorithms:
filters, generators, audio e�ects, etc.

Faust is open source:https://faust.grame.fr
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SyFaLa: Faust -> FPGA

SyFaLa is an open-source tool developed by the Emeraude team allowing for the
programming of Zybo Z7 and Ultracale Genesys FPGA-based boards with Faust:
https://github.com/inria-emeraude/syfala
SyFaLa heavily relies on High Level Synthesis (HLS) tools provided by Xilinx.
The Faust FPGA IP (Intellectual Property) is produced using HLS
(Faust -> C++ -> HLS -> IP).
A specific Faust backend was created in the context of SyFaLa to target HLS and
architectures based on a CPU and an FPGA with potential external memory (i.e., DDR).
SyFaLa supports various external audio codecs (e.g., Analog Devices ADAU 1777, ADAU
1787, etc.) with various configurations (e.g., Time Division Multiplexing/TDM, di�erent
codecs used in parallel).
A series of open-source modular sister boards for the Zybo Z7 that can be used to
control the parameters of audio DSP have been implemented.
The SyFaLa toolchain can be optionally used with embedded Linux as a �hardware
accelerator.�
Much more...
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SyFaLa Toolchain Overview

sine.cpp
IP

sineApp.cpp
App arm.cppfpga.cpp

Faust compiler
sine.dsp

Faust
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IP Faust

I2S
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Audio
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SPI/UART
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Typical Example of a Faust Program Running On
an FPGA Through SyFaLa

import (" stdfaust . l ib ");
f = hsl ider (" freq [ knob :1]" ,400 ,50 ,2000 ,0.01);
sineOsc = os.oscrs ( f );
echo = +~@(ma.SR *0.5)*0.5;
process = sineOsc : echo : *(0.5);

os.oscrs is a sinusoidal oscillator based on 2D vector rotation, undamped
�coupled-form� resonator (lossless 2nd-order normalized ladder filter).

To compute the coe�icients of the ladder filter from the frequency parameter, thesin
andcos functions are needed: these operations should be carried out on the CPU to
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Corresponding FPGA Implementation
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Modular Control Interface: the �Popophone�

Sister board provided as part of SyFaLa. It is based on a TI sensor ADC and it can host
various controllers: push bu�ons, rotary and linear potentiometers, etc.
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Another Approach: Using Syfala With C++

A new option in Syfala allows for the direct use of C++ (instead of Faust).

Since potential optimizations must be made by the programmer himself, we're in the
process of writing an extended documentation for this tool providing good coding
practices, etc.

The devil is in the details: significant performance gains can be achieved by writing the
code in a specific way.

For this, we spent a lot of time observing the behaviour of HLS in the context of
real-time audio DSP.
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Performances, Applications,
and Research Avenues
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Ultra-Low Latency: Towards More Efficient Active Control

When used with audio codec chips optimized for latency such as the ADAU 1787,
ultra-low latency performances can be obtained with our system.

The lowest �round-trip� latency that we managed to achieve so far is11�s (at a
sampling rate of 768kHz).

Multiple ADAU 1787 codecs can be used on one FPGA. Hence, implementing a system
with 32 audio inputs and 32 audio outputs whith such performances can be easily done
on a basic Zybo Z7 board.

Most applications enabled by such performances are related to active acoustic control
(e.g., augmented instruments, noise cancellation, room acoustics, etc.).
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The FAST Project: Faust -> FPGA -> Active Control of Acoustics

FAST gathers the strength
of GRAME-CNCM, INSA
Lyon, INRIA, and LMFA.

FAST is funded by the
French National Agency
for Research (ANR).

2 PhDs, 1 PostDoc, many
interns

https://fast.grame.fr/
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