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miscellanea

Solution 1 — Boring but important measure theoretic stuff. (1) By definition, B(R)⊗I

is the smallest σ-algebra that makes all projections pi : x 7→ xi measurable, so it
is generated by the 1-dimensional cylinder sets {x ∈ RI , xi ∈ A} for A ∈ B(R)
and i ∈ I. A π-system that generates is that of the finite-dimensional cylinder sets
{x ∈ RI , xi1 ∈ A1, . . . xin ∈ An} for n ≥ 0, i1, . . . , in ∈ I, A1, . . . , An ∈ B(R). The
fact that a probability measure on B(R)⊗I is determined by the f.d.m’s is then a
direct application of the π-λ theorem.

(2) =⇒ because projections are measurable, ⇐= because the preimage of a 1-
dimensional cylinder set is an event of the form {Xi ∈ A} for some i and Borel set
A.

(3) B(R)⊗I ⊂ B(RI) because the latter makes all continuous functions measurable,
the projections are continuous, and the former is the smallest one that makes all
projections continuous. The other way around is as follows: a basis for the topology
of RI is the set of finite-dimensional open cylinders {x ∈ RI , xi1 ∈ O1, . . . xin ∈
On}. Any open set is an union of such basis elements, which can be rewritten
as a countable union thanks to separability of RI . Then finite-dimensional open
cylinders, which belong to B(R)⊗I , have all open sets in their generated σ-algebra,
hence all of B(RI). This shows B(RI) ⊂ B(R)⊗I .

(4) The inclusion comes from the previous question. Let us show that B(R)⊗I is in-
cluded in the following σ-algebra: the family of subsets of RI of the form {x ∈
RI : (xj)j∈J ∈ B} for some countable subfamily J ⊂ I and some B ∈ B(R)J . This
indeeds forms a σ-algebra C, that contains all one-dimensional cylinders, hence the
whole of B(R)⊗I . But an open set of the form {x ∈ I : ∃i ∈ I, xi > 0} cannot
belong to C. Hence the strict inclusion.

(5) (B(R)⊗[0,1])|C([0,1]) ⊃ B(C([0, 1]) because projections are continuous w.r.t. the topol-
ogy of C([0, 1]). For the other way around it suffices to show that the distance on
C([0, 1]) is measurable w.r.t. (B(R)⊗[0,1])|C([0,1]) because then an open ball can be
rewritten as d(x, ·)−1([0, l)), hence is measurable. But we have

d(x, y) = sup
0≤t≤1,t∈Q

|x(t)− y(t)|.

which immediately gives measurability of d.

Solution 2 — Indistinguishability and modifications. (1) Indistinguishable =⇒ Mod-
ification
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(2) By countable union with probability one they are equal over the rationals of I.
Hence they are equal everywhere.

(3) Show that ”X is indistinguishable from a Brownian motion” is equivalent to ”X is
a C(R+)-valued random variable (up to a.s. equality) which is distributed like
a Brownian motion”. =⇒ X is a.s. equal to a Brownian motion B. Let
us check that B is indeed a random variable in the space (C(R+),B(C(R+))) =
(C(R+), (B(R)⊗R

+
)|C(R+)). This comes immediately from question 2 of the previ-

ous exercise, since for every t, Bt is a random variable. Now of course B has the
law of a Brownian motion, since it’s a Brownian motion...
⇐= Here X is a.s. equal to some C(R+)-valued r.v. B that has the law of

the Brownian motion. Let us check that it is a Brownian motion: for all ω, B is
in C(R+) so the paths are continous. Bt is indeed a random variable because of
question 2 of the previous exercise, and the law of the finite-dimensional marginals
are indentified because of question 1 of the previous exercise.

Solution 3 — Local regularity and long-term behavior. (1) Immediate since almost surely
Xt = o(1) as t→ 0

(2) We know (lecture !) that almost surely, X is not locally 1/2 + ε-Hölder at 0. So

lim supt→∞
X1/t

1/t1/2+ε
= ∞ almost surely, which gives the claim after rewriting. Also

(lecture !) there exists C such that |X(h)−X(0)| ≤ mX([0, 1], h) ≤ C
√
h log(1/h)

when h is small enough. Hence the claim when taking h = 1/t, t→∞.
(3) (a) By Fatou’s lemma,

P(lim sup
n→∞

B2−n/
√

2−n < c) ≤ P(lim inf
n→∞

{B2−n < c
√

2−n})

≤ lim inf
n→∞

P(B2−n < c
√

2−n) = lim inf
n→∞

P(B1 ≤ c) < 1.

(b) Lévy’s construction tells us that B2−n = 2−nN0 +
∑n−1

k=0 2−n+k/2N0,k. Hence

B2−n√
2−n

= 2−n/2N0 +
n−1∑
k=0

2(k−n)/2N0,k

Each fixed term of the sum goes to 0 separately. So the lim inf does not change
when the first few terms are removed. We deduce that lim infn→∞B2−n/

√
2−n

is measurable w.r.t. the σ-algebra σ(N0,k, k ≥ K) for all fixed K, thus to the
tail σ-algebra.

(c) {lim supn→∞B2−n/
√

2−n < c} is a tail event for a sequence of independent ran-
dom variables, hence by Kolmogorov’s 0-1 law it has probability 0 or 1, and it is
not 1 because of question 3a. Hence with probability one lim supt→0Bt/

√
t ≥

lim supn→∞B2−n/
√

2−n = ∞. So B is not locally Hölder at 0 and at infin-

ity, lim supBt/
√
t = +∞ by time-reversal. Since B

d
= −B, it comes that

lim inf Bt/
√
t = −∞ too. We get for free that B is almost surely surjective.
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Solution 4 — Quadratic and absolute variation. (1) We first try to guess what the L2

limit could be. If we have L2 convergence to say X, since L2 convergence implies L1

convergence, we get that E[X] = limk E[
∑#t(k)

i=1 (B
t
(k)
i
− B

t
(k)
i−1

)2] = limk t = t as we

observe a telescoping series. So E[X] = t and if by any chance X was deterministic1,
we’d have X = t. Let’s try to show convergence to t. We rewrite

Ak =

#t(k)∑
i=1

(B
t
(k)
i
−B

t
(k)
i−1

)2 − t =

#t(k)∑
i=1

(B
t
(k)
i
−B

t
(k)
i−1

)2 − (t
(k)
i − t

(k)
i−1).

Then

E[A2
k] = Var(Ak) =

#t(k)∑
i=1

Var((B
t
(k)
i
−B

t
(k)
i−1

)2 − (t
(k)
i − t

(k)
i−1))

=

#t(k)∑
i=1

(t
(k)
i − t

(k)
i−1)

2 Var(Z2 − 1) = (cst)

#t(k)∑
i=1

(t
(k)
i − t

(k)
i−1)

2. ≤ (cst) t|t(k)|

which goes to 0. We have moved freely between variance and second moment
because everything is centered, used the independence of increments and the de-
composition of variance over an independent sum, the fact that a standard Gaussian
Z has a fourth moment, and Hölder(1,∞) at the end. We have Ak → 0 in L2 which
is the claim.

(2) If (t(k))k is such that
∑∞

k=1

∑#|t|
j=1(ti − ti−1)2 < ∞, then we get

∑
k=1∞ E[A2

k] < ∞.

For ε ∈ Q∗+ we have P(|Ak| > ε) ≤ ε−2E[A2
k] which is summable. So by Borel-

Cantelli, almost surely, for large n, |Ak| < ε. We invert ” ∀ε ∈ Q∗+” and ”almost
surely” by countable union and we’re done.

(3) If B has bounded variation, then it is not hard to show that the quadratic variation
is 0 (once again Hölder(1,∞)). But this is a.s. impossible because of the previous
question.

Solution 5 — The precise constant (Lévy, 1937). (1) The upper bound comes from the

inequality
∫∞
x
e−t

2/2dt ≤
∫∞
x

t
x
e−t

2/2dt. The lower bound can be obtained by differ-
entiating the difference.

1Reasonable because it seems that there could be 0-1 law w.r.t. Lévy construction
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(2) First of all, P(Ek,n) = P(B(k+1)2−n−Bk2−n ≥ c
√

2−n log(2n)) = P(B1 ≥ c
√
n log 2) ≥

1
1000c

√
n
2−c

2n/2. Then

P(∀0 ≤ k ≤ 2−n,B(k+1)2−n −Bk2−n < c
√

2−n log(2n)) = P(
⋂
k

E{
k,n)

=
∏
k

(1− P(Ek,n)) ≤ (1− 1

1000c
√
n

2−c
2n/2)2

n ≤ exp(−2n 1

1000c
√
n

2−c
2n/2)

= exp(− 1

1000c
√
n

2(1−c2/2)n) = summable inn.

So by Borel-Cantelli, we get that infinitely often in n, there is an increment of
length 2−n that exceeds c

√
2−n log(2n). This implies the claim.

(3)

P(∃[s, t] ∈ Λn(m), |B(t)−B(s)| > c
√
|t− s| log(1/|t− s|))

≤ m2n/m P(|B1| ≥ c
√
n/m log 2)

≤ m2n/m 1√
2πc

√
n/m log 2

2−(c
2/2)n/m = summable in n

So almost surely, for n large enough, any interval in Λn(m) has the required growth
bound.

(4) Take m to be determined later in terms of ε. Then given t and s, we can find
n so that 1 ≤ |t − s|/2−n/m ≤ (21/m) ≤ 1 + ε/3. We can now find k so that
|s − k

m
2−n/m| ≤ 1

m
2−n/m ≤ 1

m
|t − s|. Set s′ = k

m
2−n/m, t′ = ( k

m
+ 1)2−n/m. Then

|s′− s| ≤ 1
m
|t− s| and |t′− t| ≤ |t′− s′|+ |s′− s| ≤ (21/m− 1)|t− s|+ 1

m
|t− s|. Now

choose retrospectively m so that 21/m − 1 + 1
m
< ε and 1

m
< ε makes everything

work. Remark that we additionaly get |t′− s′| ≤ |t− s| which eases the solution of
the next question.

(5) Fix ε and m accordingly. Now almost surely, there is n0 such that for n ≥ n0, all
intervals in Λn(m) have the growth bound with the constant c. Moreover, from
the lecture, almost surely there is a h0 such that all intervals of length < h0 have
the growth bound with the constant C from the lecture. Now take s, t such that
|s− t| ≤ ε, ε|s− t| ≤ h0 and |s− t| ≤ 2−n0/m. Then consider s′, t′ as in the previous
question. It comes that |t′− t|, |s′− s| ≤ h0 and that |s′− t′| ∈ Λn(m) with n ≥ n0.
Hence

|Bt −Bs| ≤ |Bt −B′t|+ |Bs −B′s|+ |Bt −Bs|

≤ C
√
|s′ − s| log(1/|s′ − s|) + C

√
|t′ − t| log(1/|t′ − t|) + c

√
|t′ − s′| log(1/|t′ − s′|)

≤ 2C
√
ε|t− s| log(1/(ε|t− s|)) + c

√
|t− s| log(1/|t− s|)

≤ (2C
√
ε(1 + 1) + c)

√
|t− s| log(1/|t− s|).
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Where at the second inequality we used the increasing character (close to 0) of

x 7→
√
x log(1/x) and at the last one we used log(1/ε) ≤ log(1/|s − t|). The

constant obtained can be brought arbitrarily close to
√

2 as c was arbitrary >
√

2,
ε arbitrary > 0 and C fixed.


