
ENS de Lyon — Math Department Master 1 — Spring 2019
Brownian Motion and Stochastic Processes E. Jacob & M. Maazoun

Solution of homework assignment : On the Brownian bridge.

Exercise 1 — Absolute continuity.
You have shown in the second exercise session that

Law(B|[0,1]|B1 ∈ dx) = Law(xId + β),

In other words, for every bounded measurable H,

E[H(B|[0,1], B1)] =

∫
R
E[H(xId + β, x)]PB1(dx).

(1) For ε > 0, let νε = Law(B|[0,1]| − ε ≤ B1 ≤ ε) be the (deterministic!) probability
measure such that for every bounded measurable H,∫

C([0,1])
H(ϕ)νε(dϕ) =

E[H(B|[0,1])1|B1|≤ε]

P(|B1| ≤ ε)
.

Show that it converges (in the weak topology of measures), as ε→ 0, to Law(β).

Let H be a bounded continuous functional.∫
C([0,1])

H(ϕ)νε(dϕ) =
E[H(B|[0,1])1|B1|≤ε]

P(|B1| ≤ ε)
=

∫
P(B1 ∈ dx)1x≤ε E[H(xId + β)]∫

P(B1 ∈ dx)1x≤ε

=

∫ ε
−ε

1√
2π
e−x

2/2 E[H(xId + β)]dx∫
1√
2π
e−x2/2dx

∼ε→0

2ε 1√
2π

E[H(β)]

2ε 1√
2π

= E[H(β)]

because both x 7→ e−x
2/2 E[H(xId + β)] and x 7→ e−x

2/2 are continuous at x = 0
(the first one thanks to the dominated convergence theorem). Hence the question.

(2) For 0 < a < 1, what does the Markov property say about the joint distribution of
(B|[0,a], B1) ? Deduce that, for H positive bounded continuous C([0, a]) → R, the
following quantity:

E[H(B|[0,a])||B1| < ε] =
E[H(B|[0,a])1|B1|≤ε]

P(|B1| ≤ ε)
=

∫
C([0,1])

H(ϕ|[0,a])νε(dϕ).

converges, as ε→ 0, to∫
C([0,a])

H(φ)
1√

1− a
exp

(
− φ(a)2

2(1− a)

)
PB|[0,a](dφ).
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Markov’s property says the distribution of B1 − Ba is a centered Gaussian of
variance 1− a, independent of B|[0,a]. Hence

E[H(B|[0,a])1|B1|<ε]

= E[H(B|[0,a])1|B1−Ba+Ba|<ε]

=

∫
C([0,a])

P(B|[0,a] ∈ dφ)

∫
R

dx√
2π(1− a)

exp

(
− x2

2(1− a)

)
H(φ)1|x+φ(a)|<ε

=

∫
C([0,a])

P(B|[0,a] ∈ dφ)H(φ)

∫ φ(a)+ε

φ(a)−ε

dx√
2π(1− a)

exp

(
− x2

2(1− a)

)
∼ 2ε

∫
C([0,a])

P(B|[0,a] ∈ dφ)H(φ)
1√

2π(1− a)
exp

(
− φ(a)2

2(1− a)

)
,

by dominated convergence. As P(|B1| ≤ ε) ∼ 2ε√
2π

, dividing these two asymptotics

yields the result.

(3) Deduce that the distribution of β|[0,a] is absolutely continuous with regard to that
of B|[0,a] when a < 1. Is it the case when a = 1 ?

By question 1, since the restriction B|[0,1] 7→ B|[0,a] is a continuous map, we have
as ε→ 0

E[H(B|[0,a]) | |B1| ≤ ε]→ E[H(β|[0,a])]

Equating this with question 2 gets

E[H(β|[0,a])] =

∫
C([0,a])

P(B|[0,a] ∈ dφ)H(φ)
1√

1− a
exp

(
− φ(a)2

2(1− a)

)
Hence (because equality against all bounded continuous functions characterizes

equality of measures) the law of β|[0,a] has density φ 7→ 1√
1−a exp

(
− φ(a)2

2(1−a)

)
w.r.t.

the law of B|[0,a].
When a = 1 this is not the case anymore: look at the set {φ, φ(1) = 0}. β belongs
to it with probability 1, and B with probability 0.

Exercise 2 — Location of the minimum.
We want to compute the distribution of T = inf{t ≥ 0, βt = min[0,1] β}.

(1) Show that the global minimum of β is almost surely reached exactly once. You
may use the fact that for every a < b < c < d ∈ Q ∩ (0, 1), the global minimum of
B on [a, b] and [c, d] are almost surely different (4th exercise session)
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For every a < b < c < d < 1 this almost sure property of B|[0,d] is also true for
β|[0,d] by absolute continuity. Hence by countable union, almost surely for every
a < b < c < d ∈ Q∩(0, 1), the global minimum of β on [a, b] and [c, d] are different.

Moreover we know that almost surely the global minimum of β on [0, 1] is not 0
(otherwise since B = β +B1Id then lim inft→0Bt/t > −∞ which is almost surely
not the case.) These two properties imply that almost surely the global minimum
of β is reached only once.

(2) Show that the Brownian bridge is cyclically exchangeable, i.e. that for every x ∈
[0, 1), the process t 7→ β(x+t)mod 1 − βx is still distributed like β. (You may start by
reasoning on the Brownian motion.)

A first idea is to define Xt = B(x+t)mod 1 −Bx. However this has a jump disconti-
nuity at t = 1− x. Hence we rather consider the continuous process

Xt = B(x+t)mod 1 −Bx +B1 1x+t>1 .

This process is continuous and we may rewrite it as such:

Xt = (Bx+t −Bx)1x+t≤1 +(Bx+t−1 +B1 −Bx)1x+t>1

= B̃t 1t≤1−x +(Bt−(1−x) + B̃1−x)1t>1−x

after setting B̃u = Bx+u − Bu. By Markov’s property B̃ is independent from
B[0,x]. Hence we have a process that follows a Brownian motion up to time 1− x,
then follows an independent Brownian motion afterwards. This is exactly the
description of a Brownian motion given by Markov’s property at t = 1− x.
Now we look at the Brownian bridge derived from X. Remark that we have
B1 = X1. Hence

Xt − tX1 = B(x+t)mod 1 −Bx +B1 1x+t>1−tB1

= B(x+t)mod 1 −Bx −B1(t− 1x+t>1)

= B(x+t)mod 1 − (Bx − xB1)−B1(t+ x− 1x+t>1)

= B(x+t)mod 1 −B1((x+ t) mod 1)− (Bx − xB1) = β(x+t)mod 1 − βx.
As a result t 7→ β(x+t)mod 1 − βx is a Brownian bridge.

(3) Deduce the law of T .

Since the minimum is reached only once, if T is the argmin of β, then U = T − x
mod 1 is the argmin of t 7→ β(x+t)mod 1−βx. Hence T−x mod 1 is distributed like
U . An immediate consequence is that E[e2iπnT ] = 0 for n 6= 0, hence the bounded
random variable e2iπT has the same moments as e2iπU where U is uniform. So
e2iπT

d
= e2iπU and T

d
= U .
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Exercise 3 — Maximum of |β|.

(1) (a) Show that

P(S > a, |B1| < ε) = 2P(Ta < T−a, |B1 − 2a| < ε)

In what follows, B̃ will be the Brownian motion B reflected at Ta, and T̃· the
associated hitting times.

P(S > a, |B1| < ε) = P(Ta < 1 ∧ T−a, |B1| < ε) + P(T−a < 1 ∧ Ta, |B1| < ε)

= 2P(Ta < 1 ∧ T−a, |B1| < ε)

= 2P(T̃a < T̃−a, |B̃1 − 2a| < ε)

Hence the result since B and B̃ are likewise distributed.

(b) Show that

P(Ta < T−a, |B1 − 2a| < ε) = P(|B1 − 2a| < ε)− P(Ta < T−a, |B1 − 4a| < ε)

We have

P(|B1 − 2a| < ε) = P(Ta < T−a, |B1 − 2a| < ε) + P(T−a < Ta, |B1 − 2a| < ε)

= P(Ta < T−a, |B1 − 2a| < ε) + P(Ta < T−a, |B1 + 2a| < ε)

= P(Ta < T−a, |B1 − 2a| < ε) + P(T̃a < T̃−a, |B̃1 − 4a| < ε)

Hence the result.

(c) Keep working and deduce an explicit series which equals P(S > a, |B1| < ε).

We may show exactly as above the equalities, for k ≥ 1

P(Ta < T−a, |B1 − 2ka| < ε) = P(|B1 − 2ka| < ε)− P(Ta < T−a, |B1 − (2k + 1)a| < ε)

Hence, combining all this gives

P(Ta < T−a, |B1 − 2a| < ε) =
n∑
k=1

(−1)k+1 P(|B1 − 2ka| < ε)

+ (−1)n P(Ta < T−a, |B1 − (2n+ 1)a| < ε).

As the remainder goes to 0 (at the speed e−n
2/2...), we have an equality:

P(S > a, |B1| < ε) =2
∞∑
k=1

(−1)k+1 P(|B1 − 2ka| < ε)

(2) Deduce the cumulative distribution function of K.
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We deduce the expression of the conditional probability

P(S > a||B1| < ε) =2
∞∑
k=1

(−1)k+1P(|B1 − 2ka| < ε)

P(|B1| < ε)

The summands converge each to (−1)k+1e−2k
2a2 , and assuming ε < 1, k 7→

e−2(k−1)
2a2e1/2 is a summable dominating function. With the dominated con-

vergence theorem we get

P(S > a||B1| < ε) −−→
ε→0

2
∞∑
k=1

(−1)k+1e−2k
2a2

−−→
ε→0

P(K > a) if a is a point of continuity for K

As we have an equality between a decreasing continuous function and a decreasing
function outside of a countable number of points, we have equality everywhere
and we are done.


