ENS de Lyon — Math Department Master 1 — Spring 2019
Brownian Motion and Stochastic Processes E. Jacob & M. Maazoun

Solutions for Exercise sheet 11: Miscellanea

Solution 1 — Capacity and Hausdorff dimension.
We first notice that we can change the definition of the Hausdorff measure, as to require
that the sets U; are disjoint.

(1) Let (U;); € P(A)N be such that for all 4, diam(U;) < § and the (U;); forms a partition
of A.
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by Cauchy-Schwarz, yielding the desired inequality. Taking the infimum on all (U;);
then the limit 6 — 0 yields
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Hence for a set of nonzero finite a-capacity, by definition there exists p > 0 such
that [[, p(de)pu(dy)|z — y|~* < oo, so the right-hand-side is bounded below away
from 0. Hence H*(A) > 0 and the Hausdorff dimension is larger than o.

(2) Assume wlog that the segment is [0, 1]. Let C' be the a-Hélder constant. For n > 1
take Uy = f([k/n, (k +1)/n]) for 0 < k <n — 1. Then it is a cover of f([0,1]) and
diam(Uy) < C(1/n)%. Hence Y, diam(Uy)V/* < Y, CV1/n < CY*. So we found
arbitrarily fine covers with bounded a-sum. Hence H*(A) < oo and dimy(A) <e.

(3) If d =1 B([0,1]) almost surely contains a ball so has Hausdorff dimension 1.

If d > 2, we use question 2 and the fact that B is almost surely (1/2 — €)-Hélder
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on [0, 1] to show that dimy(B([0,1])) < 2. For the lower bound we consider the
(random) occupation measure p = B, Lebyg ;. If we take o < 2 and compute
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This is a product of two integrals, the first one boils down to fol r=2dr < oo,
the second one to [ rd-lp=ee=*/2qr < oo, since a < 2. Hence the random
variable [/ B([0.1])2 p(dx)p(dy)(x —y)~@ has finite expectation and is almost surely

finite. Hence almost surely dimy (B([0,1])) > a. Hence dimy (B([0,1])) = 2 almost
surely.

Solution 2 — Some more boundary value problems.
In this exercise we admit that for z,y € R ¢t > 0, we have dyp;(v,y) = %Aypt(x,y).
(Fokker-Planck equation)

1) This process has Clearly independent increments, so we need OIlly show that it is
centered.
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Where we used Fubini, Lebesgue’s differentiation theorem, and integration by part
(the fact that f has compact support makes the boundary term vanish). Hence
E.[X:] = E.[Xo] and we are done.

(2) Once again we need only show that the increments are centered. We want to reuse
question 1. Let € > 0 and ¢. a C* approximation of unity with support contained
in B(0,¢). Let also D, = R4\ B(D% ¢). Set f. = (Ip, ,, * ¢csa) f- Then f. verifies
the hypotheses of question 1. Hence, setting T, to be the hitting time of DC and
using the optional stopping theorem for f.(B;) — fo Af.(Bs)ds at stopping time



t AT, we get
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where we used the fact that f and f. coincide on D, at the second line, and the
continuity of paths with the dominated convergence theorem at the last line (this
uses the boundedness of f and its derivatives, along with integrability of the first
exit time of bounded domains). This finishes the question.

(3) Show that in the sense of distributions, we have AG(x,-) = ., where G is the
Green function of the Brownian motion in the whole of R? or in a bounded domain
of R2.

Let D be the domain in which we are working, possibly R? for d > 3. We need
to show that for ¢ C* and compactly supported (in particular ¢ vanishes at the
boundary of D), we have

/ Ad(y)Glx, y)dy = —2 / 5. (y)0(y)dy = —26(x).

But by definition of G, for all 0, [0(y)G(z,y)dy = E, [fOT 0(B;)ds]. Hence if we go
back to the result of question 2, we have
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which is what we wanted. We used a dominated convergence theorem at line 2:
e when D is bounded the almost sure convergence is immediate, and when D
is unbounded, in dimension > 3, it comes from the transience of Brownian
motion and compactness of supp(¢).

e the domination is by ||¢|le + [|A®|0 fOT 1 B, csupp(s) ds, whose expectation is
bounded by Cj;upp(¢) G(z,y)dy < c©.
We also used the fact that ¢ vanishes at the boundary of D at line 3.
(4) This is only a matter of applying question 2 to u and once again the dominated
convergence theorem as t — oo.
(5) The fact that w is continuous at the boundary follows from the same proof as for

the Laplace problem, using the Poincaré cone condition.



It solves the equation in the weak sense because it is the integral against the fun-
damental solution (”classic” PDE stuff).

Remark : This last claim also holds in the strong sense, under suitable regularity assump-
tions on f. It is done in S. Port, Brownian Motion and Classical Potential Theory, from
page 114 onwards (available at the library). It should also be in the books of Evans or
Gilbarg-Triidinger.



