Optimizations and security in the CompCert
verified compiler

Benjamin Bonneau Sylvain Boulmé Léo Gourdin
David Monniaux

VERIMAG

September 29, 2023

vers
renoble Alpes

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compileSeptember 29, 2023

Proud owner of

» Genesys2 FPGA running dual Rocket (vivado-risc-v)

» Genesys2 FPGA running BOOM

> Nexys A7 FPGA

» HiFive Unmatched (quad SiFive U74) \/ UCA

Sronasle Alp /

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compileSeptember 29, 2023 2/27

CompCert

Formally verified C compiler
project led by Xavier Leroy, then at INRIA, now at Collége de France

Non-commercial https://github.com/AbsInt/CompCert
Commercial https://www.absint.com/compcert/index.htm

trace of execution = sequence of external calls, volatile read/writes

valid trace of execution at C level

!

same trace of execution at assembly level

© A UCA)
4 %ma Grn gbleéAlpes)/I

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compileSeptember 29, 2023 3/27

https://github.com/AbsInt/CompCert
https://www.absint.com/compcert/index.htm

Use case: traceability

Safe-critical systems (e.g. fly-by-wire, protection systems...)

Obligation to match object code to source
Conventional method: -00 and some manual inspection

CompCert replaces this by mathematical proofs.
Can use optimization.

Y L @uea

Grenoble Alpes

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compile$eptember 29, 2023

https://commons.wikimedia.org/wiki/File:Vue_a%C3%A9rienne_de_la_centrale_de_Civaux.JPG

Our own version

Chamois CompCert

https://www.gricad-gitlab.univ-grenoble-alpes.fr/
certicompil/Chamois-CompCert

£ @D YCA

Grenob u‘v
erima Université
; :_ Grenoble Alpes

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compileSeptember 29, 2023

https://www.gricad-gitlab.univ-grenoble-alpes.fr/certicompil/Chamois-CompCert
https://www.gricad-gitlab.univ-grenoble-alpes.fr/certicompil/Chamois-CompCert

Semantics and proofs in CompCert

Each intermediate language comes with a semantics written in Coq.

Optimization / transformation phases written in Coq.
(Can call external untrusted OCaml code.)

Must prove simulation for each phase

’? o UCA g

erimas Université
Grenoble Alpes 7

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compileSeptember 29, 2023 6/27

Simulation proofs

Lockstep

one step of program before the transformation

1

one matching step of program after the transformation

More complex simulations replace sequences of steps by sequences
of steps.

Université
Grenoble Alpes

’P eV UCA)/ |

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compileSeptember 29, 2023 7/27

A menu

1. oysters

2. veal blanquette
2.1 prepare blanquette
2.2 cook it

3. millefeuille
3.1 puff pastry

3.1.1 fold 1, wait 30 minutes
3.1.2 fold 2, wait 30 minutes
3.1.3 fold 3, wait 30 minutes
3.1.4 fold 4, wait 30 minutes
3.1.5 fold 5

3.2 cream

Y L V. @ HEA

Grenoble Alpes 7!

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compileSeptember 29, 2023 8/27

Scheduling

“Official” CompCert produces instructions roughly in the source
ordering.

Not the best execution order in general!

Especially on in-order cores.

Our solution: verified scheduling

L @UeA

Université
Grenoble Alpes

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compileSeptember 29, 2023

Superblock scheduling

1. Partition each function into superblocks: one entry point,
possibly several exit points, no cycle

2. Possibly do some other reorganization: tail duplication, etc. to
get bigger superblocks

3. Schedule the superblock (no proof needed)

4. Witness through symbolic execution that the original and
scheduled superblocks have equivalent semantics (proof
needed)

Before register allocation, on IR, for ARM / AArch64 / KVX / RISC-V.

On Kalray KVX and AArch64: reschedule basic blocks on assembly
instructions after register allocation, perform instruction fusion.

(Work has began on RISC-V.) ? A UGA
o T

ni
Grenoble Alpes

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compileSeptember 29, 2023 10/27

Equivalent semantics

» Same order of exit branches in original and scheduled
superblock

» All live pseudo registers and memory have the same value at
same exit point (non-live registers can differ)

» Same (or smaller) list of instructions that may fail (division by
zero, memory access) reached at same exit point

Obtained by symbolic execution: two registers are considered
equal if computed by exactly the same symbolic terms

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compileSeptember 29, 2023 11/27

Example

rn:=ax*xh rs:=a—>b
rs:—a—>b rp:—axbh
n:=n-+c n=mn+c
branch(a > 0, EXIT1) branch(a > 0, EXITT)

ry and ry are both dead at EXIT1 and at final point.

These two blocks are equivalent: in both cases
rp=(axb)+candrs=a—b

@ \4"13 UCA crenos

o Pl
Grent OD|B Alpes

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compileSeptember 29, 2023

Acceptable refinement

rn:=axbh rs:=a—>b
rs:—=a—>b rn:=axh
n:=n-+c r=rmn+c

rs :=a/b branch(a > 0, EXIT1)
branch(a > 0, EXIT1) rs:=a/b

rs dead on EXITT1.

On x86, the division may fail:
» it’s allowed to move it beyond the branch

» the converse is not allowed

Lo V. @ YEA)y

G roble Alp s

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compileSeptember 29, 2023

Information needed

For all instructions

» latency: clock cycles between consuming operands and
producing the value (or, more generally, a timetable of when
each operand is consumed after the instruction is issued)

» resource consumption: CPU units in use that preclude other

instructions being scheduled at the same time

Very difficult to find even for “open cores™!!
(Reverse-engineer gcc and LLVM?)

“:'_'1/7\ \émaa UGA crenene)iub

‘-._ Université
Grenoble Alpes

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compileSeptember 29, 2023

Performance gain

CpPU

Cortex-A53
Rocket
Xeon

KV3

David Monniaux (VERIMAG)

Differences in cycles spent (%) compared to

no CSE3, no unroll

avg min max
-16 -63 +3
-10 -43 +1
-21 -56 +4
-11 -32 +3

avg
+10
+29
+21

+8

gcc -02

min max

-23 +87
0 +184
-3 +189

-13 +88

Optimizations and security in the CompCert verified compileSeptember 29, 2023

il

7

15/27

Strength reduction

(paper accepted at OOPSLA 2023)

for(int i=0; 1i<n; i++) {
ro+= t[il;
}
Naive compilation on RISC-V: t[i] means multiplication/shift, add,

load.
(Other architectures: solved by using a suitable addressing mode.)

Yet the address differs only by a constant offset across iterations!

4 L)
1 sifine
:_ aaaaaa Université)]
Grenoble Alpes 7

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compileSeptember 29, 2023 16/27

Strength reduction

» ldentify values that differ (add/subtract) by a constant across
iteration.

v

Rewrite multiplications...into addition by constant.

» Prove the transformation correct using glue invariants +
symbolic execution + arithmetic rewrite rules.

@ \/m UCA s

Gre e obls Alpes

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compileSeptember 29, 2023

Lazy code motion

Hoist loop-invariant code out of loops.

Proved by glue invariants + symbolic execution.

GZN -~

Grenoble Alpes 7

Al

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compileSeptember 29, 2023 18/27

Store motion

Hoist store operations out of loops.

Proved by glue invariants + symbolic execution.

GZN -~

Grenoble Alpes 7

Al

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compileSeptember 29, 2023 19/27

Example: complex sum-product
typedef struct { double re, im; } complex;

inline void sum_complex(complex *s, const complex *a,
double re a->re + b->re;
double im = a->im + b->im;
s->re = re;
s=>im im;

inline void mul_complex(complex *s, const complex *a,
double re = a->re * b->re - a->im*xb->1im;
double im = a->re x b->im + a->im*b->re;
s->re = re;

o UGA
4 - OB
} \4'""‘“ ‘\;\g:‘eor::;én:”)/ !

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compileSeptember 29, 2023 20/27

1
.
3

Example: complex sum-product

void sumproduct_complex_array(complex *s, int n, compl
complex r = {0., 0.}, p;
for(int i=0; i<n; i++) {
mul_complex(&p, a+i, b+i);
sum_complex (&r, &r, &p);

}
s->re = r.re;
s=>im = r.im;
}
? VA UGA
ggggg . gniverses LY

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compileSeptember 29, 2023 21/217

Compiled

.Ll0e2:
fld
fld
fld
fld

fmul.
fmul.
fmul.
fmul.

addi
addi
addi

fsub.
fadd.
fadd.
fadd.

blt

complex sum-product main loop

29, 0(x12)
f12, 0(x13)
f14, 8(x12)
f11, 8(x13)
f30, f29, fi2
f2, fi4, f12
28, f14, fi1i
f5, f29, fl11
x14, x14, 1
x13, x13, 16
x12, x12, 16
f3, f30, f28
fo, f5, f2
f4, f4, f3
fi, fi, fo

0O 0 0o o

0O 0 o o

x14, x5, .L102 ’? & UCA .).

eeeee 19 Université
Grenoble Alpes

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compileSeptember 29, 2023

Security

™y,

&K\
24
,M (GOATCert? Hardened Chamois?)

» stack canaries on x86(-64), RISC-V, ARM, AArch64

» future: protection against hardware fault attacks by duplication
of operations and tests? (PEPR Cybersecurité: Arsene)

» future: collaboration with special RISC-V hardware for
hardware-supported software security? (PEPR Cybersecurité:
Arsene)

G Vo @ YEA)

Sronasle Alp 7

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compileSeptember 29, 2023 23/27

Suggested instruction: conditional move

Wanted by companies that want predictable hard real time code
(fewer execution paths)

Branches are bad for worst-case execution time static analysis
(Absint alT, etc.)

Suggestion: add conditional moves for integer and
floating-point registers
at least on in-order cores

g_/“ v UCA).

Université
Grenoble Alpes

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compileSeptember 29, 2023

Suggestion: dismissible loads

An operation that may fail cannot be moved before a branch

ni=a+i<<3 ni=a+i<<3
branch(i > 3, EXIT1) r, == load,(p)
r, == load(p) branch(i > 3, EXIT1)

Cannot be done if the load can fail.

Need special load returning a default value instead of trapping.
» easy without virtual memory

» needs OS collaboration with virtual memory

@< LJ 1

renoble Alpes

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compileSeptember 29, 2023

Dismissible load on KVX

8 cycles

L100O:
compw.ge S$r32 = Sr4, $r2
HH

cb.wnez$r32? .L101

1
sxwd $r5
addw $r4
55
lws.xs $r3 =

Sr4a
$r4, 1

Sr5[sSri]
1

addw $ro
goto .L100

$ro, $r3
)

David Monniaux (VERIMAG)

6 cycles

.L100:

sxwd $r5 = $r4

compw.ge $r32 = $r4, $r2
H

Tws.s.xs $r3 = Sr5[srl1]

b

cb.wnez $r32? .L101

H

addw $ro0
addw Sr4
goto .L100

$ro, $r3
$rd, 1

sité
Grenoble Alpes

Optimizations and security in the CompCert verified compileSeptember 29, 2023

UCA .

A general call for collaboration

Need collaboration between
» compiler writers
» architecture / core designers

» operating systems (low level)

Currently: CIFRE with Framatome

https://www.gricad-gitlab.univ-grenoble-alpes.fr/
certicompil/Chamois-CompCert
Pre-pass scheduling: KVX; Cortex-A53/A35 (AArch64); Rocket, SweRV EH1, SiFive
U74 (RISC-V); Cortex-R5 (ARM)
Post-pass scheduling: KVX; Cortex-A53/A35 (AArch64); in-progress for RISC-V
@ _ UCA
e Vﬁ“ gnivosss B %

David Monniaux (VERIMAG) Optimizations and security in the CompCert verified compileSeptember 29, 2023 27/27

https://www.gricad-gitlab.univ-grenoble-alpes.fr/certicompil/Chamois-CompCert
https://www.gricad-gitlab.univ-grenoble-alpes.fr/certicompil/Chamois-CompCert

