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Solutions for Exercise sheet 7: Some more martingales &
Donsker’s theorem (v2)

Solution 1 — A weaker condition for the first Wald’s lemma. (1) Define 7 := min{k :
4k > T}. Set M(t) := maxjpy B and

E[Xpi1 — X | Fae] = E[M (45 — M(4%) | Fuu] — 4 x 28,

Since we know that almost surely M (45+t1) — M (4%) < |By+1 — Byx| which is
independent of Fyx and distributed like |Byx+1_yx|, then

E[Xpr1 — X | Fur] S E[|Byeer_ge|] — 4 x 28 = /3 x 4k E[|By|] — 4 x 2.

A simple application of Cauchy-Schwarz or Jensen gives E[|B;|] < +/E[|B1|?] = 1,
and the expectation above is bounded by 0.

If we consider 7, we have the equality of events {r < k} = {4¥ > T}, which
belongs to Fux. So 7 is a (Fyr)x-stopping time.

(2) Let n > 0. E[M (4" A4")] = E[X ] +E[27""+2] < E[X,] +8 E[T"/?], where we have
used the supermartingale property at the bounded stopping time 7 An and the fact
that 47 < 4T. By monotone convergence M (47) is integrable so maxy ) B < M(47)
too. By reversal, —miny ) B is integrable also, and this provides an integrable
random variable that bounds B;,r for every t. So the optional stopping theorem
applies and E[Br] = 0.

(3) If @ < 1/2, then t® x t=3/2¢71/(% is o(e~"/(?)) (s0 it’s integrable) near 0, and is
O(t~1=(1/2=9)) pear infinity, so is integrable too.

Solution 2 — An application of Donsker’s invariance principle.
Let @ : C([0,1]) — C(]0,1]) that reflects a continuous function after its last 0. Let S, :
[0,1] — R be a properly rescaled and linearly interpolated simple random walk, so that

S, % Bin C([0,1]). Since flipping a length n random-walk at its last zero is a bijective

(involutive!) operation on the finite set of n-length random walks, we get that ®(S,,) L8,

Now if we had ®(.5,,) KN ®(B), we would get ®(B) £ B. To that end we need to show that
B is a continuity point of ®.

Denote by Z(f) the position of the last zero of f. We already know that almost surely,
B is a continuity point of Z. Let f be a continuity point of Z and f, — f in C([0,1]).
Then for x € [0, 1],

[@(fn)(x) = ©(f)(2)] < [fulz) = (@) La(z) + [fulx) + f(2)] 1 e ()
Where A denotes the set of x such that ”Z(f,) and Z(f) are on the same side of z”. But

now if z € A®, z is a distance at most | Z(f,)—Z(f)| of Z(f). So |f(z)| = |f(z)—f(Z(f))| <
1



myo(f, | Z(f) = Z(fn)]). Moreover, | f,(x) — f(z)| is always bounded by || f, — f||. We get

[@(fn) (@) = D(f)(2)] < [fnle) = f(@)| La(@) + | fn(z) = f(2)] 1 e(2) + 2| f ()| Ly ()
< o = A+ 1w = £l 4 2mpo,)(F, 1 Z2(F) = Z(f2)])

We know, since f is continuous and a continuity point of Z, that this last quantity goes to
0. Since it’s independent of x, we have shown ®(f,) — ®(f) in C([0,1]).

Solution 3 — First arcsine law. (1) Draw the picture to understand that this gives a
bijective transformation of the set of length-n walks.
(2) Once again a consequence of the drawing.
(3) Using the fact mentioned, you only need to show that the functional ® : C([0, 1]) —
0,1], ®(f) = inf{t € [0,1], f(t) = max)o1) [}, is continuous at every f that reaches
its maximum at a unique point. Indeed B,/n = ®(t — \/LERZ,:) (understood as

being suitably interpolated), and Donsker’s theorem says that (\/LHRZt)t — B in
distribution.
Let f be a function that reaches its maximum at a unique point m € [0,1], and
fn — f. Let € > 0. By continuity and compactness, the maximum of f on
[0, m—e]U[m+e, 1] is reached in some point y # m, and by assumption f(y) < f(m).
Hence we can find 7 be such that f(m) — maxX,¢(m—cmte) fn > 27. Then for n
such that ||f, — f|| < n, we have that f,(m) > max;g¢m—cm+te) fn- S0 P(fn) €
(m—¢e,m+¢€), and |P(f,) — P(f)| < e. This shows continuity.
So B, /n — ®(B) which is arcsine distributed.
(4) We can show that A,/n is equal to Leb{t € [0,1], o= —+=Sn, > 2\1/5} (Once again

n nt

ln Spi > 5 \F is understood as being suitably interpolated). Let now define ®(f) =
Leb{t € [0,1], f(t) > 0}. We have A,,/n = (( nSZt 2f) By Slutsky’s lemma
and Donsker’s invariance principle, we have ( =Sy — ) — B, and showing that

B almost surely is a continuity point of ® suffices to get A, /n L p= o(B).
Now suppose that f is such that Leb{t : |f(t)| < €} - 0. Then f is a continuity
e—

point of ®. Indeed if f, — f, fix € > 0. Then for n large enough, ||f, — f| < e.
Then [(f) — &(f,)| < Leb{t € [0.1] : fo(1)f(t) < 0}. But fu(8)(t) < 0 implies
lf(t)] <€ So|P(f)—P(fn)] < Leb{t: |f(t)] < €}, which could have been taken
arbitrarily close to 0 by choosing € small enough. So ®(f,) — ®(f).

We are left to show that almost surely, U, := Leb{t : |B;| < €} - 0. But

= folP(—e/\/% < B < ¢/y/t)dt < \/QT 1dt/\/¥ < e. So U, goes to 0 in
L', hence almost surely there exists a subsequence of € that goes to 0 along which
U. — 0, but as almost surely € — U, is decreasing, we get U, — 0.
So B,/n = A,/n — P and P is arcsine-distributed.

Solution 4 — Convergence in distribution of random continuous functions. (1) (a) You
know that the measure p, gives you a continuous linear form f, on the set



3

C.(E), of norm 1. Banach-Alaoglu’s theorem tells you that you can extract
a weak-%-convergent subsequence f,, — f € Be,(gy(0,1), ie. such that
fa,(®) = f(@) for every ¢ € C.(FE). Now f is positive (since for ¢ > 0,
f(@) = lim, fo,(¢) = lim, pa,» > 0, so by Riesz’ representation theorem, it
can be represented by a positive Borel measure p, and we precisely have vague
convergence i, — j.

(b) The fact that (u, — p narrowly) <= (u, — p vaguely and u(E) = 1)

is standard and the proof is rather easy (relies only on the fact that R? is
o-compact).
Now suppose a tight sequence pu,,. It admits a vaguely convergent subsequence
fa, — (. Now we only need to show that u(£) = 1. For every ¢ > 0, we
can find K, so that p,(K.) > 1 — € for every n. Then we can find a function
¢ € Co(F) with 1, < ¢ < 1. We get u(F) > po = limy, g, ¢ > 1 —€. So
w(E) =1.

(c) If (u1,,) is tight in RY then it is a simple matter that the sequences of f.d.m’s
(proj; fin)n, which are sequences of probability measures on R#!  are tight
too. So by diagonal extraction, we can find a,, and p; for each finite I so that
Projs, fta, — f¢r narrowly. When J C I, we have

projj*projf*luan = projj*luan‘

The left-hand side goes to proj;,u; by continuous mapping. The right-hand
side goes to wy. Hence the family of probability measures p; verifies the
consistency condition proj;, iy = py. So there exists a probability measure
pon RN with proj; u = py = lim proj; pia, for every I finite. Remark that this
implies narrow convergence g, — u. Indeed we metrize RY by the distance
d(z,y) =Y, 27" (Joy, — yo| A1). For a fixed k and z € RY, the distance
between x and ¢ (z) = (21,...,7,,0,0,0,...) is less than 27%. But the finite
dimensional convergence entails that ¢, — @p.u. Now for h € C.(RY),
we get |@n.pinh — pinh| = |ia(h o ¢ — h)| < m(h,27%). Similarly, |¢p,ph —
ph| < m(h,27%). Since k is arbitrary, this implies p,h — ph hence vague
convergence. And since pu is a probability measure, the convergence is narrow.

(d) Every Polish space E is homeomorphic to S C [0, 1]N through o(x) = (d(z, ui)A
1,d(x,u3) A 1,...), where (u;); is a dense sequence. If (u,), € P(E)N is
tight, then ¢, u, is too, hence we can find a sequence a, and a probability
measure 7 on RY such that p,u,, — 7. Now we just need to check that
7 is supported by S, i.e w(S) = 1. But if we look at K., we have that
7(S) > w(e(K)) > lim, pn(K) > 1 —€ So w(S) = 1. Now we take
i = (p_1)sm, and p is a probability measure on F that appears as a sub-
limit of .

(2) Let X™ be a sequence of random variables in C(R ) such that
(1) sup, B(IX(0)] > M) —— 0

(b) for every n > 0, T > 0, we have sup,, P(mj7(X™,§) > n) 7 0



Let € > 0. Let M be such that P(|X™| > M) < ¢/2. For every k > 1, m > 1 let
Orp > 0 be such that

sup P(mjo ) (X("), Ok p) > 2”“) < €2 k=m=100,

Then for every n, with probability over 1 —¢, we have that X belongs to the set of
functions f such that |f(0)] < M and for every m > 1,k > 1, mjo ([, 0kp) < 27F.
This set is relatively compact thanks to Arzela-Ascoli’s theorem and a diagonal ar-
gument. So for every €, we found a compact set that contains X ™ with probability
over 1 — e and tightness is proved.

If (X™), is tight and f.d.m’s converge to those of X, then fix a subsequence a,.
By tightness and Prokhorov’s theorem you can find a further subsequence a;, and
Y so that X(®») — Y in distribution. Now by continuous mapping, the f.d.m’s of
X (@) converge to those of Y. But they also converge to those of X by assumption.

So the f.d.m’s of X and Y are equal, and X 2 Y. We have shown that for
every subsequence a further subsequence exists on which X™ — X, proving full
convergence.



