TD 9 : Connexité v2

Exercice 1. Seuil de connexité

On se place autour du seuil de connexité : $p = \frac{\log(n) + c + o(1)}{n}$, $c \in \mathbb{R}$. Vérifier que la preuve du Théorème 12 du cours implique que toutes les composantes en dehors de la géante sont des sommets isolés. Combien y en a-t-il?

Exercice 2. Premier temps de connexité dans le processus de graphe aléatoire

On considère ici une extension du modèle $G_{n,m}$, mais où à n fixé, on fait varier m "sur le même graphe". Plus formellement, pour $n \geq 1$, on tire uniformément au hasard une permutation des arêtes $e_1, \ldots, e_{\binom{n}{2}} \in E(K_n)$, et pour tout $0 \leq m \leq \binom{n}{2}$ on désigne par $G_{n,m}$ le sous-graphe de K_n muni des arêtes e_1, \ldots, e_m . Notre espace de probabilité n'est plus un graphe mais une suite croissante de graphes $G_{n,1}, \ldots, G_{n,\binom{n}{2}}$. Toutefois, chaque $G_{n,m}$ est bien un graphe à n sommets et m arêtes uniforme.

On définit les temps d'arrêts suivants : $M_c = \inf\{m \geq 0 : G_{n,m} \text{ est connexe}\}$, et $M_1 = \inf\{m \geq 0 : \delta(G_{n,m}) \geq 1\}$ (on rappelle que δ désigne le degré minimal). On se propose de montrer la propriété suivante : Avec grande probabilité, $M_c = M_1$.

- 1. On pose $m_{\pm} = \lfloor \frac{1}{2} (n \log n \pm n \log \log n) \rfloor$, et $p_{\pm} = m_{\pm} / \binom{n}{2}$. On veut montrer qu'avec grande probabilité $m_{-} \leq M_{1} \leq M_{c} \leq m_{+}$, et qu'en m_{-} le graphe est composé d'une composante géante plus un ensemble de sommets isolés V_{1} , avec $|V_{1}| \leq 2 \log n$.
 - (a) Montrer qu'avec grande probabilité G_{n,m_+} est connexe, et G_{n,m_-} non (le montrer pour G_{n,p_+} (G_{n,p_-}) puis transférer avec le Lemme 2).
 - (b) Montrer qu'avec grande probabilité $G_{n,m_{-}}$ a moins de $2 \log n$ sommets isolés (le montrer pour $G_{n,p_{-}}$ puis transférer avec le Lemme 2).
 - (c) Les calculs du cours (Théorème 12) s'appliquent toujours dans notre cas pour montrer que la probabilité d'avoir des composantes ni géante ni isolées dans G_{n,p_-} est un $o(n^{-0.99})$. Déduire par l'Exercice 3 que cette probabilité est un o(1) dans G_{n,m_-} .
 - (d) Conclure.
- 2. Entre m_- et m_+ on ajoute $m_+ m_-$ arêtes. Montrer qu'avec grande probabilité aucune de ces arêtes n'est entre deux sommets de V_1 . Conclure.

Exercice 3. Borne de probabilités conditionnelles et transfert $G_{n,p}$ - $G_{n,m}$

- 1. Soit A, B des évènements sur un espace de probabilité. Montrer que $\mathbb{P}(A|B) \leq \mathbb{P}(A)/\mathbb{P}(B)$.
- 2. Soit $m \leq \binom{n}{2}$ entier et p = m/n. On suppose que $m \to \infty$, $\binom{2}{n} m \to \infty$. Montrer par la formule de Stirling que $\mathbb{P}(|E(G_{n,p})| = m) \geq \frac{1}{10\sqrt{m}}$ asymptotiquement.

3. Déduire que pour tout évènement de graphes A, $\mathbb{P}(G_{n,m} \in A) \leq 10\sqrt{m}\,\mathbb{P}(G_{n,p} \in A)$.

Exercice 4. Distance en variation totale sur un espace discret

On reprend la définition de distance en variation totale sur $\mathbb Z$ définie dans l'Exercice 3, TD 7 : $|\mu - \nu|_{VT} = \frac{1}{2} \sum_{d=-\infty}^{\infty} |\mu(d) - \nu(d)|$. Montrer que dans ce cas la convergence en loi est équivalente à la convergence en variation totale. Attention : ça n'est plus vrai sur $\mathbb R$!