Exercise sheet 2 : Properties and construction of the Brownian Motion.

Exercise 1 — *Time inversion.*

Let $(B_t)_{t>0}$ be a Brownian motion. Set $X_t = tB_{1/t}$ for t > 0 and $X_0 = 0$.

- (1) Show that X has the finite-dimensional marginals of a Brownian motion.
- (2) What can you say about the set $U = \{A \in \mathbb{R}^{\mathbb{Q}_+}, \lim_{t \to 0, t \in \mathbb{Q}} A_t = 0\} \subset \mathbb{R}^{\mathbb{Q}_+}$?
- (3) Deduce that $(X_t)_t$ is continuous almost surely, hence may be modified on a negligible event to form a Brownian motion.

Exercise 2 — Constructing a Brownian motion indexed by $\mathbb{R}+$.

Let $(B^{(n)})$ be a sequence of independent Brownian motions defined on [0, 1]. Define the following function $B : \mathbb{R}_+ \to \mathbb{R}$:

$$B: t \mapsto B_{t-\lfloor t \rfloor}^{(\lfloor t \rfloor)} + \sum_{i=0}^{\lfloor t \rfloor - 1} B_1^{(i)}.$$

Show that B is a Brownian motion.

Exercise 3 — L^2 theory and construction of the Brownian motion. Let $H = L^2([0, 1])$ with the usual inner product. For $t \ge 0$ let $I_t = \mathbb{1}_{[0,t]} \in H$. We also set $(e_i)_{i \in \mathbb{N}}$ to be an orthonormal basis of H.

- (1) Check that $\langle I_s, I_t \rangle = s \wedge t$.
- (2) Suppose we could build a standard Gaussian random variable in H, that is $\xi \in H$ such that for every $x \in H$, $\langle x, \xi \rangle \sim \mathcal{N}(0, ||x||)$. How could a Gaussian process $(B_t)_{t \in [0,1]}$ such that $\operatorname{Cov}(B_s, B_t) = s \wedge t$ be built from it ?
- (3) Let $Z_i = \langle \xi, e_i \rangle$, so that $\xi = \sum_{i \in \mathbb{N}} Z_i e_i$. Show that the (Z_i) are independent standard Gaussians (*Hint*: compute the characteristic function of $(Z_{i_1}, \ldots, Z_{i_p})$ for $p \ge 1$ and $(i_1, \ldots, i_p) \in \mathbb{N}^p$). Deduce that we could then write the following equality in L^2 :

(†)
$$B_t = \sum_{n=0}^{\infty} Z_n \int_0^t e_i(s) ds$$

(4) Show that ξ can not exist¹ (hint: compute its norm with the help of the basis e)

¹It is possible to build ξ in the space S' of tempered distributions. It is then called a *white noise*, that is a random element of S' such that for every $\phi \in S \subset L^2$, $\langle \phi, \xi \rangle \sim \mathcal{N}(0, \|\phi\|_2)$, see for instance [T.Hida, *Brownian Motion*, chapter 3, Springer 1980]

(5) Nevertheless, show that in the case of the Haar wavelet basis of L^2 : $h_0 = 1$ and for $n \ge 0$ and $0 \le k < 2^n$

$$h_{k,n} := 2^{n/2} \left(\mathbb{1}_{[2k/2^{n+1},(2k+1)/2^{n+1}]} - \mathbb{1}_{[(2k+1)/2^{n+1},(2k+2)/2^{n+1}]} \right),$$

the series in (\dagger) coincides with the Lévy construction of Brownian motion (and hence converges almost surely in $\mathcal{C}([0, 1])$ to a Brownian motion).

- (6) What do we obtain in (†) with the Fourier basis $e_0 = 1$, and $e_m(t) = \sqrt{2}\cos(\pi m t)$?
- (7) \star Show also the almost sure convergence in $\mathcal{C}([0,1])$ of this series.

Exercise 4 — Brownian bridges.

For $x, y \in \mathbb{R}$, we define the Brownian bridge of length one between x and y as follows: let B be a standard Brownian motion and set $\beta_t^{x,y} = x + B_t - tB_1 + t(y-x)$ for $t \in [0,1]$.

- (1) Show that if X is a Brownian motion started from x, then the conditional distribution of the process $X_{|[0,1]}$ given $X_1 \in dy$ is $\beta^{x,y}$.
- (2) For 0 < a < 1, what expression does the Markov property applied at a give for the joint distribution of $(X_{|[0,a]}, X_1)$? Deduce an expression for the conditional distribution of $X_{|[0,a]}$ given $X_1 \in dy$. Deduce a second expression from the previous question.
- (3) Show that the distribution of $\beta_{|[0,a]}^{x,y}$ is absolutely continuous with regard to that of $X_{|[0,a]}$ where a < 1.

Hint: use the fact that the conditional distributions are a.e. uniquely defined, along with some continuity argument.