ENS de Lyon — Math Department Master 1 — Spring 2018
Brownian Motion and Stochastic Processes E. Jacob & M. Maazoun

Solutions of the homework assignement: on the zero set of B

Exercise 1 — Triviality.

We have Leb(Z) = [ 1p,—0dt. But since (w,t) — 1Lp,(w)—o is measurable positive, then
Fubini’s theorem tells us that Leb(Z) is a measurable random variable whose expectation
is E[Leb(Z fo (By=0)dt=[0=0.

Exercise 2 — For your personal enjoyment.

This is a classic application of Baire’s category theorem: If F is a countable complete
metric space, then ) = NepE \ {x}. But for every z, E \ {z} is open and dense in E
(otherwise & would be isolated). Hence () is dense in E and F is empty.

Exercise 3 — For your personal enjoyment.
The lim is a sup because as 6 — 0 we take an inf on smaller and smaller sets. Moreover,
with € > 0, we have
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which gives lemma 1. Now if E is a metric space and AF is obtained by scaling the distances
by A > 0, it is clear that H,(AA) = A*(E).

Apparently there is no such thing as finite additivity for Hausdorff measure. So computing
the Hausdorff dimension of self-similar sets is harder than I thought (of course upper
bounds are always easy...) Sorry I was misleading you...

Exercise 4 — Last 0 before time 1 (Second arcsine Law).
Denote by B another BM, independent of B.

P(Gy <t)=P(B; >0, min BY > -B,)+P(B, <0, max B < -B,)

s€[0,1—] 5€[0,1—t]
=P(B, >0, max BY < B,)+P(B; <0, max B < —B))
sE[Ol t] s€[0,1—t]

=P( max BY < |By|)

s€[0,1—t]

=P(|Bii| < |Bi]) = P(V1 = 1| Bi| < Vi|Bi]).
Let 6 = arg(B; + iB;). Then 6 is uniform in [—m, 7] and our probability rewrites as

P(|tan(6)| < | tan(arcsin(v/#))|) = 2 arcsin V¢
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Then the equality 7 — arcsin(y/1 —1) = arcsin(y/t) implies a rather surprising symmetry
property of Gi: P(G; > 1 —t) = P(G; < t). Now by Brownian scaling, the probability
that there is a 0 in [z, x + €] is the same as the probability that there is a 0 in [z/(x +¢€), 1],
which is P(G1 > z/(z+¢€)) = P(G1 > 1—¢/(z+¢€)) = Zarcsin(y/¢/(z + €)) < 2¢/¢/(z +€).

Exercise 5 — Upper bound.

(1)
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The prefactor goes to 0 when o > 1/2, and the sum goes to fol t=12dt =1

(2) We want to show that when a > 1/2, then liminf, ,o ) ;. diam(/)* = 0 almost
surely. The previous question and Fatou’s lemma give this immediately.

(3) This shows that when @ > 1/2, we can almost surely find a sequence of coverings of
largest diameter going to 0, such that the sum of diameters to the a goes to 0. This
implies that #,(Z) = 0 almost surely for every a > 1/2 and hence dimy(Z) < 1/2
almost surely.

Exercise 6 — Lower bound.
(1) Let U; be a covering. Then if sup;, diam(U-) < 0, then

Zdlam Zd1am > CZ/”L ) > % E).
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Taking the infimum on all coverings of max diameter < ¢ < ¢ and letting ¢ — 0
gives theorem 1.

(2) Let B be a Brownian motion. Then Lévy’s M-B theorem says that B* — B is
distributed as |B|. But the zero set of B is the same as the zero set of |B|, which
is then distributed as the zero set of B* — B, which is R = {t > 0, B, = B} }.

(3) B* is a weakly increasing continuous function, so we can build a random measure
pon R, by setting p((a,b)) = Bj — Bi. Then let us show that open intervals that
avoid R have zero measure. By contraposition, if p((x,y)) > 0, then maxy , B >
B*(x). Take t to be the first time in [z, y| where B hits v = (max, ,) B+ B*(z))/2.
Then y >t > x and t is the first time in R, where B hits u. Hence t € R and R
intersects (z,y). We have shown that almost surely p is supported on R.

(4) Almost surely ([0, 1]) is nonzero and p is supported on R so u([0,1] N R) > 0. Let
a < 1/2. Then we know that almost surely B is a-Hélder on [0, 1]. Let C' < oo
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a.s. be the a-Holder constant and consider U closed in [0,1]. Then U C [z,y]
with y — 2 = diam U. We have u(U) < B; — B; < B — B, where § is the first
hitting time of the maximum of B on [z,y]. This last quantity is bounded by
C( —z) <C(y—z) = Cdiam(U). Then we can apply theorem 1 and show that
dimy R > dimy(RNJ0,1]) > « almost surely. This transfers to Z as Z and R have
the same distribution.

(5) Combining the two bounds gives the final answer.



