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Exercise 1 — Capacity and Hausdorff dimension.
Let f be a positive function on Rd called potential. The energy of a measure µ is If (µ) =∫∫

f(x− y)µ(dx)µ(dy). The capacity of some set A is

Capf (A) = [inf{If (µ) : µ probability measure on A}]−1

At some point you will see that a closed set is polar in dimension d ≥ 2 if and only if it
has zero capacity for the radial potential f(ε) = | log(ε)| if d = 2 and f(ε) = ε2−d if d ≥ 3.
We wish to show a connexion between the notion of capacity and Hausdorff dimension.

(1) Show that if µ is a measure on A ⊂ Rd,

inf
(Ui)i∈P(A)N
∀i,diam(Ui)≤δ⋃

i Ui=A

(∑
i∈N

diam(Ui)
α

)
≥ µ(A)2∫∫

|x−y|<δ µ(dx)µ(dy)|x− y|−α

and deduce that a set of nonzero capacity for f(ε) = ε−α has Hausdorff dimension
≥ α.

(2) Show also that the image of a segment by a α-Hölder function is of Hausdorff
dimension bounded by 1

α
.

(3) What is the Hausdorff dimension of B([0, 1]) in Rd ?

Exercise 2 — Some more boundary value problems.
In this exercise we will admit that for x, y ∈ Rd, t > 0, we have ∂tpt(x, t) = 1

2
∆ypt(x, y).

(Fokker-Planck equation)

(1) Show that if f is C2 with compact support, then under Px, (f(Bt)− 1
2

∫ t
0

∆f(Bs)ds)t
is a martingale. (Dynkin’s formula)

(2) Let D be a bounded domain and f : D → R continuous and C2 on the interior with
bounded second derivatives. Let T be the hitting time of the complement of D.

Show that (f(Bt∧T )− 1
2

∫ t∧T
0

∆f(Bs)ds)t is a martingale (Hint : use a regularization
procedure to apply question 1).

(3) Show that in the sense of distributions, we have ∆G(x, ·) = −2δx, where G is the
Green function of the Brownian motion in the whole of R3 or in a bounded domain
of R2.

(4) Show that in a bounded domain D ⊂ Rd with f continuous, a solution of the
Poisson problem

∆u = f on D

u = 0 on ∂D

1



2

must verify u(x) = −1
2
Ex[
∫ T
0
f(Bs)ds].

(5) Conversely, if f is Hölder and D is bounded and verifies the Poincaré cone condition,
show that this formula (which can be rewritten u(x) = −1

2

∫
f(y)G(x, y)dy) gives

a solution of the Poisson problem in the sense of distributions.

Appendix A. Hausdorff dimension

Let (E, d) be a metric space. For α ≥ 0 and A ⊂ E, we define the α-dimensional Hausdorff
measure of A follows:

Hα(A) := lim
δ→0

 inf
(Ui)i∈P(E)N

∀i,diam(Ui)≤δ⋃
i Ui⊃A

(∑
i∈N

diam(Ui)
α

) .

It is well defined because the lim is actually a sup, and verifies the following property:
Lemma Let α ∈ [0,∞).If Hα(A) <∞ then for β > α Hβ(A) = 0. If Hα(A) > 0 then for
β < α Hβ(A) =∞.
This tells us that there is a transition point α ∈ [0,∞] where the Hausdorff measure jumps
from ∞ to 0, and we want to call that point the Hausdorff dimension of A.

dimH(A) := sup{α,Hα(A) =∞} = inf{α,Hα(A) = 0}.
This α is the only dimension for which A admits a possibly non-trivial Hausdorff measure
(but it may still be 0 or ∞ in some cases).
For instance, in Rd, the d-dimensional Hausdorff measure is equal to the Lebesgue measure
(you probably constructed the Lebesgue measure this way), and open sets have necessarily
Hausdorff dimension d. Of course sets with 0 Lebesgue measure might have a strictly
smaller Hausdorff dimension.


