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Solutions for Exercise sheet 9: Harmonic functions and
Brownian motion (v2)

Solution 1 — Harmonic functions and martingales.

Let D be a bounded domain satisfying the Poincaré cone condition and T its exit time.
Let h: D — R be continuous and harmonic inside D. Show that for z € D, under P,, the
process t — h(Biar) is a closed martingale.

Conversely show that if A is defined on some domain U with the property that for every
B(r,e) CU, t— h(Birtyp,.,) is a martingale under P, then A is harmonic.

Let us show that for every z, under P,, t — h(B\r) is a martingale that is closed by
h(Br). Thus we shall show that for every z, E,[h(Br) | Fi] = h(Biar). Indeed we can
compute

E,[h(Br) | Fi] = Eo[h(Binr) Ir<i +h(Br) Li<r | F]
h(Bt/\ )]lT<t +E, [h(BT) ]lt<T | ]:t]
W Binr) Lr<y + Eo[W(Bfe) Li<r | Fi]
h(Bt/\T) ]1T<t +E [h(B t) ]lt<T ‘ Ft]
h(Binr) Lr< +Ep, [h(BT)] Li<r
h(Brat) Lr<i +h(By) o> = h(Biar)

Where B* denoted the Brownian motion restricted from time ¢ onward, and 7" the hitting
time of 0D for this process.

Solution 2 — A lemma for the Poincaré cone condition.
Let C be an open cone based in 0. We wish to show that the function ¢(x) = P, (Top(0,1) <

Tsc) is bounded away from 1 on B(0,1/2) \ C.

(1) We have that ¢ is harmonic on the interior of B(0,1) \ C. That is because it can
be rewritten as E[u(Br, ;.1\)] for u=1zq e c-
We can’t use the maximum principle for ¢ on B(0,1/2)\ C because we don’t know
if ¢ is continuous on the boundary of this set.

(2) Let C be another open cone such that C' C C (for instance take C to be C translated
away from 0). Define ¥(x) = P,(Topo,1) < Tyz). It is clear from an inclusion of

events, that ¢(x) > ¢(z). It is also clear that ¢ is harmonic on U = B(0, 1) \5, for
the same reasons as ¢. Now P = (B(0,1/2)\ C) is completely included in U, so
1 is continuous on the compact P. If supp = 1, then by compactness we found

a point of P C U where 1 reaches one. As 1) < 1, the maximum principle tells us
1




that ¢ = 1, which seems absurd. B

To see why this is absurd, take a finite union F (for flower) of rotations of C' that
disconnects 0 from infinity. If ¢(0) = 1, then almost surely B does not touch C
before exiting B(0, 1) and by rotation invariance and countable union, it also almost
surely does not touch F' before exiting B(0,1). Hence it does not touch F', hence
it stays bounded almost surely. This is clearly absurd.

Solution 3 — Counterexample.

Set T = Typ and h(x) = E,[u(Br)]. This does not define a solution to the Laplace
equation, because since the Brownian motion started outside of 0 almost surely does not
hit 0, we have h(0) = 0 and h(x) = 1 for all z € D \ {0}. Hence h is not continuous.
Suppose a solution h exists. Then a rotation of h is still a solution, and hence equals
h thanks to the maximum principle. Thus A is rotation invariant hence radial (h(z) =
g(|z]),z € D, for some g : Ry — R that must be twice differentiable.) We deduce
that 0 = ¢"(z) + 1¢/(z) for all 0 < = < 1, an ODE whose solutions are of the form
x +— A+ Blog(z), none of which fits our purpose. Hence a solution cannot exist.

Solution 4 — The binary splitting martingale. (1) We write
Xp1— X, =E[X - X, | G,
=E[(X — X)) Ixsx, | On] Lxsx, +E[(X — X0) Ixex, | On] Ix<x, -

where we used the fact that the sign of (X — X)) is G,-measurable. The first term is
almost surely positive, the second one is almost surely negative, and almost surely
only one of them is nonzero. Hence they almost surely they form a decomposition
of X,,.1 — X, into a positive and negative part. Then

[ Xng1 — Xa| = E[(X — X)) Ixox, | Gnl Ixsx, —E[(X — Xp) Ixex, | Gnl 1x<x,
= EHX - Xn’ | gn]
(2) We deduce E[|X,, — X|] = E[|X,+1 — X.|], and this last expression goes to 0 as
(X)) is L'-convergent. Thus |X,, — X| goes to 0 in L' and by uniqueness (up to

a.s. equality) of the L' limit we get that X, = X a.s. Hence X,, converges a.s.
and L' to X.



