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Solutions for Exercise sheet 7: Some more martingales &
Donsker’s theorem (v2)

Solution 1 — A weaker condition for the first Wald’s lemma. (1) Define τ := min{k :
4k ≥ T}. Set M(t) := max[0,t]B and

E[Xk+1 −Xk | F4k ] = E[M(4k+1)−M(4k) | F4k ]− 4× 2k.

Since we know that almost surely M(4k+1) − M(4k) ≤ |B4k+1 − B4k | which is
independent of F4k and distributed like |B4k+1−4k |, then

E[Xk+1 −Xk | F4k ] ≤ E[|B4k+1−4k |]− 4× 2k =
√

3× 4k E[|B1|]− 4× 2k.

A simple application of Cauchy-Schwarz or Jensen gives E[|B1|] ≤
√

E[|B1|2] = 1,
and the expectation above is bounded by 0.

If we consider τ , we have the equality of events {τ ≤ k} = {4k ≥ T}, which
belongs to F4k . So τ is a (F4k)k-stopping time.

(2) Let n ≥ 0. E[M(4τ ∧4n)] = E[Xτ∧n]+E[2τ∧n+2] ≤ E[X0]+8E[T 1/2], where we have
used the supermartingale property at the bounded stopping time τ ∧n and the fact
that 4τ ≤ 4T . By monotone convergence M(4τ ) is integrable so max[0,T ]B ≤M(4τ )
too. By reversal, −min[0,T ]B is integrable also, and this provides an integrable
random variable that bounds Bt∧T for every t. So the optional stopping theorem
applies and E[BT ] = 0.

(3) If α < 1/2, then tα × t−3/2e−1/(2t) is o(e−1/(2t)) (so it’s integrable) near 0, and is
O(t−1−(1/2−α)) near infinity, so is integrable too.

Solution 2 — An application of Donsker’s invariance principle.
Let Φ : C([0, 1]) → C([0, 1]) that reflects a continuous function after its last 0. Let Sn :
[0, 1] → R be a properly rescaled and linearly interpolated simple random walk, so that

Sn
d→ B in C([0, 1]). Since flipping a length n random-walk at its last zero is a bijective

(involutive!) operation on the finite set of n-length random walks, we get that Φ(Sn)
d
= Sn.

Now if we had Φ(Sn)
d→ Φ(B), we would get Φ(B)

d
= B. To that end we need to show that

B is a continuity point of Φ.
Denote by Z(f) the position of the last zero of f . We already know that almost surely,

B is a continuity point of Z. Let f be a continuity point of Z and fn → f in C([0, 1]).
Then for x ∈ [0, 1],

|Φ(fn)(x)− Φ(f)(x)| ≤ |fn(x)− f(x)|1A(x) + |fn(x) + f(x)|1A{(x)

Where A denotes the set of x such that ”Z(fn) and Z(f) are on the same side of x”. But
now if x ∈ A{, x is a distance at most |Z(fn)−Z(f)| of Z(f). So |f(x)| = |f(x)−f(Z(f))| ≤
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m[0,1](f, |Z(f)−Z(fn)|). Moreover, |fn(x)− f(x)| is always bounded by ‖fn− f‖. We get

|Φ(fn)(x)− Φ(f)(x)| ≤ |fn(x)− f(x)|1A(x) + |fn(x)− f(x)|1A{(x) + 2|f(x)|1A{(x)

≤ ‖fn − f‖+ ‖fn − f‖+ 2m[0,1](f, |Z(f)− Z(fn)|)

We know, since f is continuous and a continuity point of Z, that this last quantity goes to
0. Since it’s independent of x, we have shown Φ(fn)→ Φ(f) in C([0, 1]).

Solution 3 — First arcsine law. (1) Draw the picture to understand that this gives a
bijective transformation of the set of length-n walks.

(2) Once again a consequence of the drawing.
(3) Using the fact mentioned, you only need to show that the functional Φ : C([0, 1])→

[0, 1],Φ(f) = inf{t ∈ [0, 1], f(t) = max[0,1] f}, is continuous at every f that reaches
its maximum at a unique point. Indeed Bn/n = Φ(t 7→ 1√

n
Rn
nt) (understood as

being suitably interpolated), and Donsker’s theorem says that ( 1√
n
Rn
nt)t → B in

distribution.
Let f be a function that reaches its maximum at a unique point m ∈ [0, 1], and
fn → f . Let ε > 0. By continuity and compactness, the maximum of f on
[0,m−ε]∪[m+ε, 1] is reached in some point y 6= m, and by assumption f(y) < f(m).
Hence we can find η be such that f(m) − maxx/∈(m−ε,m+ε) fn > 2η. Then for n
such that ‖fn − f‖ < η, we have that fn(m) > maxx/∈(m−ε,m+ε) fn. So Φ(fn) ∈
(m− ε,m+ ε), and |Φ(fn)− Φ(f)| < ε. This shows continuity.

So Bn/n→ Φ(B) which is arcsine distributed.
(4) We can show that An/n is equal to Leb{t ∈ [0, 1], 1√

n
Snnt ≥ 1

2
√
n
}. (Once again

1√
n
Snnt ≥ 1

2
√
n

is understood as being suitably interpolated). Let now define Φ(f) =

Leb{t ∈ [0, 1], f(t) ≥ 0}. We have An/n = Φ(( 1√
n
Snnt − 1

2
√
n
)t. By Slutsky’s lemma

and Donsker’s invariance principle, we have ( 1√
n
Snnt− 1

2
√
n
)t → B, and showing that

B almost surely is a continuity point of Φ suffices to get An/n
d→ P = Φ(B).

Now suppose that f is such that Leb{t : |f(t)| ≤ ε} −−→
ε→0

0. Then f is a continuity

point of Φ. Indeed if fn → f , fix ε > 0. Then for n large enough, ‖fn − f‖ ≤ ε.
Then |Φ(f) − Φ(fn)| ≤ Leb{t ∈ [0, 1] : fn(t)f(t) ≤ 0}. But fn(t)f(t) ≤ 0 implies
|f(t)| < ε. So |Φ(f) − Φ(fn)| ≤ Leb{t : |f(t)| ≤ ε}, which could have been taken
arbitrarily close to 0 by choosing ε small enough. So Φ(fn)→ Φ(f).

We are left to show that almost surely, Uε := Leb{t : |Bt| ≤ ε} −−→
ε→0

0. But

E[Uε] =
∫ 1

0
P(−ε/

√
t ≤ B1 ≤ ε/

√
t)dt ≤ 2ε√

2π

∫ 1

0
dt/
√
t ≤ ε. So Uε goes to 0 in

L1, hence almost surely there exists a subsequence of ε that goes to 0 along which
Uε → 0, but as almost surely ε 7→ Uε is decreasing, we get Uε → 0.

So Bn/n = An/n→ P and P is arcsine-distributed.

Solution 4 — Convergence in distribution of random continuous functions. (1) (a) You
know that the measure µn gives you a continuous linear form fn on the set
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Cc(E), of norm 1. Banach-Alaoglu’s theorem tells you that you can extract
a weak-?-convergent subsequence fan → f ∈ BCc(E)′(0, 1), i.e. such that
fan(φ) → f(φ) for every φ ∈ Cc(E). Now f is positive (since for φ ≥ 0,
f(φ) = limn fan(φ) = limn µanφ ≥ 0, so by Riesz’ representation theorem, it
can be represented by a positive Borel measure µ, and we precisely have vague
convergence µan → µ.

(b) The fact that (µn → µ narrowly) ⇐⇒ (µn → µ vaguely and µ(E) = 1)
is standard and the proof is rather easy (relies only on the fact that Rd is
σ-compact).
Now suppose a tight sequence µn. It admits a vaguely convergent subsequence
µan → µ. Now we only need to show that µ(E) = 1. For every ε > 0, we
can find Kε so that µn(Kε) > 1 − ε for every n. Then we can find a function
φ ∈ Cc(E) with 1Kε ≤ φ ≤ 1. We get µ(E) ≥ µφ = limn µanφ ≥ 1 − ε. So
µ(E) = 1.

(c) If (µn) is tight in RN, then it is a simple matter that the sequences of f.d.m’s
(projI?µn)n, which are sequences of probability measures on R#I , are tight
too. So by diagonal extraction, we can find an and µI for each finite I so that
projI?µan → µI narrowly. When J ⊂ I, we have

projJ?projI?µan = projJ?µan .

The left-hand side goes to projJ?µI by continuous mapping. The right-hand
side goes to µJ . Hence the family of probability measures µI verifies the
consistency condition projJ?µI = µJ . So there exists a probability measure
µ on RN, with projI µ = µI = lim projI µan for every I finite. Remark that this
implies narrow convergence µn → µ. Indeed we metrize RN by the distance
d(x, y) =

∑
n 2−n−1(|xn − yn| ∧ 1). For a fixed k and x ∈ RN, the distance

between x and φk(x) = (x1, . . . , xn, 0, 0, 0, . . .) is less than 2−k. But the finite
dimensional convergence entails that φk∗µn → φk∗µ. Now for h ∈ Cc(RN),
we get |φk∗µnh − µnh| = |µn(h ◦ φk − h)| ≤ m(h, 2−k). Similarly, |φk∗µh −
µh| ≤ m(h, 2−k). Since k is arbitrary, this implies µnh → µh hence vague
convergence. And since µ is a probability measure, the convergence is narrow.

(d) Every Polish space E is homeomorphic to S ⊂ [0, 1]N through ϕ(x) = (d(x, u1)∧
1, d(x, u2) ∧ 1, . . .), where (ui)i is a dense sequence. If (µn)n ∈ P(E)N is
tight, then ϕ∗µn is too, hence we can find a sequence an and a probability
measure π on RN such that ϕ∗µan → π. Now we just need to check that
π is supported by S, i.e π(S) = 1. But if we look at Kε, we have that
π(S) ≥ π(ϕ(Kε)) ≥ limn µn(Kε) ≥ 1 − ε. So π(S) = 1. Now we take
µ = (ϕ−1)∗π, and µ is a probability measure on E that appears as a sub-
limit of µn.

(2) Let X(n) be a sequence of random variables in C(R+) such that
(a) supn P(|X(n)(0)| > M) −−−−→

M→∞
0

(b) for every η > 0, T > 0, we have supn P(m[0,T ](X
(n), δ) > η) −−→

δ→0
0
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Let ε > 0. Let M be such that P(|X(n)| > M) < ε/2. For every k ≥ 1, m ≥ 1 let
δk,p > 0 be such that

sup
n

P(m[0,p](X
(n), δk,p) > 2−k) < ε2−k−m−100.

Then for every n, with probability over 1−ε, we have that X(n) belongs to the set of
functions f such that |f(0)| < M and for every m ≥ 1, k ≥ 1, m[0,p](f, δk,p) < 2−k.
This set is relatively compact thanks to Arzela-Ascoli’s theorem and a diagonal ar-
gument. So for every ε, we found a compact set that contains X(n) with probability
over 1− ε and tightness is proved.

(3) If (X(n))n is tight and f.d.m’s converge to those of X, then fix a subsequence an.
By tightness and Prokhorov’s theorem you can find a further subsequence abn and
Y so that X(abn ) → Y in distribution. Now by continuous mapping, the f.d.m’s of
X(abn ) converge to those of Y . But they also converge to those of X by assumption.

So the f.d.m’s of X and Y are equal, and X
d
= Y . We have shown that for

every subsequence a further subsequence exists on which X(n) → X, proving full
convergence.


