
Optimizations and security in the CompCert
verified compiler

Benjamin Bonneau Sylvain Boulmé Léo Gourdin
David Monniaux

VERIMAG

September 29, 2023

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compilerSeptember 29, 2023 1 / 27

Proud owner of

▶ Genesys2 FPGA running dual Rocket (vivado-risc-v)
▶ Genesys2 FPGA running BOOM
▶ Nexys A7 FPGA
▶ HiFive Unmatched (quad SiFive U74)

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compilerSeptember 29, 2023 2 / 27

CompCert

Formally verified C compiler
project led by Xavier Leroy, then at INRIA, now at Collège de France

Non-commercial https://github.com/AbsInt/CompCert
Commercial https://www.absint.com/compcert/index.htm

trace of execution = sequence of external calls, volatile read/writes

valid trace of execution at C level
↓
same trace of execution at assembly level

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compilerSeptember 29, 2023 3 / 27

https://github.com/AbsInt/CompCert
https://www.absint.com/compcert/index.htm

Use case: traceability

Safe-critical systems (e.g. fly-by-wire, protection systems…)

Obligation to match object code to source

Conventional method: -O0 and some manual inspection

CompCert replaces this by mathematical proofs.
Can use optimization.

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compilerSeptember 29, 2023 4 / 27

https://commons.wikimedia.org/wiki/File:Vue_a%C3%A9rienne_de_la_centrale_de_Civaux.JPG

Our own version

Chamois CompCert
https://www.gricad-gitlab.univ-grenoble-alpes.fr/
certicompil/Chamois-CompCert

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compilerSeptember 29, 2023 5 / 27

https://www.gricad-gitlab.univ-grenoble-alpes.fr/certicompil/Chamois-CompCert
https://www.gricad-gitlab.univ-grenoble-alpes.fr/certicompil/Chamois-CompCert

Semantics and proofs in CompCert

Each intermediate language comes with a semantics written in Coq.

Optimization / transformation phases written in Coq.
(Can call external untrusted OCaml code.)

Must prove simulation for each phase

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compilerSeptember 29, 2023 6 / 27

Simulation proofs

Lockstep
one step of program before the transformation
↓
one matching step of program after the transformation

More complex simulations replace sequences of steps by sequences
of steps.

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compilerSeptember 29, 2023 7 / 27

A menu

1. oysters
2. veal blanquette

2.1 prepare blanquette
2.2 cook it

3. millefeuille
3.1 puff pastry

3.1.1 fold 1, wait 30 minutes
3.1.2 fold 2, wait 30 minutes
3.1.3 fold 3, wait 30 minutes
3.1.4 fold 4, wait 30 minutes
3.1.5 fold 5

3.2 cream

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compilerSeptember 29, 2023 8 / 27

Scheduling

“Official” CompCert produces instructions roughly in the source
ordering.

Not the best execution order in general!

Especially on in-order cores.

Our solution: verified scheduling

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compilerSeptember 29, 2023 9 / 27

Superblock scheduling

1. Partition each function into superblocks: one entry point,
possibly several exit points, no cycle

2. Possibly do some other reorganization: tail duplication, etc. to
get bigger superblocks

3. Schedule the superblock (no proof needed)

4. Witness through symbolic execution that the original and
scheduled superblocks have equivalent semantics (proof
needed)

Before register allocation, on IR, for ARM / AArch64 / KVX / RISC-V.

On Kalray KVX and AArch64: reschedule basic blocks on assembly
instructions after register allocation, perform instruction fusion.
(Work has began on RISC-V.)

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compilerSeptember 29, 2023 10 / 27

Equivalent semantics

▶ Same order of exit branches in original and scheduled
superblock

▶ All live pseudo registers and memory have the same value at
same exit point (non-live registers can differ)

▶ Same (or smaller) list of instructions that may fail (division by
zero, memory access) reached at same exit point

Obtained by symbolic execution: two registers are considered
equal if computed by exactly the same symbolic terms

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compilerSeptember 29, 2023 11 / 27

Example

r1 := a ∗ b
r3 := a− b
r2 := r1 + c
branch(a > 0, EXIT1)

r3 := a− b
r4 := a ∗ b
r2 := r4 + c
branch(a > 0, EXIT1)

r1 and r4 are both dead at EXIT1 and at final point.

These two blocks are equivalent: in both cases
r2 = (a ∗ b) + c and r3 = a− b

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compilerSeptember 29, 2023 12 / 27

Acceptable refinement

r1 := a ∗ b
r3 := a− b
r2 := r1 + c
r5 := a/b
branch(a > 0, EXIT1)

r3 := a− b
r4 := a ∗ b
r3 := r4 + c
branch(a > 0, EXIT1)
r5 := a/b

r5 dead on EXIT1.

On x86, the division may fail:
▶ it’s allowed to move it beyond the branch
▶ the converse is not allowed

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compilerSeptember 29, 2023 13 / 27

Information needed

For all instructions
▶ latency: clock cycles between consuming operands and

producing the value (or, more generally, a timetable of when
each operand is consumed after the instruction is issued)

▶ resource consumption: CPU units in use that preclude other
instructions being scheduled at the same time

Very difficult to find even for “open cores”‼!
(Reverse-engineer gcc and LLVM?)

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compilerSeptember 29, 2023 14 / 27

Performance gain

CPU Differences in cycles spent (%) compared to
no CSE3, no unroll gcc -O2
avg min max avg min max

Cortex-A53 -16 -63 +3 +10 -23 +87
Rocket -10 -43 +1 +29 0 +184
Xeon -21 -56 +4 +21 -3 +189
KV3 -11 -32 +3 +8 -13 +88

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compilerSeptember 29, 2023 15 / 27

Strength reduction

(paper accepted at OOPSLA 2023)

for(int i=0; i<n; i++) {
r += t[i];

}

Naive compilation on RISC-V: t[i] means multiplication/shift, add,
load.
(Other architectures: solved by using a suitable addressing mode.)

Yet the address differs only by a constant offset across iterations!

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compilerSeptember 29, 2023 16 / 27

Strength reduction

▶ Identify values that differ (add/subtract) by a constant across
iteration.

▶ Rewrite multiplications…into addition by constant.
▶ Prove the transformation correct using glue invariants +

symbolic execution + arithmetic rewrite rules.

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compilerSeptember 29, 2023 17 / 27

Lazy code motion

Hoist loop-invariant code out of loops.

Proved by glue invariants + symbolic execution.

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compilerSeptember 29, 2023 18 / 27

Store motion

Hoist store operations out of loops.

Proved by glue invariants + symbolic execution.

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compilerSeptember 29, 2023 19 / 27

Example: complex sum-product
typedef struct { double re, im; } complex;

inline void sum_complex(complex *s, const complex *a, const complex *b) {
double re = a->re + b->re;
double im = a->im + b->im;
s->re = re;
s->im = im;

}

inline void mul_complex(complex *s, const complex *a, const complex *b) {
double re = a->re * b->re - a->im*b->im;
double im = a->re * b->im + a->im*b->re;
s->re = re;
s->im = im;

}
David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compilerSeptember 29, 2023 20 / 27

Example: complex sum-product

void sumproduct_complex_array(complex *s, int n, complex *a, complex *b) {
complex r = {0., 0.}, p;
for(int i=0; i<n; i++) {
mul_complex(&p, a+i, b+i);
sum_complex(&r, &r, &p);

}
s->re = r.re;
s->im = r.im;

}

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compilerSeptember 29, 2023 21 / 27

Compiled complex sum-product main loop
.L102:

fld f29, 0(x12)
fld f12, 0(x13)
fld f14, 8(x12)
fld f11, 8(x13)
fmul.d f30, f29, f12
fmul.d f2, f14, f12
fmul.d f28, f14, f11
fmul.d f5, f29, f11
addi x14, x14, 1
addi x13, x13, 16
addi x12, x12, 16
fsub.d f3, f30, f28
fadd.d f0, f5, f2
fadd.d f4, f4, f3
fadd.d f1, f1, f0
blt x14, x5, .L102

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compilerSeptember 29, 2023 22 / 27

Security

(GOATCert? Hardened Chamois?)

▶ stack canaries on x86(-64), RISC-V, ARM, AArch64
▶ future: protection against hardware fault attacks by duplication

of operations and tests? (PEPR Cybersecurité: Arsene)
▶ future: collaboration with special RISC-V hardware for

hardware-supported software security? (PEPR Cybersecurité:
Arsene)

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compilerSeptember 29, 2023 23 / 27

Suggested instruction: conditional move

Wanted by companies that want predictable hard real time code
(fewer execution paths)

Branches are bad for worst-case execution time static analysis
(Absint aIT, etc.)

Suggestion: add conditional moves for integer and
floating-point registers
at least on in-order cores

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compilerSeptember 29, 2023 24 / 27

Suggestion: dismissible loads

An operation that may fail cannot be moved before a branch
r1 := a+ i << 3
branch(i > 3, EXIT1)
r2 := load(p)

r1 := a+ i << 3
r2 := loads(p)
branch(i > 3, EXIT1)

Cannot be done if the load can fail.

Need special load returning a default value instead of trapping.
▶ easy without virtual memory
▶ needs OS collaboration with virtual memory

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compilerSeptember 29, 2023 25 / 27

Dismissible load on KVX

8 cycles

L100:
compw.ge $r32 = $r4, $r2

;;
cb.wnez$r32? .L101

;;
sxwd $r5 = $r4
addw $r4 = $r4, 1

;;
lws.xs $r3 = $r5[$r1]

;;
addw $r0 = $r0, $r3
goto .L100

;;

6 cycles

.L100:
sxwd $r5 = $r4
compw.ge $r32 = $r4, $r2

;;
lws.s.xs $r3 = $r5[$r1]

;;
cb.wnez $r32? .L101

;;
addw $r0 = $r0, $r3
addw $r4 = $r4, 1
goto .L100

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compilerSeptember 29, 2023 26 / 27

A general call for collaboration

Need collaboration between
▶ compiler writers
▶ architecture / core designers
▶ operating systems (low level)

Currently: CIFRE with Framatome

https://www.gricad-gitlab.univ-grenoble-alpes.fr/
certicompil/Chamois-CompCert
Pre-pass scheduling: KVX; Cortex-A53/A35 (AArch64); Rocket, SweRV EH1, SiFive
U74 (RISC-V); Cortex-R5 (ARM)
Post-pass scheduling: KVX; Cortex-A53/A35 (AArch64); in-progress for RISC-V

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compilerSeptember 29, 2023 27 / 27

https://www.gricad-gitlab.univ-grenoble-alpes.fr/certicompil/Chamois-CompCert
https://www.gricad-gitlab.univ-grenoble-alpes.fr/certicompil/Chamois-CompCert

