Solutions for Exercise sheet 10: Brownian motion, harmonic functions and measures

- **Solution 1** Conformal invariance in dimension 2. (1) We could proceed by computations, but we will use the classic fact that an harmonic function on a simply connected domain is the real part of some holomorphic function. Let $x \in U$ and $B(x,\epsilon)$ be a small ball contained in U small enough so that ϕ maps B(x,r) inside some other small ball $B(y,\delta)$ inside V. On $B(y,\delta)$, we can rewrite $h=\operatorname{Re} f$ with f holomorphic. Hence on $B(x,\epsilon)$, we have $\widetilde{h}=h\circ\phi=\operatorname{Re} f\circ\phi$, and h is harmonic at x.
 - (2) As hinted it is sufficient to verify that for every $f: \partial \widetilde{D} \to \mathbb{R}$ bounded continuous, $\int f(y)\phi_*\mu_{\partial D}(x,dy) = \int f(y)\mu_{\partial \widetilde{D}}(\phi(x),dy)$. But

$$\int f(y)\mu_{\partial \widetilde{D}}(\phi(x), dy) = \mathbb{E}_{\phi(x)}[f(B_{T_{\partial \widetilde{D}}})] = \widetilde{u}(\phi(x))$$

where \widetilde{u} is the unique harmonic function on \widetilde{D} with boundary value f. But now by question 1 we know that $\widetilde{u} \circ \phi$ is harmonic on D, continuous on \overline{D} and has boundary values $f \circ \phi$. Thus by (TD9-exo1) it must be equal to the Brownian expectation. Hence

$$\ldots = \mathbb{E}_x[f(\phi(B_{T_{\partial D}}))] = \int f(y)\phi_*\mu_{\partial D}(x, dy).$$

We have shown the desired equality.

(3) When x = i, $\phi(x) = 0$, and by rotation invariance of B we know that $\mu_{\partial \mathbb{D}}(0, \cdot) = \nu_{0,1}$, the uniform measure on the circle. Furthermore we can check that for $x \in \mathbb{R} = \partial \mathbb{H}$, $\phi(x) = e^{-2i \arctan x}$. Hence for f bounded continuous $\overline{\mathbb{D}} \to \mathbb{R}$,

$$\int_{\partial \mathbb{D}} f(y) \mu_{\partial \mathbb{D}}(0, dy) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{i\pi t}) dt$$

$$\int_{\mathbb{R}} f(y) \phi_* \mu_{\partial \mathbb{H}}(i, dy) = \int_{\mathbb{R}} f(\phi(u)) \mu_{\partial \mathbb{H}}(i, du) = \int_{\mathbb{R}} f(e^{-2i \arctan u}) \mu_{\partial \mathbb{H}}(i, du)$$

By the previous question, these two expressions are equal. Hence

$$\int_{\mathbb{R}} f(e^{-2i\arctan u}) \mu_{\partial \mathbb{H}}(i,du) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{i\pi t}) dt = \int f(e^{-2i\arctan u}) \frac{1}{\pi(1+u^2)} du$$

where the last equality is obtained through a change of variables. Hence the measures $\mu_{\partial \mathbb{H}}(i,du)$ and $\frac{1}{\pi(1+u^2)}du$ are equal when tested against all functions of the

form $u\mapsto f(e^{-2i\arctan u})$. This space of functions containts in particular all continuous functions with compact support on \mathbb{R} , which is enough to characterize equality. Hence $\mu_{\partial\mathbb{H}}(i,du)=\frac{1}{\pi(1+u^2)}du$, the Cauchy distribution.

Remark: the Cauchy distribution for the hitting point on a line was already obtained in a previous exercise by direct computations.

Solution 2 — Singularity removal.

Assume without loss of generality that U is a ball centered at x. Let $\widetilde{h}(y) = \mathbb{E}_y[h(B_T)]$, where $T = T_{U^\complement}$. This is well defined because almost surely $B_T \in \partial U$, and of course \widetilde{h} is harmonic on the whole of U. To show that $h(y) = \widetilde{h}(y)$ for all $y \neq x$, proceed as follows. Define $T_\epsilon = T_{U^\complement \cup B(x,\epsilon)}$. Then by harmonicity of h, $h(y) = \mathbb{E}_y[h(B_{T_\epsilon})]$. Furthermore, since almost surely x is not hit by B, we have $B_{T_\epsilon} \to B_T$ as $\epsilon \to 0$. Applying the dominated convergence theorem yields $h(y) = \mathbb{E}_y[h(B_{T_\epsilon})] \xrightarrow[\epsilon \downarrow 0]{} \mathbb{E}_y[h(B_T)] = \widetilde{h}(y)$ and we are done.

Whith the relaxed condition that $u(x+\epsilon) = o(f(\epsilon))$ where f is a fundamental solution, we define the same T, h, T_{ϵ} . Now

$$h(y) = \mathbb{E}_y[h(B_{T\epsilon})] = \mathbb{E}_y[\mathbb{1}_{T_{\epsilon} < T} h(B_{T_{\epsilon}})] + \mathbb{E}[\mathbb{1}_{T_{\epsilon} = T} h(B_T)]$$

The first term is bounded by $\frac{C}{f(\epsilon)}o(f(\epsilon)) \to 0$ and the second term goes to $\mathbb{E}_y[h(B_T)] = \widetilde{h}(y)$. Hence we still have $h(y) = \widetilde{h}(y)$.

Solution 3 — Inversions in all dimensions.

If I find a more interesting way than just computing the Laplacian of a composition I will update this solution!